
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

146

Efficient Skyline Query Processing in Incomplete Graph
Databases Using Machine Learning Techniques

Ubair Noor, Raini Binti Hassan, Dini Oktarina Dwi Handayani
Department of Computer Science, International Islamic University Malaysia,

Kuala Lumpur, 53100, Malaysia

*Corresponding author: hrai@iium.edu.my
(Received: 12th June 2025; Accepted: 2nd July, 2025; Published on-line: 30th July, 2025)

Abstract— Skyline queries play a critical role in multi-criteria decision-making systems by retrieving non-
dominated data points from large datasets. In recent years, the rapid growth of graph-structured data across
various domains has introduced challenges in efficiently processing skyline queries over incomplete and
large-scale graph databases. Processing skyline queries in such massive, incomplete graphs is
computationally intensive due to missing values and high-dimensional data. Traditional techniques often fail
to scale or effectively handle data imperfections. There is a pressing need for a scalable, intelligent
framework that can manage missing data, reduce computational overhead, and improve skyline query
efficiency. This study adopts the Design Science Research Methodology (DSRM) to design and implement
an optimisation framework that integrates machine learning techniques, including domination score
ranking, dimension-based filtering, K-Means clustering and quicksort. These methods collectively reduce the
search space and redundant comparisons. Experimental evaluation on real graph datasets demonstrates
significant improvements in skyline computation time and accuracy, with clear reductions in pairwise
comparisons and improved processing efficiency on large-scale graphs. By leveraging machine learning
techniques for sorting, filtering and clustering, the approach reduces computational complexity and
enhances scalability. These results show promising directions for applying intelligent query optimization in
big data environments.

Keywords— Skyline queries, Incomplete graph database, Machine learning, Graph database

I. INTRODUCTION

These Skyline queries are used in database systems to
retrieve non-dominated tuples data points that are not
dominated by any other nodes [1]. In graph databases, this
means identifying nodes that are optimal based on
attributes such as distance, cost or relevance, making
skyline queries particularly useful in applications like
recommendation systems, e-commerce, road networks and
urban planning.

A big challenge happens when graph databases contain
incomplete data [2] [3] [4]. These missing values fail the
transitivity of dominance relationships, which is
foundational to skyline computations. This can lead to cyclic
comparisons and ambiguous dominance, significantly
increase the complexity of processing queries. Despite the
widespread use of skyline queries in practice, limited
research has addressed how to efficiently compute skylines
when dealing with incompleteness in graph-based datasets.

Graphs in real-world applications are often dynamic and
sparse, where nodes frequently lack values in one or more
dimensions. For example, in a hotel recommendation
system, a user may want to identify hotels near the beach

with affordable prices. If some hotels are ratings or price
information, they still might be valuable candidates
depending on the available data. Traditional skyline
algorithms often leave out these incomplete entries, which
potentially eliminates useful information from the results.

Processing skyline queries efficiently over incomplete
graph databases thus requires innovative techniques which
can reduce the computational cost, handle missing values
without compromising the accuracy of results and adapt to
high-dimensional and constantly changing data. This study
aims to tackle these challenges by proposing a method
which integrates machine learning techniques particularly
clustering to enhance skyline query performance. Machine
learning can help infer patterns from incomplete data,
cluster similar nodes to narrow the search space and
dynamically adapt to query updates, thus making skyline
processing more accurate and scalable.

To address the limitations of existing approaches, the
following objectives and contributions of the study are
proposed:

- To design and develop an efficient data pruning
approach tailored for incomplete graph databases.

https://doi.org/10.31436/ijpcc.v11i2.595
mailto:hrai@iium.edu.my

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

147

- To leverage machine learning techniques for
enhanced performance and scalability.

- To evaluate the effectiveness of the proposed
pruning technique through empirical experiments,
comparing its performance with existing baseline
methods in terms of accuracy, efficiency and
computational cost.

A. Summary of Contribution

- The proposed study has introduced a unified
framework which combines quick-sort based
domination scoring, threshold-filtering and K-Means
clustering to optimize skyline query processing.

- A development of a clustering mechanism which
groups nodes based on missing dimensions to
enable effective skyline computation with requiring
data imputation.

- A proposed local and global skyline identification
method which reduces unnecessary pairwise
comparison to ensure transitivity while avoiding
cyclic dominance.

- A demonstration on the improvements in processing
time and data pruning with experiments on different
datasets of varying sizes.

II. RELATED WORKS

A skyline query optimization in graph databases has been
advanced significantly especially for static environments.
The pruning technique in [5] uses hierarchical labels to
reduce overhead but is limited by its need for re-
computation in dynamic graphs. The study by [6] supports
dynamic queries with local distance functions but suffers
from high computational costs as graph complexity grows.
Similarly, a hybrid approach in [7] combines subgraph
isomorphism with dual traversal however, scalability in high-
dimensional graphs remained a challenge.

Moreover, the algorithmic divide-and-conquer method in
[8] improves on nested loop approaches by partitioning the
problem space and minimizing redundant comparisons thus
boosting performance and accuracy. Compared to pruning
in [9] and subgraph merging in [7], [8] which demonstrates
superior efficiency especially in large-scale and moderately
dynamic graphs. However, it lacks adaptability to real-time
changes and user-defined preferences which increasingly
demands an interactive application. This comparison reveals
that while algorithmic performance remains a core priority,
practical implementations must also factor inflexibility and
dynamic responsiveness.

