
1ohd Tamrin et al. Journal of Information Systems and Digital Technologies, Vol. 1, No. 2, 2019  

16 

 

SUPERVISED IDENTIFICATION OF 
ACINETOBACTER BAUMANNI STRAINS USING 

ARTIFICIAL NEURAL NETWORK 

MOHD IZZUDDIN MOHD TAMRIN1*, MOHD HAFIDZ MAHAMAD MAIFIAH2, MOHD 

ZULFAEZAL CHE AZEMIN3, SHERZOD TURAEV4,  
 MOHAMED JALALDEEN MOHAMED RAZI5 

 1Kulliyyah of ICT, International Islamic University Malaysia, Gombak, Malaysia 
2International Institute of Halal Research and Training, Gombak, Malaysia  

3Kulliyyah of Allied Health, International Islamic University Malaysia, Gombak, Malaysia 
4Department of Computer Science and Software Engineering, College of Information 

Technology, United Arab Emirates University, Abu Dhabi, United Arab Emirates 
5Faculty of Commerce and Management Studies, University of Kelaniya, Kelaniya, Sri 

Lanka 

*izzuddin@iium.edu.my  

 (Received: 21st August 2019; Accepted: 5th October 2019; Published on-line: 30th 
October 2019)  

ABSTRACT:  In hospital environments around the world bacterial 
contamination is prevalence. One of the most commonly found bacteria is the 
Acinetobacter Baumannii. It can cause unitary tract, lung, abdominal and central 
nervous system infection. This bacteria is becoming more resistant to antibiotics. 
Thus, identification of the non-resistant from the resistant bacteria strain is of 
important for the correct course of treatments. We propose to use the artificial 
neural network (ANN) for supervised identification of this bacteria. The mass 
spectra generated from the liquid chromatography mass spectrometry (LCMS) 
were used as the features to train the ANN. However, due to the massive number 
of features, we applied the principle component analysis (PCA) to reduce the 
dimensions. Less than 1% of the original number of features were utilized. The 
hand out validation method confirmed that the accuracy, sensitivity and specificity 
are 0.75 respectively. In order to avoid selection biasness in the sampling, 5-fold 
cross validation was performed. In comparison, the average accuracy is close to 
0.75 but the average sensitivity is slightly higher by 0.50.  
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1. INTRODUCTION  

Acinetobacter Baumanni is a type of bacteria that is commonly found in hospital 
environments from the intensive care unit right to the long-term care unit (Thorne et 
al., 2019). This bacterium can easily colonize the human body with low immune 
system. It causes severe unitary tract, lung, abdominal and central nervous system 
infections. Left untreated it can lead to death. Usually these infections can be 
treated with multiple classes of antibiotic such as cefepime, ceftazidime and 
ciprofloxacin. However, A. Baumanni has demonstrated resistance against most 
classes of antibiotics (Trinh et al., 2019). Its genome has mutated to create defense 
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mechanism by developing pathogenicity assay. For example, modifying the 
structure and number of proteins that can pass through the outer cell membrane of 
the bacteria has tremendously reduced the effectiveness of relevant antibiotic to 
diffuse. 

For this reason, identification of the strains of these bacteria is important to 
detect the one that is not resistant and the one that is resistant to the antibiotic. 
Therefore, the correct course of treatments can be effectively planned for the 
patients. The most commonly used techniques to identify bacteria are polymerase 
chain reaction (PCR) and phenotypical method (Jain et al., 2019). The former is 
highly sensitive but costly. However, the cost has reached economies of scale and 
become affordable. Alternatively, the phenotypical method observes the interaction 
between the bacteria and its environment. Due to its unique biochemical processes, 
the bacteria will either colonize the agar or remain inactive when cultured overnight 
inside a petri dish.   

