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Abstract 
The study of resonances of Hamiltonian systems with a divided phase space is a well-established area 
of research which attracted the interests of many researchers over the years. We study such resonances 

over a discrete space focusing on the rotational motion of some orbits in the 3-Dimensional lattice, ℤ3. 

In this study, we construct the discrete standard map from 2-Dimensional to 3-Dimensional lattices. 
Then, we identify and categorize any transformation that could give periodicity for the 3-Dimensional 

lattice on a specific map. The study aims to determine the points that give the periodicity and at the 

same time investigate the behavior of the points for the nonlinear stable orbits over a discrete space. 

For some choice of parameters 𝛼 and 𝛽, our findings showed that the orbit of the 3-Dimensional map 
is periodic depending on the initial conditions. Some arbitrary initial conditions may be periodic in a 

3-Dimensional lattice. 

Keywords: Hamiltonian systems, nonlinear rotations, space discretization, arithmetic dynamics. 

 

Abstrak 

Kajian resonans sistem Hamiltonian dengan ruang fasa terbahagi adalah bidang penyelidikan yang dikenali 
menarik minat ramai penyelidik bertahun-tahun. Kami mengkaji resonans ini di atas ruang diskret yang 

memfokuskan pada gerakan putaran beberapa orbit dalam kekisi 3 Dimensi, Z^3. Dalam kajian ini, kami 

membina peta piawai diskret daripada kekisi 2 Dimensi kepada 3 Dimensi. Kemudian, kami mengenal pasti 

dan mengkategorikan sebarang transformasi yang boleh memberikan keberkalaan untuk kekisi 3 Dimensi 
pada peta tertentu. Kajian ini bertujuan untuk menentukan titik-titik yang memberikan keberkalaan dan 

pada masa yang sama menyiasat kelakuan titik-titik untuk orbit stabil tak linear di atas ruang diskret. Untuk 

beberapa pilihan parameter, penemuan kami menunjukkan bahawa orbit peta 3 Dimensi adalah berkala 
bergantung pada keadaan awal. Sesetengah keadaan awal mungkin berkala dalam kekisi 3 Dimensi. 

Kata kunci: Sistem Hamiltonian, putaran tak linear, pendiskretan ruang, dinamik aritmetik. 
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Introduction 

The study of Chirikov-Taylor standard map 

on a divided phase space has been studied for 

many years (Chirikov, 1969; 1979; 1983; 

Chirikov, Izrailev, & Shepelyansky, 1981; 

Chirikov & Shepelyansky, 1984). The map is 

obtained from a problem of physical system 

such as kicked rotor which can be defined on 

a cylinder phase space 𝕋 = ℝ/ℤ as follows: 

 

𝑆: 𝕋 2 →: 𝕋 2, 

𝑝𝑛+1 = 𝑝𝑛 + 𝑘 sin 𝑞𝑛, 

𝑞𝑛+1 = 𝑞𝑛 + 𝑝𝑛+1,                    (1) 

 

where 𝑘 is the perturbation parameter, 𝑝𝑛 is 

the momentum and 𝑞𝑛 is the angle produced 

from the kicked rotor. One can study the map 

in equation (1) in a discrete space.  

The process for space discretization 

can be done in many ways (Vivaldi & Bailin, 

2015). One of the methods of space 

discretization is to replace the torus 𝕋 2 by an 

N × N lattice. However, replacing the torus 

with a lattice can create problems. This is due 

to the torus having points which may not 

exactly “sit” on the discrete point on a lattice. 

Thus, space discretization could be done with 

the conditions that the map preserves the 

lattice and is invertible (Rannou, 1974). 

Following Rannou's pioneering work, 

discretization has been used for a variety of 

purposes including simulating quantum 

effects in classical systems, achieving 

invertibility in a delicate numerical 

experiment, arithmetically characterizing 

Hamiltonian chaos, and investigating various 

phenomena related to numerical orbits. 