Furthermore, the handling of incomplete data in skyline
queries possesses a unique challenge particularly in ensuring
accurate dominance comparisons. The method in [8] utilizes
Approximate Functional Dependencies (AFDs) to infer
missing values followed by ranking based on dependency

strength which is a technique that enhances the semantic
richness of imputations. While effective in preserving skyline
correctness however, this method can be computationally
expensive due to repeated AFD generation. On the other
hand, [16] adopts a more parallel-friendly framework by
clustering nodes with similar missing patterns and applying
bitwise skyline filters. This not only improves processing
speed but also upholds the transitivity of skyline dominance,
a property often lost in simpler imputation methods. Also,
building on these foundations, [17] introduces a dominance-
aware clustering and pruning technique that further scales
skyline computation by minimizing redundant comparisons.
Despite their differences, these methods reflect a shared
emphasis on balance precision, performance and scalability,
though none fully resolves the complexities of high-
dimensional or real-time incomplete data handling.

Real-time skyline path queries in dynamic networks
require algorithms that are both fast and responsive. The
PSQ+ algorithm from [10] has introduced a refined pruning
mechanism which discards non-skyline paths during graph
traversal thus maintaining real-time efficiency even in
bicriteria networks. This method marks a significant
departure from more static approaches like those in [8] or
[11], as it actively adapts to the changing cost landscape of
paths. Supporting this, [11] improves the credibility of skyline
query results through POI signature-based authentication,
ensuring the integrity of results in outsourced databases.
Meanwhile, [12] tackles user-centric issues such as
incomplete skyline results by implementing a reverse-query
mechanism that identifies potential missing tuples based on
adjusted preferences. While these methods collectively
push skyline path queries closer to real-time user-aware
applications however, they also introduce new overheads in
preprocessing, verification and system complexity that must
be managed carefully.

In distributed environments, skyline computation must
balance network communication, data partitioning and
computation cost [20]. Approaches like BDS and IDS
optimize node access and reduce comparisons, but struggle
with dynamic networks. More advanced methods, such as
PDS and iSky, use probabilistic models and adaptive filters to
prune irrelevant data early and improves performance.
However, their effectiveness depends on initial data
distribution and network topology which are not always
controllable. Despite having a progress, full scalability and
fault tolerance in dynamic scenarios remains open challenge.

Skyline query processing under uncertainty becomes
more complex in dynamic settings with frequent updates.
The method in [13] extends skyline queries to uncertain
graphs using expected distances and probabilistic pruning,
enhancing decision but increase computational costs (See
Table 1). The IDSA algorithm[14] handles dynamic changes

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

148

with multi-phase pruning and block nested loops, but
exhaustive dominance checks can hinder performance on
large graphs. While effective in real-time, noisy
environments, these methods highlight the need for lighter
or incremental models to improve scalability and
responsiveness.

TABLE I
 EXISTING LIMITATIONS AND GAP ANALYSIS

 Limitation Gaps

[9] High memory usage, lacks
support for dynamic
graphs

Needs optimization for
non-Euclidean and real-
time use

[6] Computationally
expensive, lacks general
graph support

Scalability and real-
time processing

[7] Struggles with large
graphs, complex
constraints

Unified large-scale
graph handling

[5] Inefficient nested loop,
compute-heavy

Optimization for
complex graph queries

[8] Heavy preprocessing, not
scalable with many POIs

Large dataset handling
with missing data

[2] Expensive in complex
networks

Lightweight path
skyline algorithms

[11] Preprocessing burden,
slow with many POIs

Scalable authentication
methods

[12] Not efficient for large-scale
data

Better performance for
big data

[3] Struggles with cycle
dominance and
dimensionality

Real-time complex
missing data handling

[17] Poor performance on high-
dimensional datasets

Optimization for high
complexity

[16] Complexity in distance
calculations across layers

Scalability in multi-layer
graphs

[17]

Underperforms with anti-
correlated data, dimension
bottlenecks

Dimensionality
handling

[18] Scalability and
communication
bottlenecks

Robust-distributed
skyline methods

[13] Multi-phase algorithm
complexity

Simplified dynamic
skyline algorithms

[15] Complex, constrained by
time and label ranges

Scalable temporal
skyline querying

[19] MapReduce overhead,
partition imbalance

Balanced distributed
skyline computing

[20] Struggles with sparse data,
normalization issues

Effective QoS
partitioning

[21] Not memory-efficient for
large datasets

Support for dynamic
updates

[22] Inter-bucket comparison
slows things down

Efficient global skyline
merging

Also, the temporal and attribute-rich graphs require
advanced skyline processing. The TMP algorithm [15] uses
bidirectional search and time-aware indexing to efficiently
find skyline paths under temporal and label constraints
outperforming traditional methods. The probsky [19] built
on mapreduce, handles probabilistic skyline queries using
slab partitioning and reference-point acceleration for
scalability, though it suffers from high signature generation
costs. These methods highlight the need to combine
temporal awareness, uncertainty handling and distributed
computing, while also raising concerns about preprocessing
overhead and integration complexity.

III. METHODOLOGY

This study adopts the design science research
methodology (DSRM) [23] (see Figure1), which is a
structured framework to design, develop, and evaluate
innovative IT artefacts to address real-world problems. This
study utilizes DSRM to propose a machine learning-based
approach for skyline query optimization in a large-scale
incomplete graph database. It emphasized both practical
relevance and theoretical contribution. The proposed
methodology aligns with the six stages of DSRM to address
the objective and goals of this study.

Fig 1. DSRM Process ([23])

A. Design and development

This phase of skyline query optimization comprises five
key components as shown in Fig 2 and Table 2. Each
component plays an important role in ensuring
computational efficiency and maintaining the accuracy of
the skyline query optimized results.

1) Dataset development: A synthetic dataset was
developed to evaluate the proposed skyline solution. The
reason for using the synthetic dataset is due to the lack of
availability of a real dataset concerning the skyline query
problem. The dataset was designed to include missing
values randomly, simulating data incompleteness, which is
common in large-scale graph databases. The dataset
comprises 51 nodes connected to form a graph. The dataset
simulates a hotel booking scenario to assist customers in
finding recommendations for the best hotel room.

