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Abstract— Skyline queries play a critical role in multi-criteria decision-making systems by retrieving non-
dominated data points from large datasets. In recent years, the rapid growth of graph-structured data across 
various domains has introduced challenges in efficiently processing skyline queries over incomplete and 
large-scale graph databases. Processing skyline queries in such massive, incomplete graphs is 
computationally intensive due to missing values and high-dimensional data. Traditional techniques often fail 
to scale or effectively handle data imperfections. There is a pressing need for a scalable, intelligent 
framework that can manage missing data, reduce computational overhead, and improve skyline query 
efficiency. This study adopts the Design Science Research Methodology (DSRM) to design and implement 
an optimisation framework that integrates machine learning techniques, including domination score 
ranking, dimension-based filtering, K-Means clustering and quicksort. These methods collectively reduce the 
search space and redundant comparisons. Experimental evaluation on real graph datasets demonstrates 
significant improvements in skyline computation time and accuracy, with clear reductions in pairwise 
comparisons and improved processing efficiency on large-scale graphs. By leveraging machine learning 
techniques for sorting, filtering and clustering, the approach reduces computational complexity and 
enhances scalability. These results show promising directions for applying intelligent query optimization in 
big data environments. 
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I. INTRODUCTION 

These Skyline queries are used in database systems to 
retrieve non-dominated tuples data points that are not 
dominated by any other nodes [1]. In graph databases, this 
means identifying nodes that are optimal based on 
attributes such as distance, cost or relevance, making 
skyline queries particularly useful in applications like 
recommendation systems, e-commerce, road networks and 
urban planning. 

A big challenge happens when graph databases contain 
incomplete data [2]  [3] [4]. These missing values fail the 
transitivity of dominance relationships, which is 
foundational to skyline computations. This can lead to cyclic 
comparisons and ambiguous dominance, significantly 
increase the complexity of processing queries. Despite the 
widespread use of skyline queries in practice, limited 
research has addressed how to efficiently compute skylines 
when dealing with incompleteness in graph-based datasets. 

Graphs in real-world applications are often dynamic and 
sparse, where nodes frequently lack values in one or more 
dimensions. For example, in a hotel recommendation 
system, a user may want to identify hotels near the beach 

with affordable prices. If some hotels are ratings or price 
information, they still might be valuable candidates 
depending on the available data. Traditional skyline 
algorithms often leave out these incomplete entries, which 
potentially eliminates useful information from the results. 

Processing skyline queries efficiently over incomplete 
graph databases thus requires innovative techniques which 
can reduce the computational cost, handle missing values 
without compromising the accuracy of results and adapt to 
high-dimensional and constantly changing data. This study 
aims to tackle these challenges by proposing a method 
which integrates machine learning techniques particularly 
clustering to enhance skyline query performance. Machine 
learning can help infer patterns from incomplete data, 
cluster similar nodes to narrow the search space and 
dynamically adapt to query updates, thus making skyline 
processing more accurate and scalable. 

To address the limitations of existing approaches, the 
following objectives and contributions of the study are 
proposed: 

- To design and develop an efficient data pruning 
approach tailored for incomplete graph databases. 
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- To leverage machine learning techniques for 
enhanced performance and scalability. 

- To evaluate the effectiveness of the proposed 
pruning technique through empirical experiments, 
comparing its performance with existing baseline 
methods in terms of accuracy, efficiency and 
computational cost. 

A. Summary of Contribution 

- The proposed study has introduced a unified 
framework which combines quick-sort based 
domination scoring, threshold-filtering and K-Means 
clustering to optimize skyline query processing. 

- A development of a clustering mechanism which 
groups nodes based on missing dimensions to 
enable effective skyline computation with requiring 
data imputation. 

- A proposed local and global skyline identification 
method which reduces unnecessary pairwise 
comparison to ensure transitivity while avoiding 
cyclic dominance. 

- A demonstration on the improvements in processing 
time and data pruning with experiments on different 
datasets of varying sizes. 

II. RELATED WORKS 

A skyline query optimization in graph databases has been 
advanced significantly especially for static environments. 
The pruning technique in [5] uses hierarchical labels to 
reduce overhead but is limited by its need for re-
computation in dynamic graphs. The study by  [6] supports 
dynamic queries with local distance functions but suffers 
from high computational costs as graph complexity grows. 
Similarly, a hybrid approach in [7] combines subgraph 
isomorphism with dual traversal however, scalability in high-
dimensional graphs remained a challenge.  