In order to increase the accuracy of the bacteria identification from the same 
species but different strains, the mass spectrometer can be employed to detect 
mass proteins from the bacteria (Chamberlain, Rubio & Garrett, 2019). Each 
bacterium is made up of different proteins and the correct bacteria can be identified 
if matched against the existing database. However, not the entire strains of the 
bacteria are available in the database. In this paper, we use the artificial neural 
network, a technique from machine learning domain to model and automate the 
identification of A. Baumanni without the database. The peaks from the mass 
spectra are fed as its features. Since the dataset is huge, we use the principal 
component analysis to reduce its size. In the following sections of this paper, this 
research work is elaborated in more details in the literature reviews, methodology, 
results, discussions and conclusions. 

2. LITERATURE REVIEWS 

The basis for the needs to identify A. Baumanni has been much deliberated in 
the previous section. In this section, we explore the techniques of identifying 
bacteria. There are mainly two approaches, identification at the molecular and 
phenotypic levels. The former is to go deep and examine the bacteria blueprint i.e., 
its deoxyribonucleic acid (DNA). Every living thing including bacteria is made up of 
unique segment of DNA sequences; and thus the accuracy of this approach, for 
identification, is very high. This method is well known as polymerase chain reaction 
(PCR) (Falah, Shokoohizadeh & Adabi, 2019; Goudarzi et al., 2019; Lavanya & 
Uma, 2019) where the bacterial sample undergoes the process of constant heating 
and cooling. The heating process allows the DNA nucleotides to break free from 
their bonds and bind to the primer of the targeted bacteria in the cooling process.       

Previously, the cost associated with PCR is quite expensive but has become 
more affordable in recent years. As for the phenotypical method (Anderson & 
Rather, 2019; Bravo et al., 2019), the agar with the right contents of lactose, soy 
peptone, casein and sodium chloride are chosen to set up a good environment for 
the growth of the target bacteria. After that, it must be cultured overnight. Due to its 
unique biochemical processes that are different from other bacteria, specific 
biochemical indicators can be observed for A. Baumanni. For example, the level of 
acidity from the fermentation of lactose and the trace of enzymes to breakdown 
amino acids such as aspartate and alanine can be used to profile that bacteria. 
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However, bacteria from the same species but a different strain will be more difficult 
for this method to differentiate. 

Alternatively, the mass spectrometer can be applied to detect the proteins 
make-up of the target bacteria for greater differentiation between strains from the 
same species. This technique is known as matrix assisted laser 
desorption/ionization – time of flight mass spectrometry (MALDI-TOF MS) (Kolk et 
al., 2019; Mari-Almirall et al., 2019; Neonakis & Spandidos, 2019; Welker et al., 
2019). The bacteria sample is mixed with a matrix solution which allows the process 
of ionization to take place. Once hit by a laser, these analytes vaporize and the 
positively charged particles are pushed through a magnetic field to hit a panel of 
detector. The time taken to reach the detector and the intensity of the hit are 
recorded and compared against the database. These measurements can be used 
to profile the proteins of the target bacteria. However, reliance on the database is 
critical. Our approach is to train an artificial neural network model using bacterial 
mass spectra to automate identification of A. Baumanni that is non-resistant from 
the one that is resistant to antibiotic.     

3. METHODS 

 

Fig. 1. Overview of the proposed methods for training artificial neural network. 

In this section, the entire process involved in training artificial neural network 
for the identification of non-resistant A. Baumanni is deliberated extensively. Firstly, 
the bacterial mass spectra generated from cultured A. Baumanni are to be utilized 
as features for the training. Secondly, due to the overwhelming size of the dataset, 
the principal component analysis is applied to minimize the number of features. 
Finally, the dataset is divided into training and testing sets to test the model 
performance and access whether we have over trained it. Figure 1 summarizes the 
methods used in this paper.  