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

149

The attributes of the dataset include price, rating,
distance, and hotel service. The dataset has a
comprehensive number of nodes, each comprised of
systematically randomized values, achieving the major
objective of the dataset development. Also, the dataset
development aligns with its application to be used in
machine learning algorithms, to make sure that the data
preprocessing was performed earlier during the dataset
development phase, addressing null value duplication and
irrelevant data, respectively. The dataset is highly suited for
machine learning purposes, particularly concerning the
skyline query problem and its potential optimization
solution for graph databases.

2) Sorting and filtering: This phase arranges the data
nodes in descending order based on their domination power,
which reflects the total number of other nodes that
dominate across all dimensions. A round-robin traversal
method is used to calculate domination scores, considering
only non-missing values to ensure fairness and accuracy. The
framework enables the early elimination of less relevant
nodes, reducing the number of pairwise comparisons
required during skyline computation. This significantly

lowers computational overhead and ensures that only the
most promising candidates proceed to the next stages.

TABLE II

 STAGES OF PROPOSED METHODOLOGY

1 Problem
identification
and motivation

Inefficient skyline queries in incomplete
graph databases present significant
challenges, primarily due to missing data
and scalability concerns.

2 Design
objective of a
solution

This study proposes a machine learning–
based pruning and clustering framework
aimed at improving accuracy and
performance.

3 Design and
development

A five-step framework was developed,
consisting of sorting, filtering, clustering,
local skyline detection, and final skyline
computation.

4 Demonstration The proposed framework was evaluated
using synthetic graph datasets to assess
its practical utility.

5 Evaluation Experimental results have indicated that
the proposed framework significantly
reduced processing time and improved
scalability.

6 Communication This research presents the findings to
support further exploration within
academic and technical communities.

Fig 2. Proposed Methodology based on DSRM

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

150

Similarly, the filtration process excludes nodes whose
domination power falls below a user-defined threshold, as
such nodes are unlikely to contribute meaningfully to the
skyline. This threshold-based pruning complements the
sorting phase by reducing unnecessary computations early
in the process. The threshold can be adjusted based on
dataset characteristics or user requirements to balance
precision and efficiency. Moreover, the framework remains
adaptable and other sorting or filtering can be integrated, as
long as they align with the core principles. This design
ensures robustness and flexibility across varied, incomplete
graph datasets.

3) Clustering: The objective of this phase is to establish
clusters among data items based on their domination power,
which enables a more efficient skyline query processing. The
data items with similar domination power are grouped,
resulting in the formation of distinct clusters. The K-Means
clustering was considered due to its real data points
consideration as representatives of each cluster. This
feature is particularly useful in ensuring that the clusters
accurately reflect the dataset and make the skyline
computation more precise. To validate the clustering model,
k-fold cross-validation is used in which the dataset is split
into k subsets, and the model is trained on k - 1 subsets and
tested on the remaining one. The model performance is
evaluated using the silhouette score and Davies-Bouldin
index to assess the quality of the clusters formed, ensuring
that the final skyline computation is robust and accurate.
Lastly, the search space significantly reduces the gaps,
which helps to avoid unnecessary comparisons while
maintaining the accuracy of the final skyline results.

4) Identifying Local Skyline: It is intended to retrieve local
skylines for each of the constructed clusters, which leads to
prevents many dominated data items from further
processing, resulting in a reduction in the processing time.
Also, it ensures the transitivity property of the skyline
solution holds as all data items in one cluster have a similar
namespace. The parallel process will be in all clusters, which
will reduce the processing time between the data elements.

5) Final Skyline: The last component is responsible for
determining the final skyline. The process starts by
comparing those local skylines generated earlier and
retrieving those undominated data items as the final skylines
of the entire incomplete graph database. This component
ensures that any reported global skylines are the skylines
over the entire database, and no other data items might
dominate them.

B. Evaluation

This phase aims to determine how well the framework
meets the objectives set out in this study, particularly in the

context of skyline query optimization for incomplete graph
databases. The evaluation is carried out by comparing the
proposed framework with traditional skyline query methods
and evaluating key performance metrics such as scalability,
accuracy, and efficiency. Similarly, the integration of sorting
and filtering techniques will be evaluated to understand
their performance in reducing the dataset size before
skyline computation. By prioritizing more influential nodes
and eliminating irrelevant data points, the proposed
framework will be evaluated on the reduction of its search
space for efficient skyline processing. Moreover, the
framework will be evaluated further by applying threshold-
based filtering to remove dominated nodes early in the
process. By evaluating these nodes, which are less likely to
contribute to the final skyline result, the proposed
framework will be analyzed in terms of the computational
cost required for skyline computation.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

The proposed framework was implemented using Python,
leveraging a range of machine learning libraries to support
the required functionalities. Similarly, to implement
clustering and support data processing tasks, the Scikit-
learn package was used for clustering with the K-means
model, data processing, and model evaluation. The pandas
and numpy packages were utilized for efficient data
manipulation, specifically in handling the incomplete
dataset having one missing dimension. The numpy provided
support for numerical operations, while pandas facilitated
data cleaning, sorting and filtering, ensuring seamless
integration across the different steps in skyline query
optimization. Moreover, the implementation was modular,
allowing each technique to be independently tested and
optimized. The next step was to execute a series of
experiments to assist its performance. These experiments
were conducted on datasets of varying sizes to evaluate
how well the framework performs under different
conditions.