For a discrete version of the Chirikov-

Taylor standard map in equation (1), the map 

is defined on a doubly periodic square lattice 

(ℤ 𝑁ℤ⁄ )2) as follows: 

 

𝛾: (ℤ 𝑁ℤ⁄ )2 → (ℤ 𝑁ℤ⁄ )2, 

{
𝑦𝑡+1 ≡ 𝑦𝑡 + 𝑉(𝑥𝑡)  (𝑚𝑜𝑑 𝑁)

𝑥𝑦+1 ≡ 𝑥𝑡 + 𝑦𝑡+1   (𝑚𝑜𝑑 𝑁) ,        (2) 

 

𝑉(𝑥) = {
+1, 0 ≤ 𝑥 < ⌊

𝑁

2
⌋

−1, ⌊
𝑁

2
⌋ ≤ 𝑥 < 𝑁

,            (3) 

 

where 𝑉 is the perturbation function of the 

discrete map and 𝑁 is a large, fixed integer. 

The equation in equation (2) has been 

constructed by Zhang and Vivaldi (1998). The 

discrete version of the map in equation (2) is 

plotted and can be shown in Figure 1(b) 

below. 

 

 
(a) 

 
(b) 

Figure 1: The island chains for a) Poincare 

sections of the standard map on a torus when 

𝑘 = 0.8, b) The discrete orbits of the map in 

equation (2) with 𝑁 = 300, and 𝑉(𝑥) given 

by equation (3). 
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In Figure 1(a), there exists 

Kolmogorov-Arnold-Moser curves (or 

invariant curves) which bound the motions of 

the orbit points (Finn, 2008; Jürgen, 2001). As 

the perturbation k increases (sufficiently 

small), more and more island chains of higher 

order exist. Meanwhile, the discrete version in 

Figure 1(b) features a discrete version of 

dynamics on a divided phase space. Some 

islands filled with periodic points are formed 

and have island chains of odd order. Further, 

there is no existence of invariant curves to 

bound the discrete orbits. Thus, in one of the 

islands of the map in equation (2), we defined 

a local mapping where the periodic orbits are 

bounded. We are looking for cases where the 

local dynamics can allow bounded invariant 

sets because the latter can be realized in the 

global mapping by selecting 𝑁 large enough. 

The local mapping in one of the 

islands has been constructed by Zhang and 

Vivaldi on 2-dimensional lattice ℤ2 which is 

defined by, 

 

∅: ℤ2 → ℤ2, 

𝑌𝑛+1 = 𝑌𝑛 − 𝑠𝑖𝑔𝑛(𝑋𝑛), 

𝑋𝑛+1 = 𝑋𝑛 + 𝛼𝑌𝑛+1 + 𝛽, 

𝛼 ≥ 1,       0 ≤ 𝛽 < 𝛼, 

where  

𝑠𝑖𝑔𝑛(𝑋) = {
+1, 𝑖𝑓 𝑋 ≥ 0
−1, 𝑖𝑓 𝑋 < 0

.         (4) 

 

Here, 𝛼 and 𝛽 are non-negative 

integers. In this map, the parameter 𝛼  

represents the “stretching” of the elliptic-type 

orbits in horizontal direction and the 

parameter  𝛽 can be viewed as the “shrinking” 

of the elliptic-type orbits in the vertical 

direction. The behavior of the discrete points 

∅ defined in equation (4) is discussed in detail 

in the paper by Alwani and Vivaldi (2018). 

They have proved that if  �̅� =
𝛼

𝑔𝑐𝑑(𝛼,2𝛽)
, then 

the period of the orbit ∅ does not exceed �̅�. 

Moreover, for sufficiently large values of 

initial conditions, all orbits have period �̅�. In 

other words, the orbits of the map ∅ closes its 

rotation around the origin (see Figure 2(a)). 

They also have proved for the non-periodic 

case that is, if �̅� is even (or α divisible by 4), 

then all orbits will eventually reach infinity 

and escape in both time directions. In this 

case, the orbit of ∅ never closes its rotation 

forever.  

 

 
(a) 

 

 
(b) 

Figure 2: Elliptic-type orbits of the local 

mapping in equation (4); a) The orbit of  ∅ 

for 𝛼 = 5, 𝛽 = 2. b) The orbit of ∅ for 𝛼 =

13, 𝛽 = 2.  