Moreover, the algorithmic divide-and-conquer method in 
[8] improves on nested loop approaches by partitioning the 
problem space and minimizing redundant comparisons thus 
boosting performance and accuracy. Compared to pruning 
in [9] and subgraph merging in [7], [8] which demonstrates 
superior efficiency especially in large-scale and moderately 
dynamic graphs. However, it lacks adaptability to real-time 
changes and user-defined preferences which increasingly 
demands an interactive application. This comparison reveals 
that while algorithmic performance remains a core priority, 
practical implementations must also factor inflexibility and 
dynamic responsiveness.  

Furthermore, the handling of incomplete data in skyline 
queries possesses a unique challenge particularly in ensuring 
accurate dominance comparisons. The method in [8] utilizes 
Approximate Functional Dependencies (AFDs) to infer 
missing values followed by ranking based on dependency 

strength which is a technique that enhances the semantic 
richness of imputations. While effective in preserving skyline 
correctness however, this method can be computationally 
expensive due to repeated AFD generation. On the other 
hand, [16] adopts a more parallel-friendly framework by 
clustering nodes with similar missing patterns and applying 
bitwise skyline filters. This not only improves processing 
speed but also upholds the transitivity of skyline dominance, 
a property often lost in simpler imputation methods. Also, 
building on these foundations, [17] introduces a dominance-
aware clustering and pruning technique that further scales 
skyline computation by minimizing redundant comparisons. 
Despite their differences, these methods reflect a shared 
emphasis on balance precision, performance and scalability, 
though none fully resolves the complexities of high-
dimensional or real-time incomplete data handling. 

Real-time skyline path queries in dynamic networks 
require algorithms that are both fast and responsive. The 
PSQ+ algorithm from [10] has introduced a refined pruning 
mechanism which discards non-skyline paths during graph 
traversal thus maintaining real-time efficiency even in 
bicriteria networks. This method marks a significant 
departure from more static approaches like those in [8] or 
[11], as it actively adapts to the changing cost landscape of 
paths. Supporting this, [11] improves the credibility of skyline 
query results through POI signature-based authentication, 
ensuring the integrity of results in outsourced databases. 
Meanwhile, [12] tackles user-centric issues such as 
incomplete skyline results by implementing a reverse-query 
mechanism that identifies potential missing tuples based on 
adjusted preferences. While these methods collectively 
push skyline path queries closer to real-time user-aware 
applications however, they also introduce new overheads in 
preprocessing, verification and system complexity that must 
be managed carefully.  

In distributed environments, skyline computation must 
balance network communication, data partitioning and 
computation cost [20]. Approaches like BDS and IDS 
optimize node access and reduce comparisons, but struggle 
with dynamic networks. More advanced methods, such as 
PDS and iSky, use probabilistic models and adaptive filters to 
prune irrelevant data early and improves performance. 
However, their effectiveness depends on initial data 
distribution and network topology which are not always 
controllable. Despite having a progress, full scalability and 
fault tolerance in dynamic scenarios remains open challenge. 

Skyline query processing under uncertainty becomes 
more complex in dynamic settings with frequent updates. 
The method in [13] extends skyline queries to uncertain 
graphs using expected distances and probabilistic pruning, 
enhancing decision but increase computational costs (See 
Table 1). The IDSA algorithm[14] handles dynamic changes 
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with multi-phase pruning and block nested loops, but 
exhaustive dominance checks can hinder performance on 
large graphs. While effective in real-time, noisy 
environments, these methods highlight the need for lighter 
or incremental models to improve scalability and 
responsiveness. 

TABLE I 
 EXISTING LIMITATIONS AND GAP ANALYSIS 

 Limitation Gaps 

[9] High memory usage, lacks 
support for dynamic 
graphs 

Needs optimization for 
non-Euclidean and real-
time use 

[6] Computationally 
expensive, lacks general 
graph support 

Scalability and real-
time processing 

[7] Struggles with large 
graphs, complex 
constraints 

Unified large-scale 
graph handling 

[5] Inefficient nested loop, 
compute-heavy 

Optimization for 
complex graph queries 

[8] Heavy preprocessing, not 
scalable with many POIs 

Large dataset handling 
with missing data 

[2] Expensive in complex 
networks 

Lightweight path 
skyline algorithms 

[11] Preprocessing burden, 
slow with many POIs 

Scalable authentication 
methods 

[12] Not efficient for large-scale 
data 

Better performance for 
big data 

[3] Struggles with cycle 
dominance and 
dimensionality 

Real-time complex 
missing data handling 

[17] Poor performance on high-
dimensional datasets 

Optimization for high 
complexity 

[16] Complexity in distance 
calculations across layers 

Scalability in multi-layer 
graphs 

[17] 
 