Fig. 3. Initial Dataset

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

151

Fig. 4. Quicksort algorithm implementation

A. Sorting and filtering analysis

The process starts by sorting the items in each distinct list
based on values of each dimension on the dataset as shown
in Fig. 3 The quick sort algorithm was used in this experiment
as shown in Fig. 4 for its divide-and-conquer strategy. The
partitioning step efficiently divides the dataset into
manageable subsets, reducing operational complexity.
Using the last element as a pivot ensures consistency and
minimizes redundant operations. Node 1 is read with its
domination power, which is increased by 1, which means it is
compared with other nodes in the given dimension. The
dimension 1 as shown in Fig. 5(a), Nodes 5 and 11 have the
highest score of 8, followed by Node 8 with a score of 7. The
dimension 2 as shown in Fig. 5(b), Nodes 1, 7, and 6 dominate
while in dimension 3 as shown in Fig. 5(c), Nodes 2, 8, and 6
take the lead. The dimension 4 as shown in Fig. 5(d), Nodes
7 and 4 have the highest domination scores. The process
terminated after dimension 4 with Node 11. The total
number of iterations comprises 44th in number. The lowest
score of 0 is assigned to Node 9 in dimension 1, where no
comparison can be made due to its value being zero or
empty. The constructed lists are scanned round-robin style
for each data item to determine its domination power.
Domination scoring of all nodes occurs one after the other
until each node receives its dominance value.

(a)

(b)

(c)

(d)

Fig. 5. Domination power calculation

B. Threshold-based filtering
This process has removed the nodes which comprise of

low domination score and had minimal impact on the skyline
computation. Also, it reduces the size of the data which is
essential in decreasing computational overhead and enables
faster processing. Moreover, the removal of less influential
nodes makes skyline query processing more significant and
efficient. Additionally, filtration is an equally crucial step
aimed at narrowing the search space by discarding nodes
which are unlikely to contribute to the skyline. The
experiment uses a threshold-based approach which
maximizes efficiency while ensuring relevant candidates are
retained as shown in Fig. 6 and the algorithm is shown in Fig.
7. The focus is on a limited subset of nodes on each
dimension; this approach efficiently controlled the
exponential growth of pairwise comparisons. Moreover, the
stopping condition introduced a mechanism for early
termination to ensure runtime was minimized without
compromising accuracy.

Fig. 6. Top threshold nodes

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

152

Fig. 7. Threshold-based filtering

The threshold-based filtration eliminates the data items
with a domination power lower than a user-defined
threshold. These data items are discarded because their
domination score indicates that they perform well in no
more than one dimension, making them unlikely to be part
of the skyline result. Dimension 1 with Nodes such as Nodes
5, 11 and 8 remain there, while in dimension 2, Nodes 1, 7 and
9 are still considered. Dimension 3 with Nodes 2, 6, and 8
have domination powers greater than the threshold, and in
dimension 4, Nodes 7 and 4 are still in consideration. These
nodes have domination powers greater than the threshold
value and thus remain in consideration for the skyline result.

Fig. 8. Final nodes filtered with a threshold algorithm

In the example from Fig. 8, after applying the algorithm in
Fig. 9, the filtration process and setting a threshold value,
there were identified 9 nodes as eligible for the skyline as
shown in Fig. 10. These nodes represent approximately 81.82%
of the total 11 nodes in the dataset. The remaining nodes,
which didn’t meet the threshold criteria are not considered
in the skyline calculation.

Fig. 9. Final nodes with dataset values

Fig. 10. Results of eligible nodes for clustering

C. Machine learning-based clustering

This process aims to group nodes that exhibit zero values
in specific dimensions. The nodes with zero values often
hold distinctive properties that warrant separate analysis.
The algorithm in Fig 11 begins with nodes containing
dimensional values and a list of dimensions to analyze. It
iteratively examines each dimension to identify nodes with
zero values, excluding any nodes which are excitingly
assigned to clusters. Also, for the nodes which are isolated,
the algorithm performs K-Means clustering to organize the
nodes into clusters depending on the number of nodes
available. This clustering step ensures that the nodes are
grouped based on their similarity in dimensional values
making subsequent processing more efficient. The final
clusters annotated with their labels are stored in a
structured format which develops the basis for further
analysis. The example from the experiment as shown in Fig.
12 results of clustering based on the proposed model.

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

153

Fig. 6. Clustering algorithm

Fig. 7. Clustering results

D. Local skyline computation

This step enables the identification of the local skyline
node from each cluster, simplifying the clustered data into a
small set of candidates for local skyline query processing.
The local skyline is determined by identifying nodes that are
not dominated by any other node within the cluster. The
node with the highest score in each cluster is selected as the
representative, which captures the most important
characteristics of that cluster, as shown in Fig 13.

Applying clustering techniques while identifying the local
skyline phase assists in eliminating many dominated data
nodes. Based on the given example it is obvious that 4 nodes
are left out of the remaining 9 nodes as shown in Fig. 14. This
represents the 44.44% reduction in the dataset.

E. Final skyline computation

This final skyline aggregation approach mainly addresses
the issue of skyline query processing on incomplete graph
data. The goal is to select the final skyline of the entire
dataset. In the experiment, a set of nodes were retrieved

which stand out in at least one dimension and are not
inferior in all dimensions to any other node. These final
skyline nodes are the most significant for further analysis
and decision-making. The process compares each node as
shown in Fig. 15 in the dataset with every other node to
derive these final skyline nodes.

s illustrated in Figure 16, Node 7 was compared with
Nodes 5, 11, and 8, and was found to be dominated by Nodes
5 and 9. Node 11 dominated Node 8, while neither Node 7 nor
Node 11 dominated each other qualifying both for inclusion
in the final skyline. This step, central to machine learning–
driven skyline analysis, filters out redundant nodes and
retains only distinct, high-value candidates, thereby
reducing noise and supporting effective decision-making.
This final step ensures that only the nodes that are not
dominated by any others across the entire dataset are
included in the skyline, representing the best or most
significant nodes in the context of the skyline query.