 

In Figure 2, the orbit of ∅ defined in 

equation (4) intersects the non-negative X-

axis �̅� times, and the orbit is periodic with 

period �̅�. As we increase the value of X, the 

longer time it takes for the orbit of ∅ to 

complete a rotation around the origin (0,0) in 

this 2-D map. 
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This research is motivated by the 

question of what happens to the trajectory of 

this 2-dimensional (2-D) space orbits in the 3-

dimensional (3-D) space? Basically, in paper 

(Alwani & Vivaldi, 2018), this 2-D lattice is 

reduced to the 1-dimensional (1-D) lattice by 

using Poincaré surface of section that is 

defined by Σ = {(𝑋, 0) ∈ ℤ2: 𝑋 ≥ 0}. We will 

modify this 2-D map defined in equation (4) 

by adding “extra” Z-axis in the map to 

investigate the orbits in the 3-D space. The 

extra Z-axis is applied to the 2-D map in such 

a way that the 2-D orbits can be viewed in 3-

D space.  One of the objectives is to check the 

periodicity orbits. Does the periodicity of the 

orbits can be reached in the 3-D space? Some 

cases will be considered in this paper.  

Heinrich and Hansen (2020) presented 

in their paper, a highly accurate unsupervised 

learning method for 3-D computed 

tomography (CT) registration for the 

abdomen that employs a discrete 

displacement layer and a probabilistic 

evaluation of a contrast-invariant metric. By 

iteratively subdividing the 3-D search space 

into orthogonal planes, they achieved a 

significant reduction in memory and 

processing load. As a result, by using a fully 

3-D discrete network, they were able to reach 

more in terms of accuracy to complete this 

medical part. Other related papers on 3-D 

space can also be found in (Hofmann et al., 

2017; Samaniego, Sanchis, García-Nieto & 

Simarro, 2017; Thibault, 2010). Some of the 

methodology discussed in the results and 

discussion may be referred to (Dawkins, n.d.). 

Other papers related to dynamical systems 

viewed in 3-D are also described in 

(Haramburu, 2006; Lucas, Sander & Taalman, 

2020). In these two papers, they visualize the 

system of dynamics in 3-D modeling.  

The study of 3-D modeling and 

methods have been increasingly growing in 

the study of technology. In (Bane, 2012), the 

3-D modeling not only aims to create the 

models but also able to visualize the structure 

of the models when it takes its form. In other 

words, it is a test whether the structure of the 

3-D models can be realistically created and 

ideal for its purposes. Thus, in this paper, we 

only focus on the dynamics of the orbits of the 

2-D map which can viewed in the 3-D map. 

 

Methodology 

 

Construction of 3-D Map 

As we mentioned in the introduction, we add 

the extra axis in the map defined in equation 

(4). There are infinitely many choices of 

equations that we can define for the extra “Z-

axis”. The simplest case for modifying the 2-

D map in equation (4) into a 3-D map is by 

letting 𝑍𝑛+1 = 𝑐 where c is an integer. In this 

case, one can observe that the orbit of ∅ is 

lifted from a plane XY by an integer 𝑐. 

 

 
Figure 3: The elliptic-type orbits shown in 

Figure 2 (a) is “lifted” by an integer with 

𝑍𝑛+1 = 6 in a 3-D space.  

 

Since the periodic orbit of the map 

∅ defined in equation (4) on the XY-plane is 

lifted upward by an integer 6, then it can be 

observed that the map ∅ is also periodic in a 

3-D discrete space. 

 

Construction of 3-D Map: Case I 

Now, we are interested to study the elliptic-

type orbits for some other cases of  𝑍𝑛+1. 
From equation (4), we construct the map on a 

3-D lattice as follows, 
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Case I: 

Φ: ℤ3 → ℤ3 , 

𝛼 ≥ 1,       0 ≤ 𝛽 < 𝛼, 

𝑌𝑛+1 = 𝑌𝑛 − 𝑠𝑖𝑔𝑛(𝑋𝑛), 

 𝑋𝑛+1 = 𝑋𝑛 + 𝛼𝑌𝑛+1 + 𝛽, 

 𝑍𝑛+1 = 𝑍𝑛 + 𝑠𝑖𝑔𝑛(𝑋𝑛), 
where 

𝑠𝑖𝑔𝑛(𝑋) = {
+1, 𝑖𝑓 𝑋 ≥ 0
−1, 𝑖𝑓 𝑋 < 0

.          (5) 

 

Here, 𝛼 and 𝛽 are non-negative 

integers. We denote (𝑥0, 𝑦0, 𝑧0) to define the 

initial conditions and (𝑋0, 𝑌0, 𝑍0) to define the 

function of X, Y and Z. In the above case in 

equation (5), 𝑍𝑛+1 is the equation which has 

been added into the map ∅ defined in equation 

(4). It gives the value of an integer for any 

initial condition (𝑥0, 𝑦0, 𝑧0) in the orbit of Φ. 