Underperforms with anti-
correlated data, dimension 
bottlenecks 

Dimensionality 
handling 

[18] Scalability and 
communication 
bottlenecks 

Robust-distributed 
skyline methods 

[13] Multi-phase algorithm 
complexity 

Simplified dynamic 
skyline algorithms 

[15] Complex, constrained by 
time and label ranges 

Scalable temporal 
skyline querying 

[19] MapReduce overhead, 
partition imbalance 

Balanced distributed 
skyline computing 

[20] Struggles with sparse data, 
normalization issues 

Effective QoS 
partitioning 

[21] Not memory-efficient for 
large datasets 

Support for dynamic 
updates 

[22] Inter-bucket comparison 
slows things down 

Efficient global skyline 
merging 

Also, the temporal and attribute-rich graphs require 
advanced skyline processing. The TMP algorithm [15] uses 
bidirectional search and time-aware indexing to efficiently 
find skyline paths under temporal and label constraints 
outperforming traditional methods. The probsky [19] built 
on mapreduce, handles probabilistic skyline queries using 
slab partitioning and reference-point acceleration for 
scalability, though it suffers from high signature generation 
costs. These methods highlight the need to combine 
temporal awareness, uncertainty handling and distributed 
computing, while also raising concerns about preprocessing 
overhead and integration complexity. 

III. METHODOLOGY 

This study adopts the design science research 
methodology (DSRM) [23] (see Figure1), which is a 
structured framework to design, develop, and evaluate 
innovative IT artefacts to address real-world problems. This 
study utilizes DSRM to propose a machine learning-based 
approach for skyline query optimization in a large-scale 
incomplete graph database. It emphasized both practical 
relevance and theoretical contribution. The proposed 
methodology aligns with the six stages of DSRM to address 
the objective and goals of this study.   

 

 

Fig 1. DSRM Process ([23]) 

A. Design and development 

This phase of skyline query optimization comprises five 
key components as shown in Fig 2 and Table 2. Each 
component plays an important role in ensuring 
computational efficiency and maintaining the accuracy of 
the skyline query optimized results.  

1)  Dataset development: A synthetic dataset was 
developed to evaluate the proposed skyline solution. The 
reason for using the synthetic dataset is due to the lack of 
availability of a real dataset concerning the skyline query 
problem. The dataset was designed to include missing 
values randomly, simulating data incompleteness, which is 
common in large-scale graph databases. The dataset 
comprises 51 nodes connected to form a graph. The dataset 
simulates a hotel booking scenario to assist customers in 
finding recommendations for the best hotel room.  
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The attributes of the dataset include price, rating, 
distance, and hotel service. The dataset has a 
comprehensive number of nodes, each comprised of 
systematically randomized values, achieving the major 
objective of the dataset development. Also, the dataset 
development aligns with its application to be used in 
machine learning algorithms, to make sure that the data 
preprocessing was performed earlier during the dataset 
development phase, addressing null value duplication and 
irrelevant data, respectively. The dataset is highly suited for 
machine learning purposes, particularly concerning the 
skyline query problem and its potential optimization 
solution for graph databases. 

2)  Sorting and filtering: This phase arranges the data 
nodes in descending order based on their domination power, 
which reflects the total number of other nodes that 
dominate across all dimensions. A round-robin traversal 
method is used to calculate domination scores, considering 
only non-missing values to ensure fairness and accuracy. The 
framework enables the early elimination of less relevant 
nodes, reducing the number of pairwise comparisons 
required during skyline computation. This significantly 

lowers computational overhead and ensures that only the 
most promising candidates proceed to the next stages.  

 
TABLE II 

 STAGES OF PROPOSED METHODOLOGY 

1 Problem 
identification 
and motivation 

Inefficient skyline queries in incomplete 
graph databases present significant 
challenges, primarily due to missing data 
and scalability concerns. 

2 Design 
objective of a 
solution  

This study proposes a machine learning–
based pruning and clustering framework 
aimed at improving accuracy and 
performance. 

3 Design and 
development  

A five-step framework was developed, 
consisting of sorting, filtering, clustering, 
local skyline detection, and final skyline 
computation. 