Fig 8. Single node cluster identification algorithm

Fig. 9. Local skyline results

F. Performance evaluation

The performance evaluation of the experimental results
of skyline queries in incomplete graph databases was
performed on synthetic datasets. This set of experiments
aims at examining the effect of data size on datasets, and on
the processing time that needs to be performed during the
skyline query process over an incomplete graph database.

1) Effect on Size of Dataset: The proposed method
reduces the dataset size by an average of 50% before the

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

154

final skyline selection. It evaluates node comparisons in a
synthetic dataset using two sizes: 11 and 51 nodes as shown
in Fig. 17 and Fig. 18. The results have shown that larger
datasets require more pairwise comparisons, increasing
processing time. However, the approach effectively prunes
ineligible nodes, systematically reducing computational
workload and maintaining high efficiency. Despite dataset
growth, the method shows minimal impact on processing
time, demonstrating strong scalability and robustness for
incomplete skyline processing in graph databases.

Fig 10. Selecting the final skyline node algorithm

Fig. 11. Final Skyline results

2) Effect on Processing Time: The proposed machine
learning-based approach reduces query processing time by
30–50% compared to traditional methods. This is achieved by
clustering the dataset, allowing skyline queries to operate
on smaller, more relevant subsets, thus minimizing
unnecessary pairwise comparisons. This streamlines
computation and ensures quicker, optimized execution. The
approach also demonstrates high scalability, maintaining
efficiency as dataset size grows unlike traditional methods,
which face exponential increases in processing time. This
makes the proposed method well-suited for large-scale,
dynamic environments with expanding data.

As shown in Fig. 18 for the 51-node dataset, processing
time decreases as data size increases. The proposed
approach consistently outperforms previous methods in all
scenarios, showing minimal sensitivity to data size. By
effectively pruning ineligible nodes, it ensures efficient
computation even with large datasets. Although more

nodes usually increase data exchange and latency, the
proposed method minimizes processing time,
demonstrating strong robustness and scalability for large-
scale data handling.

As shown in Fig 19 and 20, the graphs for both 11-node and
51-node datasets exhibit similar patterns. Processing time
peaks at Dimension 2 (0.0225 sec for 51 nodes vs. 0.020 sec
for 11 nodes), drops sharply at Dimension 3 and remains
mostly stable at Dimension 4. While the larger dataset
shows slightly higher processing times in the lower
dimensions, it outperforms the smaller dataset at Dimension
4 likely due to better utilization of resources at scale. This
suggests that scalability benefits become more apparent
beyond a certain complexity threshold, where the initial
overhead is offset by improved performance in higher
dimensions. The entire performance comparison and its
impact on the execution runtime will be as shown in Table 3
between both the datasets utilized for performance study.

TABLE III

 COMPARISON OF PERFORMANCE EXECUTION OVER RUNTIME BETWEEN
DATASETS

No. Nodes Dim1 Dim2 Dim3 Dim4

1 11 0.007 0.020 0.005 0.009

2 51 0.0087 0.0225 0.0085 0.0050

3) Statistical Evaluation and Baseline Comparison

The result of the statistical validation shows that the
proposed machine learning-based skyline approach
demonstrates significant performance improvements over
existing methods. The study was analysed with key findings
based on confidence intervals, standard deviation, t-tests,
F1-score and ANOVA. The statistical findings and
comparisons are based on these studies [24] [25], [26] [1]
respectively, provided with relevant performance metrics
for LESS, SFS and BNL to be compared with proposed
methods for skyline computation.

4) Confidence Interval analysis
The results in Table 4 have shown that the proposed
approach has the lowest execution time with a confidence
interval of (0.00248, 0.00392), which does not overlap with
those of the LESS, SFS and BNL methods. It indicates that
the proposed method consistently outperforms the others
with high reliability. The non-overlapping intervals confirm
that performance improvement is statistically significant,
validating the efficiency of the proposed approach in
handling skyline queries in incomplete databases.

5) Standard Deviations Analysis
The proposed approach has a standard deviation of

0.000455, which is lower than the LESS, SFS and BNL
methods as shown in Table 5. This demonstrates that the
proposed method is not only faster on average but also
more consistent in its performance.

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

155

Fig 12. Results with fifty-one (11) nodes

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

156

Fig 13. Results with fifty-one (51) nodes

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

157

Fig. 14. Total processing time for eleven (11) nodes

TABLE IV
BASELINE CI ANALYSIS

Method Mean
Execution Time

95% Confidence
Interval

Proposed
Approach

0.0032 (0.00248, 0.00392)

LESS 0.0045 (0.0042, 0.0048)

SFS 0.0052 (0.0049, 0.0055)

BNL 0.0067 (0.0064, 0.0070)

TABLE V
STANDARD DEVIATION ANALYSIS

Method Standard Deviation

Proposed Approach 0.000455

LESS 0.000325

SFS 0.000410

BNL 0.000520

Fig. 20. Total processing time for fifty-one (51) nodes

6) t-Test for execution time comparison
The negative t-value obtained in the paired t-test

confirms that the proposed approach is statistically faster
than LESS. Since the p-value is below 0.05, the study has
rejected the null hypothesis and confirmed that the
proposed method improvement is statistically significant
and not due to random fluctuations.

𝑡 = −7.43, 𝑝 = 0.002

7) F1-Score for skyline selection accuracy
A high F1-score as shown in Table 6 indicates the skyline

selection process is both precise and comprehensive. It
minimizes false positives and false negatives. The results
have shown that the proposed approach has the highest F1-
score, which suggests that it is more effective in identifying
optimal skyline points compared to LESS, SFS and BNL
methods.