The 𝑍𝑛+1 in equation (5) is added in such a 

way that the form of the elliptic-type orbits is 

preserved. The equation of 𝑍𝑛+1 in Figure 3 is 

chosen different from the  𝑍𝑛+1 in equation 

(5) as the equation of 𝑍𝑛+1 depends on the 

initial value of (𝑥0, 𝑦0, 𝑧0) and the 𝑠𝑖𝑔𝑛(𝑋𝑛). 
In the next section, we will discuss some 

numerical observations of the orbit of Φ.  

 

Numerical Experiments on Case I 

In Case I, one observes from the numerical 

experiments, periodicity of the orbit of  Φ 

defined in equation (5) can be achieved in a 3-

D discrete space. 

The orbit of Φ is similar to that of orbit 

of ∅ defined in equation (4) except that it is 

the orbit that rotates around its center on the 

YZ-plane which is lifted by 45° angle from 

the horizontal plane (see Figure 4).  

 

 

 
(a) 

 

 
 

(b) 

Figure 4: The orbit of  Φ  defined in 

equation (5) with 𝛼 = 5, 𝛽 = 2 in a 3-D 

lattice. a) The orbit of  Φ forms an elliptic-

type orbits as in the XY plane defined in 

equation (4) and complete the rotations �̅� 

times. b) The map of  Φ plotted in a polygon 

plot. 

 

It rotates around its elliptic-type center 

point �̅� times, which makes the orbit of Φ is 

periodic with period �̅�. Moreover, the orbit of 

Φ involves the revolution around its center 

point on a specific plane instead of the whole 

3-D space ℤ3 . 
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Construction of 3-D Map: Case II 

Now, let us consider a different case of the 3-

D. Again, from equation (4), we change the 

equation defined for the Z-axis in equation (4) 

as follows:  

 

Case II: 

Φ̃: ℤ3 → ℤ3 ,  
𝛼 ≥ 1,  0 ≤ 𝛽 < 𝛼, 

𝑌𝑛+1 = 𝑌𝑛 − 𝑠𝑖𝑔𝑛(𝑋𝑛), 

𝑋𝑛+1 = 𝑋𝑛 + 𝛼𝑌𝑛+1 + 𝛽, 

�̃�𝑛+1 = 𝑋𝑛𝑌𝑛 + 𝛼𝑠𝑖𝑔𝑛(�̃�𝑛) − 𝛽 −

𝑌𝑛+1 + 𝑋𝑛+1,            (6) 

where, 

𝑠𝑖𝑔𝑛(𝑋) = {
+1, 𝑖𝑓 𝑋 ≥ 0
−1, 𝑖𝑓 𝑋 < 0

, 

and 

𝑠𝑖𝑔𝑛(𝑍) = {
+1, 𝑖𝑓 𝑍 ≥ 0
−1, 𝑖𝑓 𝑍 < 0

.           

  

From equation (6), �̃�𝑛+1 is the 

equation which has been added into the map ∅ 

defined in equation (4).  One can see that �̃�𝑛+1 

is an equation that depends on 𝑋𝑛, 𝑌𝑛 ,  

𝑋𝑛+1, and 𝑌𝑛+1.  

The behavior of the orbit of Φ̃ happens 

to be periodic for some values of initial 

conditions. By choosing a specific initial 

condition and values of parameter 𝛼 and 𝛽, the 

orbit of Φ̃ defined in equation (6) rotates 

around its center point and closes its orbit 

(return to its original initial condition)  �̅� =
𝛼

𝑔𝑐𝑑(𝛼,2𝛽)
  times. 

 

Numerical Experiments on Case II 

For this Case II, it turns out that the orbit of Φ̃ 

is also periodic with period �̅� for some values 

of initial conditions (𝑥0, 𝑦0, 𝑧0) in the 3-D 

discrete space which will be discussed later in 

the next section. In this Case II, the behavior 

of the orbit of Φ̃ is more complicated as 

compared to the orbit of Φ in Case I. One 

observes that the elliptic-type orbits of the 

map Φ̃ formed a “twisted” version (see Figure 

5) of the map Φ and of the original discrete 

map  ∅ explained in Figure 3. Moreover, the 

elliptic-type orbits are no longer formed as 

shown in Figure 5 below. 