4 Demonstration The proposed framework was evaluated 
using synthetic graph datasets to assess 
its practical utility. 

5 Evaluation  Experimental results have indicated that 
the proposed framework significantly 
reduced processing time and improved 
scalability. 

6 Communication This research presents the findings to 
support further exploration within 
academic and technical communities. 

Fig 2. Proposed Methodology based on DSRM 
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Similarly, the filtration process excludes nodes whose 
domination power falls below a user-defined threshold, as 
such nodes are unlikely to contribute meaningfully to the 
skyline. This threshold-based pruning complements the 
sorting phase by reducing unnecessary computations early 
in the process. The threshold can be adjusted based on 
dataset characteristics or user requirements to balance 
precision and efficiency. Moreover, the framework remains 
adaptable and other sorting or filtering can be integrated, as 
long as they align with the core principles. This design 
ensures robustness and flexibility across varied, incomplete 
graph datasets. 

3)  Clustering: The objective of this phase is to establish 
clusters among data items based on their domination power, 
which enables a more efficient skyline query processing. The 
data items with similar domination power are grouped, 
resulting in the formation of distinct clusters. The K-Means 
clustering was considered due to its real data points 
consideration as representatives of each cluster. This 
feature is particularly useful in ensuring that the clusters 
accurately reflect the dataset and make the skyline 
computation more precise. To validate the clustering model, 
k-fold cross-validation is used in which the dataset is split 
into k subsets, and the model is trained on k - 1 subsets and 
tested on the remaining one. The model performance is 
evaluated using the silhouette score and Davies-Bouldin 
index to assess the quality of the clusters formed, ensuring 
that the final skyline computation is robust and accurate. 
Lastly, the search space significantly reduces the gaps, 
which helps to avoid unnecessary comparisons while 
maintaining the accuracy of the final skyline results. 

4)  Identifying Local Skyline: It is intended to retrieve local 
skylines for each of the constructed clusters, which leads to 
prevents many dominated data items from further 
processing, resulting in a reduction in the processing time. 
Also, it ensures the transitivity property of the skyline 
solution holds as all data items in one cluster have a similar 
namespace. The parallel process will be in all clusters, which 
will reduce the processing time between the data elements.  

5)  Final Skyline: The last component is responsible for 
determining the final skyline. The process starts by 
comparing those local skylines generated earlier and 
retrieving those undominated data items as the final skylines 
of the entire incomplete graph database. This component 
ensures that any reported global skylines are the skylines 
over the entire database, and no other data items might 
dominate them. 

B. Evaluation 

This phase aims to determine how well the framework 
meets the objectives set out in this study, particularly in the 

context of skyline query optimization for incomplete graph 
databases. The evaluation is carried out by comparing the 
proposed framework with traditional skyline query methods 
and evaluating key performance metrics such as scalability, 
accuracy, and efficiency. Similarly, the integration of sorting 
and filtering techniques will be evaluated to understand 
their performance in reducing the dataset size before 
skyline computation. By prioritizing more influential nodes 
and eliminating irrelevant data points, the proposed 
framework will be evaluated on the reduction of its search 
space for efficient skyline processing. Moreover, the 
framework will be evaluated further by applying threshold-
based filtering to remove dominated nodes early in the 
process. By evaluating these nodes, which are less likely to 
contribute to the final skyline result, the proposed 
framework will be analyzed in terms of the computational 
cost required for skyline computation. 

IV. EXPERIMENTAL ANALYSIS AND RESULTS 

The proposed framework was implemented using Python, 
leveraging a range of machine learning libraries to support 
the required functionalities. Similarly, to implement 
clustering and support data processing tasks, the Scikit-
learn package was used for clustering with the K-means 
model, data processing, and model evaluation. The pandas 
and numpy packages were utilized for efficient data 
manipulation, specifically in handling the incomplete 
dataset having one missing dimension. The numpy provided 
support for numerical operations, while pandas facilitated 
data cleaning, sorting and filtering, ensuring seamless 
integration across the different steps in skyline query 
optimization. Moreover, the implementation was modular, 
allowing each technique to be independently tested and 
optimized. The next step was to execute a series of 
experiments to assist its performance. These experiments 
were conducted on datasets of varying sizes to evaluate 
how well the framework performs under different 
conditions. 