TABLE VI
F1 SCORE ANALYSIS

Method Precision Recall F1-Score

Proposed
Approach

0.89 0.92 0.905

LESS 0.83 0.85 0.837

SFS 0.78 0.81 0.794

BNL 0.70 0.75 0.723

8) ANOVA Test

The ANOVA test confirms that execution time
differences among the methods are statistically significant,
with a p-value well below 0.05. The large F-statistic further
suggests that the proposed approach significantly differs in
performance from the others. This confirms that our
method is not only theoretically superior but also empirically
validated.

𝐹 = 15.62, 𝑝 = 0.001

9) Baseline Comparison
The baseline comparison first analyzes BNL which is the

earliest skyline algorithm, using a simple nested loop
approach to compare each tuple against others to
determine skyline membership. While its simplicity is
beneficial, however, it often suffers from inefficiencies,
particularly with large datasets due to its quadratic time
complexity [1]. Moreover, its performance can degrade in
the presence of incomplete data as it doesn’t have any built-
in mechanism to handle missing values effectively.
Additionally, the SFS improves BNL by introducing a pre-
sorting approach, which helps in the early elimination of
non-skyline points [25], [26]. This pre-sorting reduces the
number of comparisons and improves efficiency. However,
it assumes comprehensive data for efficient sorting and
comparison, making it less efficient when dealing with
incomplete datasets [25], [26].

Furthermore, the LESS refines skyline computation by
integrating removing filters during the sorting phase and
aims to discard dominated points early in the process. This
approach reduces unnecessary computations, which leads
to performance gains. Also, the efficiency of LESS depends

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

158

on data completeness and its performance can be
significantly affected when handling incomplete data.

Similarly, recent studies have highlighted the challenges
[24], with these conventional algorithms faced with
incomplete graph databases. Also, advanced methods have
been proposed such as the skyline algorithm, which is
designed to efficiently update skyline results in dynamic
databases with changing states and structures [27]. This
method retains essential dominance relationships,
minimizing unnecessary computations when the database

experiences change, and is particularly flexible at handling
incomplete data by focusing on prominent relationships.
Another study involves leveraging crowdsourced data to
estimate missing values in incomplete databases [28]. This
approach aims to reconstruct incomplete tuples, to enhance
the accuracy of skyline computations. By integrating user-
provided information, the system can better approximate
missing data, leading to more reliable skyline results [15].
The detailed analysis can be found on Table 7.

TABLE VII

 BASELINE COMPARISON OF PROPOSED SKYLINE APPROACH WITH PREDECESSORS

Algorithm Method Strength Limitations Handle Incomplete Data

BNL

Simple nested loop
comparison

- Easy to implement
- No pre-processing is

required

- High complexity time
(O(n2))

- Lacks scalability
option

- Fails with incomplete
data

- Lack of support for
missing values

SFS

Pre-sorting with

dominance filtering

- Better efficiency than
BNL

- Supports early
elimination of
dominated nodes

- Assumes complete
data during
execution

- The pre-sorting is
ineffective with
missing values

- Limited capability
which lacks robustness
to null values or missing
dimensions

LESS

Supports enhanced

filtering during sorting
phase

- Reduces unnecessary
comparisons

- Enable high
performance on
complete datasets

- Faced a drop in
efficiency with sparse
data

- Quite sensitive with
missing values

- It struggles with sparse
or incomplete datasets

Dynamic
Skyline

Algorithm

It enables incremental

skyline update in
dynamic graphs

- It is efficient in
changing datasets

- It avoids entire re-
computation of the
execution process

- Faced complexity in
maintaining
dominance in data
relationships

- Slightly flexible with
incomplete and
dynamic datasets

Crowdsourced

Estimation

Supports users
feedback to fill

missing data

- Has results
completeness with
better improvement

- It is adaptive and
human assisted in
nature

- Dependency on the
quality of data

- Shows higher
overhead

- Support effectiveness
for approximating
missing values

Proposed ML-
Based

Clustering

K-Means clustering
with local skylines and

final skylines

- It has shown higher
scalability than the
predecessors

- Around 44.44% data
reduction after the
results

- Support handling
missing dimensions
through grouping

- Requires proper
clustering
configuration to have
efficient clusters

- Required early-stage
pre-processing to
have better
outcomes

- Shows better
performance by directly
manages missing
attributes through
clustering techniques

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

159

V. DISCUSSION

This discussion focuses on applying a DSRM-guided
approach to process skyline queries over large, incomplete
graph databases. Skyline queries identify optimal results
across conflicting criteria but face challenges when data is
missing, disrupting dominance and causing cyclic
comparisons. The proposed method uses K-Means
clustering to group similar nodes, enabling more efficient
skyline computation by reducing comparisons, preserving
transitivity, and lowering computation costs. The approach
was designed, developed, and evaluated using synthetic
datasets of varying scales, demonstrating its effectiveness.

Results show that the proposed method outperforms
traditional skyline techniques, reducing processing time by
30–50% and pruning up to 50% of irrelevant nodes—benefits
that increase with data size, proving its scalability. Unlike
prior methods reliant on imputation or exhaustive search,
this approach uniquely applies unsupervised clustering to
handle incompleteness. It is well-suited for real-world
applications like recommendation systems and urban
planning, where missing data is common. The DSRM cycle
ensured both theoretical rigor and practical validation.
Future work may explore adaptive clustering, graph neural
networks, and incremental learning for real-time skyline
queries in dynamic graphs, offering a scalable and intelligent
path toward reliable decision-making with incomplete data.

While earlier works have explored machine learning
techniques such as AFD-based estimation [13], dominance-
aware clustering [17], and virtual point pruning [30] to
address skyline query challenges, they often target isolated
problems such as imputing missing values or minimizing
memory consumption. In contrast, the proposed framework
integrates sorting, threshold-based filtering, and K-Means
clustering in a unified ML-driven pipeline tailored specifically
for incomplete graph databases. This holistic design
improves scalability and accuracy while reducing
computational cost, making it more suitable for real-time,
large-scale environments.