 

 

 
(a) 

 
(b) 

Figure 5: The orbit of Φ̃ defined in equation 

(6) with 𝛼 = 5, 𝛽 = 2.  

 

In Figure 5, one can see that the orbit 

of Φ̃ f has no longer preserve the elliptic-type 

orbits form but instead, forms similar to a 

discrete version of the hyperbolic paraboloid 

equation or as known as the “potato chip’ 

equation (see Figure 6(b)), generated by, 

𝑓(𝑥, 𝑦) =
𝑦2

𝑏2 −
𝑥2

𝑎2.             (7) 
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(a) 

 
(b) 

Figure 6: a) The orbit of Φ̃ (in ℤ𝟑 ) defined 

in equation (6) in a polygon plot in Maple 

Software. b) The figure of hyperbolic 

paraboloid equation defined in equation (7) 

in Maple Software.  

 

 In Figure 6, it can be observed that the 

map of Φ̃ is different than the map of 

hyperbolic paraboloid defined in equation (7). 

Furthermore, the phase space of the orbit of 

Φ̃ is also different (in ℤ3 ) than the phase 

space of the hyperbolic paraboloid viewed in 

ℝ3. In the Figure 6(a), the orbit points are 

bounded by the “most” outer orbits point of 

the map Φ̃ and these orbit points are periodic 

with period of  �̅� =
𝛼

𝑔𝑐𝑑(𝛼,2𝛽)
. In Figure 6(b), 

the orbits of the map bounded on the surface 

with no restriction with respect to the Z-axis. 

 

Results and Discussion 

As described in the previous discussion of the 

map of Φ defined in equation (5) for Case I, 

the original XY-plane is lifted by a 45° angle 

from the horizontal plane (see Figure 7). Thus, 

we have the following. 

 

Lemma 1 Let ℤ+ be the set of non-negative 

integers and let (𝑦𝑛 , 𝑧𝑛) (𝑎𝑛𝑑 (𝑦𝑘 , 𝑧𝑘) be two 

points in the orbit of 𝛷 map defined in (5) on 

the 𝑌𝑍 − 𝑝𝑙𝑎𝑛𝑒 where 𝑛, 𝑘 𝜖 ℤ+ . Thus, from 

the projection on the 𝑋 − 𝑎𝑥𝑖𝑠, the angle of 

the YZ-plane from the orientation of the X-

axis the is given by 

tan 𝜃 =
| 𝑍𝑛−𝑍𝑘|

|𝑌𝑛−𝑌𝑘|
= 1,           (8) 

where 𝜃 = 45°. 
 

 
(a) 

 

 

 
(b) 

Figure 7: a) The orientation of X (side view 

from X) on the YZ-plane. B) The 2-D map of 

Φ on the YZ-plane.  

 

The Figure 7 shows that the angle 𝜃,  

of the YZ-plane from the X-axis is 45°. From 
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the numerical experiments, on the YZ-plane, 

the orbit of  Φ defined in equation (5) rotates 

around its center point (not necessarily the 

origin (0,0,0)) �̅� =
𝛼

𝑔𝑐𝑑(𝛼,2𝛽)
 times (see Figure 

4). Hence, we have the following: 

 

Conjecture 2 (Case I) Let �̅� =
𝛼

𝑔𝑐𝑑(𝛼,2𝛽)
 𝑎𝑛𝑑 𝑙𝑒𝑡 𝛷 is the 3-dimensional map 

defined in equation (5). Then, for any 

sufficiently large initial conditions 

(𝑥0, 𝑦0, 𝑧0), all orbits of 𝛷 are periodic with 

period �̅� in the 3-dimensional lattice. 

 

Here, the sufficiently large initial 

conditions refer to the values of (𝑥0, 𝑦0, 𝑧0) 

which is far away from the center point. 

Now, let us describe the geometric 

interpretation of the map Φ defined in 

equation (5) or Case I (Dawkins, n.d.). The 3-

D map equation is determined by relating the 

points on the plane with its orientation. This 

orientation is specified by finding the normal 

vector to the map. Generating two vectors 

from the chosen three points, vector 

multiplication is performed between the 

generated vectors to produce a vector that is 

normal to the map.  