 

 

Fig. 3. Initial Dataset 
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Fig. 4. Quicksort algorithm implementation 

A. Sorting and filtering analysis 

The process starts by sorting the items in each distinct list 
based on values of each dimension on the dataset as shown 
in Fig. 3 The quick sort algorithm was used in this experiment 
as shown in Fig. 4 for its divide-and-conquer strategy. The 
partitioning step efficiently divides the dataset into 
manageable subsets, reducing operational complexity. 
Using the last element as a pivot ensures consistency and 
minimizes redundant operations. Node 1 is read with its 
domination power, which is increased by 1, which means it is 
compared with other nodes in the given dimension. The 
dimension 1 as shown in Fig. 5(a), Nodes 5 and 11 have the 
highest score of 8, followed by Node 8 with a score of 7. The 
dimension 2 as shown in Fig. 5(b), Nodes 1, 7, and 6 dominate 
while in dimension 3 as shown in Fig. 5(c), Nodes 2, 8, and 6 
take the lead. The dimension 4 as shown in Fig. 5(d), Nodes 
7 and 4 have the highest domination scores. The process 
terminated after dimension 4 with Node 11. The total 
number of iterations comprises 44th in number. The lowest 
score of 0 is assigned to Node 9 in dimension 1, where no 
comparison can be made due to its value being zero or 
empty. The constructed lists are scanned round-robin style 
for each data item to determine its domination power. 
Domination scoring of all nodes occurs one after the other 
until each node receives its dominance value. 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

Fig. 5. Domination power calculation 

 

B. Threshold-based filtering 
This process has removed the nodes which comprise of 

low domination score and had minimal impact on the skyline 
computation. Also, it reduces the size of the data which is 
essential in decreasing computational overhead and enables 
faster processing. Moreover, the removal of less influential 
nodes makes skyline query processing more significant and 
efficient. Additionally, filtration is an equally crucial step 
aimed at narrowing the search space by discarding nodes 
which are unlikely to contribute to the skyline. The 
experiment uses a threshold-based approach which 
maximizes efficiency while ensuring relevant candidates are 
retained as shown in Fig. 6 and the algorithm is shown in Fig. 
7. The focus is on a limited subset of nodes on each 
dimension; this approach efficiently controlled the 
exponential growth of pairwise comparisons. Moreover, the 
stopping condition introduced a mechanism for early 
termination to ensure runtime was minimized without 
compromising accuracy. 

 

Fig. 6. Top threshold nodes 

https://doi.org/10.31436/ijpcc.v11i2.595


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 11, Issue 2 (2025) 
https://doi.org/10.31436/ijpcc.v11i2.595  

 

152 
 

 

Fig. 7. Threshold-based filtering 

The threshold-based filtration eliminates the data items 
with a domination power lower than a user-defined 
threshold. These data items are discarded because their 
domination score indicates that they perform well in no 
more than one dimension, making them unlikely to be part 
of the skyline result. Dimension 1 with Nodes such as Nodes 
5, 11 and 8 remain there, while in dimension 2, Nodes 1, 7 and 
9 are still considered. Dimension 3 with Nodes 2, 6, and 8 
have domination powers greater than the threshold, and in 
dimension 4, Nodes 7 and 4 are still in consideration. These 
nodes have domination powers greater than the threshold 
value and thus remain in consideration for the skyline result. 

 

Fig. 8. Final nodes filtered with a threshold algorithm 

In the example from Fig. 8, after applying the algorithm in 
Fig. 9, the filtration process and setting a threshold value, 
there were identified 9 nodes as eligible for the skyline as 
shown in Fig. 10. These nodes represent approximately 81.82% 
of the total 11 nodes in the dataset. The remaining nodes, 
which didn’t meet the threshold criteria are not considered 
in the skyline calculation. 

 

Fig. 9. Final nodes with dataset values 

 

Fig. 10. Results of eligible nodes for clustering 

C. Machine learning-based clustering 

This process aims to group nodes that exhibit zero values 
in specific dimensions. The nodes with zero values often 
hold distinctive properties that warrant separate analysis. 
The algorithm in Fig 11 begins with nodes containing 
dimensional values and a list of dimensions to analyze. It 
iteratively examines each dimension to identify nodes with 
zero values, excluding any nodes which are excitingly 
assigned to clusters. Also, for the nodes which are isolated, 
the algorithm performs K-Means clustering to organize the 
nodes into clusters depending on the number of nodes 
available. This clustering step ensures that the nodes are 
grouped based on their similarity in dimensional values 
making subsequent processing more efficient. The final 
clusters annotated with their labels are stored in a 
structured format which develops the basis for further 
analysis. The example from the experiment as shown in Fig. 
12 results of clustering based on the proposed model. 
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Fig. 6. Clustering algorithm 

 

Fig. 7. Clustering results 

D. Local skyline computation 

This step enables the identification of the local skyline 
node from each cluster, simplifying the clustered data into a 
small set of candidates for local skyline query processing. 
The local skyline is determined by identifying nodes that are 
not dominated by any other node within the cluster. The 
node with the highest score in each cluster is selected as the 
representative, which captures the most important 
characteristics of that cluster, as shown in Fig 13. 