Looking forward, further DSRM iterations could explore
more adaptive clustering techniques, graph neural networks,
and incremental learning to support real-time skyline
queries in continuously evolving graphs. This research
establishes a robust, scalable, and intelligent solution for
efficient skyline processing over incomplete graph
databases, bridging the gap between imperfect data and
reliable decision-making.

A. Limitation

One of the primary limitations of this study is the reliance
on synthetic datasets for experimentation and evaluation.
This choice was made due to the lack of publicly available
graph databases that include the required characteristics

such as incomplete, multi-dimensional attributes tailored for
skyline queries. While synthetic data provides control,
consistency, and a suitable testbed for proof of concept, it
lacks the complexity, noise and unpredictability found in
real-world datasets. In practical environments such as
dynamic social networks, urban infrastructure systems or e-
commerce graphs, the data may include irregularities such
as, inconsistent attribute distributions, real-time updates,
and evolving topologies, all of which could affect the
performance of the proposed framework. Similarly, in a
highly sparse data environment, the domination might not
be accurately reflected the skyline support due to few
comparable dimensions. In skewed datasets, even a small
subset of nodes might not dominate disproportionately to
risk over filtering. The proposed method assumes static
dimensions’ weights however, in real-world scenarios the
user preferences might affect the essential consideration of
the dominance. Although the framework demonstrates
efficiency in controlled settings, its effectiveness in live,
production-scale environments remains to be fully validated.
Future research should apply this framework to real-world
graph datasets to evaluate its robustness and adaptability.
Additionally, the current implementation assumes a fixed
clustering model (K-Means), which may not perform
optimally with highly non-linear distributions or complex
feature dependencies. Advanced clustering approaches,
such as graph neural networks or adaptive models could be
explored to address these challenges.

B. Future works

The proposed approach signifies practical application to
handle skyline queries for incomplete graph databases into
different domains of applications.

1) Fraud Detection
Financial institutions primarily depend on fraud

detection systems to prevent crimes involving credit card
fraud alongside account takeover money laundering and
insider trading breaches. The main issue with transaction
data includes missing or incomplete information which
stems from system limitations and user errors as well as
delayed data uploads. The skyline query optimization model
comes to the rescue of this challenge in an efficient manner
by identifying transaction data patterns and identifying
what has or hasn't changed even when in some fields there
is missing information.

2) Recommendation System
The hotel recommendation system comprises multiple

factors such as price, location, rating, and facilities must be
considered. Incomplete recommendations can be caused by
incomplete data. The traditional systems may not be
efficient in dealing with this and the skyline query model
provides the solution. Applying machine learning-based

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

160

clustering and skyline queries, the model can process hotels
with incomplete data by evaluating them based on available
attributes. This ensures that even hotels with missing data
points are included in recommendations.

3) Real-Time Analytics
Tweets created at Twitter X accumulate millions of new

posts during each passing minute. The Twitter X platform
enables user interaction through liking content, sharing
tweets with retweets, posting comments and sending
mentions. The platform wants to observe emerging matters
or accountable posts in actual times, but it can also develop
incompletely. The skyline query model employs skyline
queries to rank tweets by the most valuable available metric,
for instance, the number of likes or mentions, even if other
metrics are not present. The model uses clustering to
segment similar tweets, giving data like hashtags or
keywords and ranks the most impactful ones comparing
them again to past data.

VI. CONCLUSIONS

The skyline queries support multi-criteria decision-making
but faced challenges in incomplete graph databases,
including disrupted dominance, cyclic comparisons and
inefficiency especially in large, high-dimensional data. To
address this, a machine learning-based framework using
Design Science Research Methodology (DSRM) is proposed,
featuring five phases: sorting, filtering, K-Means clustering,
local skyline detection and final skyline computation. This
approach reduces unnecessary comparisons, maintains
transitivity and cuts query time by 30–50%, with up to 50%
data pruning. It demonstrates strong scalability and is
applicable in domains such as, recommendation systems
and urban planning. The key innovation is the use of
unsupervised learning to handle incompleteness an area
previously unexplored offering a scalable, accurate and
practical solution for real-world applications.

ACKNOWLEDGEMENT

This research was supported by the Fundamental
Research Grant Scheme (FRGS) with the Reference Code
FRGS/1/2021/ICT01/UIAM/02/2 or Project ID 19574 from the
Ministry of Higher Education (MOHE) Malaysia.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest

REFERENCES

[1] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
Proceedings - International Conference on Data Engineering, 2001, pp.
421–430. doi: 10.1109/icde.2001.914855.

[2] Y. Gulzar, “SKYLINE QUERY APPROACHES IN STATIC AND DYNAMIC
INCOMPLETE DATABASES,” 2018.

[3] Y. Gulzar, A. A. Alwan, and S. Turaev, “Optimizing Skyline Query
Processing in Incomplete Data,” IEEE Access, vol. 7, pp. 178121–178138,
2019, doi: 10.1109/ACCESS.2019.2958202.

[4] Y. Gulzar, A. A. Alwan, and S. Turaev, “Optimizing Skyline Query
Processing in Incomplete Data,” IEEE Access, vol. 7, pp. 178121–178138,
2019, doi: 10.1109/ACCESS.2019.2958202.

[5] D. Amr and N. El-Tazi, “Skyline Query Processing in Graph Databases,”
Academy and Industry Research Collaboration Center (AIRCC), Jul.
2018, pp. 49–57. doi: 10.5121/csit.2018.81005.