3.1. Feature Extraction  
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For detailed explanation, refers to Mahamad Maifiah et al. (2016). The stock of 
A. Baumanni strains, ATCC 19606 and lpxA mutant 19606R were injected onto 
separate Mueller Hinton agar plates and incubated at 37 °C for 18 hours to facilitate 
bacterial growth. The former is a non-resistant strain to polymyxins, a type of 
antibiotic, that could kill this bacteria by tearing up their cell membrane. However, 
the latter is resistant to polymyxins. Prior to the incubation, the agar plate was added 
with 10 mg/L polymyxin B to the IpxA mutant 1906R. This is to ensure that only the 
resistant population will survive. Following this, for each bacterial strain, a total of 
three biological replicates and four technical replicates were performed. Due to this, 
there were 12 samples produced for each strain and a total of 24 samples for both 
strains.  

Next, the biomass of each sample were filled-up with 250 μL extraction solvent 
and centrifuged at 14000 x g for 10 minutes at the temperature of 4°C. This process 
was performed to release 200 μL intracellular metabolics of the bacteria before it 
could be injected into the liquid chromatography mass spectrometry (LC-MS) for 
measurement. The LC-MS used is the Dionex system from Thermo Fisher which 
could generate positively and negatively-charged ions. As a result, each bacteria 
strain would produce 24 mass spectra. A total of 48 mass spectra for both strains. 
These were used as features to train the artificial neural network. However, the 
system was run for almost 32 minutes and the total ion chromatogram for each 
sample was massive. In order to reduce the size of this dataset, the principle 
component analysis was applied. 

3.2. Principle Component Analysis 

Based on previous section, there are 8000 peaks generated for each mass 
spectra from the ion chromatogram. Mass spectra is the signal intensity of the 
ionized intracellular metabolic fragments of the bacteria that were injected into the 
LC-MS. We are interested to reduce these features but with the minimum loss of 
information. Principle component analysis (PCA) is one of the best approaches to 
reduce dimensions. It searches for the best linear combination of these features 
that can explain most of the information. What we mean by information is the ability 
of the PCA to explain the most variability between the entire samples. The principle 
component is defined as follows: 

 𝑍 =  𝑎 , (𝑋 −  𝑋 ) +  𝑎 , (𝑋 −  𝑋 ) + ⋯ +  𝑎 , (𝑋 −  𝑋 ), 𝑖 = 1, … , 𝑠                (1) 

Where X1, …, Xs are the peaks generated from the mass spectra. 𝑋 , …, 𝑋  are 
the mean of these peaks across 24 bacterial samples. Zi is the set of new features 
that we want to reduce. In our study, we have reduced from 8000 to 48 features 
that accounted for 99% of the total variability of the entire samples i.e., the 
cumulative proportion of variance has reached 0.99. In comparison, this suggests 
that we can explain 99% of variation in the data with less than 1% of the actual 
features in the mass spectra. Lastly, the ai,1, …, ai,s are the first until sth weight 
coefficients of the ith newly derived feature. The partial PCA output for the first five 
principle components i.e., PCA1 to PCA5 are shown in the appendix. 

However, the scale used to measure the mass spectra for positively and 
negatively charged ions can affect the principal component. For this reason, we 
have normalized the dataset using the standard z-score defined as follows: 
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𝑣 =  
 

                                                                                                       (2) 

 Where F is one of the peaks derived from the mass spectra with n observed 
values of vi where i = 1, …, n from different samples. μF and σF are the mean and 
standard deviation for that feature respectively. The z-score transformations are 
performed on every value of vi across the entire 8000 peaks.  

3.3. Artificial Neural Network  

In the previous section, we have produced PCA1 to PCA48 as the new and 
reduced features for training the artificial neural network (ANN) (Parisi et al., 2019). 
ANN can create a model that captures the complex relationship between the 
predictors and the outcome. This method can satisfy our requirement to model not-
so-linear relationship between the new features and identification of non-resistant 
A. Baumanni strain to polymyxins. It is a data driven method that imitates the way 
human learns. The architecture is made from three main layers: input, hidden and 
output. In our study, the input layer comprises neurons that receive values from 
PCA1 to PCA48. The hidden layer has 10 neurons that employ the resilient 
backpropagation to update the weights and biases. Finally, the output layer has two 
neurons that represent the prediction values for the non-resistant and resistant 
Baumanni strains. 