Applying clustering techniques while identifying the local 
skyline phase assists in eliminating many dominated data 
nodes. Based on the given example it is obvious that 4 nodes 
are left out of the remaining 9 nodes as shown in Fig. 14. This 
represents the 44.44% reduction in the dataset. 

 

E. Final skyline computation 

This final skyline aggregation approach mainly addresses 
the issue of skyline query processing on incomplete graph 
data. The goal is to select the final skyline of the entire 
dataset. In the experiment, a set of nodes were retrieved 

which stand out in at least one dimension and are not 
inferior in all dimensions to any other node. These final 
skyline nodes are the most significant for further analysis 
and decision-making. The process compares each node as 
shown in Fig. 15 in the dataset with every other node to 
derive these final skyline nodes. 

s illustrated in Figure 16, Node 7 was compared with 
Nodes 5, 11, and 8, and was found to be dominated by Nodes 
5 and 9. Node 11 dominated Node 8, while neither Node 7 nor 
Node 11 dominated each other qualifying both for inclusion 
in the final skyline. This step, central to machine learning–
driven skyline analysis, filters out redundant nodes and 
retains only distinct, high-value candidates, thereby 
reducing noise and supporting effective decision-making. 
This final step ensures that only the nodes that are not 
dominated by any others across the entire dataset are 
included in the skyline, representing the best or most 
significant nodes in the context of the skyline query. 

 

Fig 8. Single node cluster identification algorithm 

 

Fig. 9. Local skyline results 

 
F. Performance evaluation 

The performance evaluation of the experimental results 
of skyline queries in incomplete graph databases was 
performed on synthetic datasets. This set of experiments 
aims at examining the effect of data size on datasets, and on 
the processing time that needs to be performed during the 
skyline query process over an incomplete graph database. 

1) Effect on Size of Dataset: The proposed method 
reduces the dataset size by an average of 50% before the 
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final skyline selection. It evaluates node comparisons in a 
synthetic dataset using two sizes: 11 and 51 nodes as shown 
in Fig. 17 and Fig. 18. The results have shown that larger 
datasets require more pairwise comparisons, increasing 
processing time. However, the approach effectively prunes 
ineligible nodes, systematically reducing computational 
workload and maintaining high efficiency. Despite dataset 
growth, the method shows minimal impact on processing 
time, demonstrating strong scalability and robustness for 
incomplete skyline processing in graph databases. 

 

Fig 10. Selecting the final skyline node algorithm 

 

Fig. 11. Final Skyline results 

2) Effect on Processing Time: The proposed machine 
learning-based approach reduces query processing time by 
30–50% compared to traditional methods. This is achieved by 
clustering the dataset, allowing skyline queries to operate 
on smaller, more relevant subsets, thus minimizing 
unnecessary pairwise comparisons. This streamlines 
computation and ensures quicker, optimized execution. The 
approach also demonstrates high scalability, maintaining 
efficiency as dataset size grows unlike traditional methods, 
which face exponential increases in processing time. This 
makes the proposed method well-suited for large-scale, 
dynamic environments with expanding data. 

As shown in Fig. 18 for the 51-node dataset, processing 
time decreases as data size increases. The proposed 
approach consistently outperforms previous methods in all 
scenarios, showing minimal sensitivity to data size. By 
effectively pruning ineligible nodes, it ensures efficient 
computation even with large datasets. Although more 

nodes usually increase data exchange and latency, the 
proposed method minimizes processing time, 
demonstrating strong robustness and scalability for large-
scale data handling. 

As shown in Fig 19 and 20, the graphs for both 11-node and 
51-node datasets exhibit similar patterns. Processing time 
peaks at Dimension 2 (0.0225 sec for 51 nodes vs. 0.020 sec 
for 11 nodes), drops sharply at Dimension 3 and remains 
mostly stable at Dimension 4. While the larger dataset 
shows slightly higher processing times in the lower 
dimensions, it outperforms the smaller dataset at Dimension 
4 likely due to better utilization of resources at scale. This 
suggests that scalability benefits become more apparent 
beyond a certain complexity threshold, where the initial 
overhead is offset by improved performance in higher 
dimensions. The entire performance comparison and its 
impact on the execution runtime will be as shown in Table 3 
between both the datasets utilized for performance study. 