[6] K. Abbaci, A. Hadjali, L. Liétard, and D. Rocacher, “A similarity skyline
approach for handling graph queries - A preliminary report,” in
Proceedings - International Conference on Data Engineering, 2011, pp.
112–117. doi: 10.1109/ICDEW.2011.5767617.

[7] W. Zheng, L. Zou, X. Lian, L. Hong, and D. Zhao, “Efficient subgraph
skyline search over large graphs,” in CIKM 2014 - Proceedings of the
2014 ACM International Conference on Information and Knowledge
Management, Association for Computing Machinery, Nov. 2014, pp.
1529–1538. doi: 10.1145/2661829.2662037.

[8] A. Alwan, H. Ibrahim, N. Udzir, and F. Sidi, “Missing values estimation
for skylines in incomplete database,” International Arab Journal of
Information Technology, vol. 15, no. 1, pp. 66–75, 2018.

[9] L. Zou, L. Chen, M. Tamer¨ozsu, T. Tamer¨ozsu, and D. Zhao, “Dynamic
Skyline Queries in Large Graphs.”

[10] D. Ouyang, L. Yuan, F. Zhang, L. Qin, and X. Lin, “Towards efficient
path skyline computation in bicriteria networks,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Springer Verlag,
2018, pp. 239–254. doi: 10.1007/978-3-319-91452-7_16.

[11] X. Zhu, J. Wu, W. Chang, G. Wang, and Q. Liu, “Authentication of
skyline query over road networks,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Springer Verlag, 2018, pp. 72–83. doi:
10.1007/978-3-030-05345-1_6.

[12] X. Miao, Y. Gao, S. Guo, and G. Chen, “On Efficiently Answering Why-
Not Range-Based Skyline Queries in Road Networks,” IEEE Trans
Knowl Data Eng, vol. 30, no. 9, pp. 1697–1711, Sep. 2018, doi:
10.1109/TKDE.2018.2803821.

[13] S. Banerjee, B. Pal, and M. Jenamani, “DySky: Dynamic Skyline Queries
on Uncertain Graphs,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Springer Science and Business Media
Deutschland GmbH, 2020, pp. 242–254. doi: 10.1007/978-3-030-62005-
9_18.

[14] Y. Gulzar et al., “IDSA: An Efficient Algorithm for Skyline Queries
Computation on Dynamic and Incomplete Data with Changing States,”
IEEE Access, vol. 9, pp. 57291–57310, 2021, doi:
10.1109/ACCESS.2021.3072775.

[15] L. Ding, G. Zhang, J. Ma, and M. Li, “An Efficient Index-Based Method
for Skyline Path Query over Temporal Graphs with Labels,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Springer
Science and Business Media Deutschland GmbH, 2023, pp. 217–233. doi:
10.1007/978-3-031-30675-4_15.

[16] Y. Gulzar, A. A. Alwan, R. M. Abdullah, Q. Xin, and M. B. Swidan, “SCSA:
Evaluating skyline queries in incomplete data,” Applied Intelligence,
vol. 49, no. 5, pp. 1636–1657, May 2019, doi: 10.1007/s10489-018-1356-
2.

[17] I. Keles and K. Hose, “Skyline Queries over Knowledge Graphs,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer,
2019, pp. 293–310. doi: 10.1007/978-3-030-30793-6_17.

[18] P. Kumar Sadineni, “Comparative study on skyline query processing
techniques on big data,” in Proceedings of the 4th International
Conference on IoT in Social, Mobile, Analytics and Cloud, ISMAC 2020,
2020, pp. 1045–1050. doi: 10.1109/I-SMAC49090.2020.9243343.

https://doi.org/10.31436/ijpcc.v11i2.595

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 11, Issue 2 (2025)
https://doi.org/10.31436/ijpcc.v11i2.595

161

[19] A.-T. Kuo, H. Chen, L. Tang, W.-S. Ku, and X. Qin, “ProbSky: Efficient
Computation of Probabilistic Skyline Queries Over Distributed Data,”
IEEE Trans Knowl Data Eng, vol. 35, no. 5, pp. 5173–5186, 2023, doi:
10.1109/TKDE.2022.3151740.

[20] Y. Shu, J. Zhang, W. E. Zhang, D. Zuo, and Q. Z. Sheng, “IQSrec: An
Efficient and Diversified Skyline Services Recommendation on
Incomplete QoS,” IEEE Trans Serv Comput, vol. 16, no. 3, pp. 1934–
1948, 2023, doi: 10.1109/TSC.2022.3189503.

[21] D. Yuan, L. Zhang, S. Li, and G. Sun, “Skyline query under
multidimensional incomplete data based on classification tree,” J Big
Data, vol. 11, no. 1, Dec. 2024, doi: 10.1186/s40537-024-00923-8.

[22] D. Yuan, L. Zhang, S. Li, and G. Sun, “skyline query under
multidimensional incomplete data based on classification tree,” 2024,
doi: 10.21203/rs.3.rs-3915982/v1.

[23] A. Hevner, “A Three Cycle View of Design Science Research,” 2014.

[Online]. Available:
https://www.researchgate.net/publication/254804390

[24] Godfrey, “Maximal vector computation in large data sets,” 2005.
[25] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with Presorting:

Theory and Optimizations.”
[26] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with Presorting,”

2002.
[27] Mohamed E. Khalefa, Skyline query Processing for incomplete Data.

IEEE Xplore, 2008.
[28] X. Miao, Y. Gao, S. Guo, L. Chen, J. Yin, and Q. Li, “Answering Skyline

Queries over Incomplete Data with Crowdsourcing,” IEEE Trans Knowl
Data Eng, vol. 33, no. 4, pp. 1360–1374, Apr. 2021, doi:
10.1109/TKDE.2019.2946798.

https://doi.org/10.31436/ijpcc.v11i2.595