The problem with ANN is that we can over train the model based merely on the 
existing mass spectra. If there are new mass spectra that come in, the model may 
not have the same level of accuracy for making a good prediction. In order to 
evaluate its performance, we need to have a different set of data for testing from 
the data used for training. For this reason, our dataset is divided into two portions: 
60% will be used for training and 40% for testing. Accuracy indicates the overall 
model performance and is defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =                                                                                                         (3) 

Where TP is the number of times non-resistant and resistant A. Baumanni 
strains are correctly identified respectively. P and N is the number of non-resistant 
and resistant A. Baumanni strains respectively. The threshold is set to 0.5. This is 
used to predict the A. Baumanni strains: (non-resistance = 1) and (resistance = 0). 
Moreover, sensitivity measures the model ability to correctly identify only the non-
resistant A. Baumanni strain and is defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =                                                                                                         (4) 

Finally, sensitivity measures the model ability to correctly reject the resistant A. 
Baumanni strain and is defined as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =                                                                                                         (5) 

4. RESULTS 

Table 1: Model Performance using Hold Out and 5-Folds Cross Validations 

Validation Methods Accuracy Sensitivity Specificity 
Hold Out 0.75 0.75 0.75 
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5-Folds Cross Validation 0.73 0.8 0.66 

 

After we have trained the artificial neural network with the training set, the 
testing set was used to validate the performance of the model. The accuracy, 
sensitivity and specificity are 0.75 respectively. Due to the biasness in the selection 
of the sample into 60% of the training set and 40% of the testing set, a different 
result may be produced instead. In order to ensure the consistency of the results 
across different sampling approach, we performed a 5-folds cross validation (Rayal 
et al., 2019). The outcomes from this method indicated that it is just slightly less 
than the hold out validation method that we have performed earlier. Table 1 
summarizes the outcomes from both validation methods. Figure 2 illustrates the 
boxplots that summarized the overall performance consistency of the model with 5-
folds cross validation.  

 

Fig. 2. Boxplot summarized the model overall performance predicting non-resistant 
A. Baumanni strain. (a) Accuracy. (b) Sensitivity. (c) Specificity. 

5. CONCLUSION 

Based on the overall performance highlighted from the previous section, the 
values are considered quite remarkable. This is because the model was trained with 
only 1% of the original number of 8000 features that were derived from the mass 
spectra. Although the accuracy did not reach 0.8 target, the average sensitivity from 
the 5-fold cross validation did reasonably well. This is a good indicator for health 
science domain since it reduces the type 2 errors. Conversely, the ANN relies 
heavily on large data to make better prediction. Since our dataset contains only 48 
mass spectra used for training, this can be the reason for not reaching this target. 
In the future, we are considering to replicate more samples from both bacterial 
strains and thinking of using only the top features with high weight that project to 
the first principle component. This principle component captures the highest 
variability of the total variation in the entire dataset.  
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APPENDIX  

Table: Partial PCA Output for the First Five Principal Components. 

PCA1 PCA2 PCA3 PCA4 PCA5 

-3E+09 -1.7E+08 -7.1E+07 -1.7E+08 -2.6E+08 

-2.9E+09 -3.6E+08 2.88E+08 -1.1E+08 1.2E+08 

-2.4E+09 3.93E+08 1.63E+08 -1.1E+07 -2.5E+07 

-3.2E+09 -4.3E+08 1.73E+08 -4.2E+07 2.87E+08 

-3.7E+09 -6.2E+08 -3.9E+08 -1.5E+08 1.65E+08 

-2.6E+09 -3E+08 2.3E+08 -1.3E+08 1.32E+08 

-1.8E+09 -2.2E+08 4.13E+08 2.52E+08 -5.1E+07 

-2.6E+09 -3.6E+08 4.23E+08 2.27E+08 -2.4E+08 

-2.7E+09 -3.7E+08 2.21E+08 -1.3E+08 -4.2E+07 

-2.9E+09 1.7E+08 -3E+08 -1.8E+08 -3.5E+07 

 