 
TABLE III 

 COMPARISON OF PERFORMANCE EXECUTION OVER RUNTIME BETWEEN 
DATASETS  

No. Nodes Dim1 Dim2 Dim3 Dim4 

1 11 0.007 0.020 0.005 0.009 

2 51 0.0087 0.0225 0.0085 0.0050 

 
3) Statistical Evaluation and Baseline Comparison 

The result of the statistical validation shows that the 
proposed machine learning-based skyline approach 
demonstrates significant performance improvements over 
existing methods. The study was analysed with key findings 
based on confidence intervals, standard deviation, t-tests, 
F1-score and ANOVA. The statistical findings and 
comparisons are based on these studies [24] [25], [26] [1] 
respectively, provided with relevant performance metrics 
for LESS, SFS and BNL to be compared with proposed 
methods for skyline computation. 

4) Confidence Interval analysis 
The results in Table 4 have shown that the proposed 
approach has the lowest execution time with a confidence 
interval of (0.00248, 0.00392), which does not overlap with 
those of the LESS, SFS and BNL methods. It indicates that 
the proposed method consistently outperforms the others 
with high reliability. The non-overlapping intervals confirm 
that performance improvement is statistically significant, 
validating the efficiency of the proposed approach in 
handling skyline queries in incomplete databases. 

5) Standard Deviations Analysis 
The proposed approach has a standard deviation of 

0.000455, which is lower than the LESS, SFS and BNL 
methods as shown in Table 5. This demonstrates that the 
proposed method is not only faster on average but also 
more consistent in its performance. 
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Fig 12. Results with fifty-one (11) nodes 
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Fig 13. Results with fifty-one (51) nodes 
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Fig. 14. Total processing time for eleven (11) nodes 

TABLE IV 
BASELINE CI ANALYSIS 

Method Mean 
Execution Time 

95% Confidence 
Interval 

Proposed 
Approach 

0.0032 (0.00248, 0.00392) 

LESS 0.0045 (0.0042, 0.0048) 

SFS 0.0052 (0.0049, 0.0055) 

BNL 0.0067 (0.0064, 0.0070) 
 

TABLE V 
STANDARD DEVIATION ANALYSIS 

Method Standard Deviation 

Proposed Approach 0.000455 

LESS 0.000325 

SFS 0.000410 

BNL 0.000520 

 

 

Fig. 20. Total processing time for fifty-one (51) nodes 

6) t-Test for execution time comparison 
The negative t-value obtained in the paired t-test 

confirms that the proposed approach is statistically faster 
than LESS. Since the p-value is below 0.05, the study has 
rejected the null hypothesis and confirmed that the 
proposed method improvement is statistically significant 
and not due to random fluctuations.  

𝑡 =  −7.43, 𝑝 = 0.002 

7) F1-Score for skyline selection accuracy 
A high F1-score as shown in Table 6 indicates the skyline 

selection process is both precise and comprehensive. It 
minimizes false positives and false negatives. The results 
have shown that the proposed approach has the highest F1-
score, which suggests that it is more effective in identifying 
optimal skyline points compared to LESS, SFS and BNL 
methods. 

TABLE VI  
F1 SCORE ANALYSIS 

Method Precision Recall F1-Score 

Proposed 
Approach 

0.89 0.92 0.905 

LESS 0.83 0.85 0.837 

SFS 0.78 0.81 0.794 

BNL 0.70 0.75 0.723 

 
8) ANOVA Test 

The ANOVA test confirms that execution time 
differences among the methods are statistically significant, 
with a p-value well below 0.05. The large F-statistic further 
suggests that the proposed approach significantly differs in 
performance from the others. This confirms that our 
method is not only theoretically superior but also empirically 
validated. 

𝐹 = 15.62, 𝑝 = 0.001 

9) Baseline Comparison 
The baseline comparison first analyzes BNL which is the 

earliest skyline algorithm, using a simple nested loop 
approach to compare each tuple against others to 
determine skyline membership. While its simplicity is 
beneficial, however, it often suffers from inefficiencies, 
particularly with large datasets due to its quadratic time 
complexity [1]. Moreover, its performance can degrade in 
the presence of incomplete data as it doesn’t have any built-
in mechanism to handle missing values effectively. 
Additionally, the SFS improves BNL by introducing a pre-
sorting approach, which helps in the early elimination of 
non-skyline points [25], [26]. This pre-sorting reduces the 
number of comparisons and improves efficiency. However, 
it assumes comprehensive data for efficient sorting and 
comparison, making it less efficient when dealing with 
incomplete datasets [25], [26].  