The standard equation of the plane is 

then derived in terms of the vector normal as 

�⃑�  ⋅  𝑃0𝑃⃑⃑⃑⃑⃑⃑  ⃑ = 0, where the first vector is the 

normal vector, and the second vector is related 

to arbitrary point 𝑃(𝑥,  𝑦,  𝑧) on the plane with 

respect to one point on the map.  

For Case I, with the values of 

parameter 𝛼 = 5 and 𝛽 = 2, the equation of 

the 3-D map is then simplified as the equation 

of 2-D plane in space as 𝑦 + 𝑧 − 70 = 0. 

Equivalently, this equation represents 

the equation of straight line in the YZ-plane as 

shown in Figure 6. The line has a negative 

slope equivalent to 45° with respect to the Y-

axis which satisfies the Lemma 1 (equation 

(8)). To satisfy the conditions in Case I, the 

variable 𝑥  should satisfy the equation (5). 

Depending on the values of α and 𝛽, the 

equation of the 2-D plane changes. However, 

it is observed that for any values of α and 𝛽, 

there is no vector 𝑥 that is 〈0, 𝑦, 𝑧〉.  
For Case II as described in previous 

section, the map Φ̃ becomes periodic with 

period �̅� =
𝛼

𝑔𝑐𝑑(𝛼,2𝛽)
. We have the following: 

 

Conjecture 2 (Case II) Let �̅� =
𝛼

𝑔𝑐𝑑(𝛼,2𝛽)
 𝑎𝑛𝑑 𝑙𝑒𝑡 �̃�  be the 3-Dimensional 

map defined in equation (6). Then for some 

initial conditions (𝑥0, 𝑦0, 𝑧0), the orbit of �̃� 

defined in equation (6) is periodic with period  

�̅� in the 3-dimensional lattice. 

 

As mentioned in the previous section, 

the behavior of the orbit in Case II is 

complicated as compared to Case I. This is 

because one needs to choose a specific value 

of initial condition (𝑥0, 𝑦0, 𝑧0) that has the 

period of the orbit of Φ̃ is periodic with period 

�̅�.  
 It happens that if we choose an initial 

condition (specifically a point after one 

iteration of the chosen initial point in its own 

orbit), the orbit of the 3-D map defined in 

Case II is periodic with period �̅�. However, it 

does not happen if we choose arbitrary initial 

conditions. In this Case II, the orbit of the 3-D 

map defined in equation (6) can be non-

periodic for arbitrary initial conditions. 

 

Conclusion 

It is shown that by adding and varying the 𝑍-

axis in the 2-Dimensional original map to the 

3-Dimensional map, the periodicity may be 

attained under a certain 𝑍-axis conditions. If 

we tilt and lift the 𝑋𝑌-plane, we can see that it 

is still periodic for sufficiently large initial 

conditions (Case I). In another situation, we 

can still sustain its periodicity by twisting the 

plane like in the Case II (for some initial 

conditions (𝑥0, 𝑦0, 𝑧0)). In this project, this 3-

D lattice is a wide space where the form of the 

2-D elliptic-type orbits may and may not 
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cover the whole 3-D space. In fact, its 2-D 

form of the discrete Chirikov-Taylor standard 

map can be viewed in the 3-D space 

depending on the Z-axis defined in Case I and 

II. 

However, we were unable to 

accomplish periodicity in the more 

complicated versions of 𝑍-axis or in the 3-D 

space. Thus, we classified them as non-

periodic cases even though the orbit of the 

map defined in equation (4) which has period 

�̅� is originally periodic case in 2-D. This is 

because of the infinite number of types of 

functions for the Z-axis which can be defined 

or added (not necessarily for Case I and Case 

II only) in the 2-D map in equation (4). Since 

we only focus on the orbit of the 3-D maps 

which give periodicity, therefore we only 

obtained two types of functions of Z that 

preserve the rotations as defined in equations 

(5) and (6). 

For future, further investigation could 

be explored related to the statistical properties 

of 3-D representation especially in describing 

the behaviour of the discrete points in a 

specific lattice. This study is useful in viewing 

the 3-D map which was constructed from the 

2-D problem and could give new 

interpretation from the statistical point of 

view. 
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