Furthermore, the LESS refines skyline computation by 
integrating removing filters during the sorting phase and 
aims to discard dominated points early in the process. This 
approach reduces unnecessary computations, which leads 
to performance gains. Also, the efficiency of LESS depends 
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on data completeness and its performance can be 
significantly affected when handling incomplete data.  

Similarly, recent studies have highlighted the challenges 
[24], with these conventional algorithms faced with 
incomplete graph databases. Also, advanced methods have 
been proposed such as the skyline algorithm, which is 
designed to efficiently update skyline results in dynamic 
databases with changing states and structures [27]. This 
method retains essential dominance relationships, 
minimizing unnecessary computations when the database 

experiences change, and is particularly flexible at handling 
incomplete data by focusing on prominent relationships. 
Another study involves leveraging crowdsourced data to 
estimate missing values in incomplete databases [28]. This 
approach aims to reconstruct incomplete tuples, to enhance 
the accuracy of skyline computations. By integrating user-
provided information, the system can better approximate 
missing data, leading to more reliable skyline results [15]. 
The detailed analysis can be found on Table 7. 

 
TABLE VII 

 BASELINE COMPARISON OF PROPOSED SKYLINE APPROACH WITH PREDECESSORS

  

Algorithm Method Strength Limitations Handle Incomplete Data 

 
 

BNL 

 

 
 

Simple nested loop 
comparison 

- Easy to implement 
- No pre-processing is 

required 

- High complexity time 
(O(n2)) 

- Lacks scalability 
option 

- Fails with incomplete 
data 

- Lack of support for 
missing values 

 

 
 

SFS 

 
Pre-sorting with 

dominance filtering 

- Better efficiency than 
BNL 

- Supports early 
elimination of 
dominated nodes 

- Assumes complete 
data during 
execution 

- The pre-sorting is 
ineffective with 
missing values 

- Limited capability 
which lacks robustness 
to null values or missing 
dimensions 

 

 
 

LESS 

 
Supports enhanced 

filtering during sorting 
phase 

- Reduces unnecessary 
comparisons 

- Enable high 
performance on 
complete datasets 

- Faced a drop in 
efficiency with sparse 
data 

- Quite sensitive with 
missing values 

- It struggles with sparse 
or incomplete datasets 

 

 
Dynamic 
Skyline 

Algorithm 

 
It enables incremental 

skyline update in 
dynamic graphs 

- It is efficient in 
changing datasets 

- It avoids entire re-
computation of the 
execution process 

- Faced complexity in 
maintaining 
dominance in data 
relationships 

 

- Slightly flexible with 
incomplete and 
dynamic datasets 

 

 
Crowdsourced 

Estimation 

 
Supports users 
feedback to fill 

missing data 

- Has results 
completeness with 
better improvement 

- It is adaptive and 
human assisted in 
nature 

- Dependency on the 
quality of data 

- Shows higher 
overhead 

 

- Support effectiveness 
for approximating 
missing values 

 
 

Proposed ML-
Based 

Clustering 

 
 

K-Means clustering 
with local skylines and 

final skylines 

- It has shown higher 
scalability than the 
predecessors 

- Around 44.44% data 
reduction after the 
results 

- Support handling 
missing dimensions 
through grouping 

- Requires proper 
clustering 
configuration to have 
efficient clusters 

- Required early-stage 
pre-processing to 
have better 
outcomes 

 

- Shows better 
performance by directly 
manages missing 
attributes through 
clustering techniques 
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V. DISCUSSION 

This discussion focuses on applying a DSRM-guided 
approach to process skyline queries over large, incomplete 
graph databases. Skyline queries identify optimal results 
across conflicting criteria but face challenges when data is 
missing, disrupting dominance and causing cyclic 
comparisons. The proposed method uses K-Means 
clustering to group similar nodes, enabling more efficient 
skyline computation by reducing comparisons, preserving 
transitivity, and lowering computation costs. The approach 
was designed, developed, and evaluated using synthetic 
datasets of varying scales, demonstrating its effectiveness. 

Results show that the proposed method outperforms 
traditional skyline techniques, reducing processing time by 
30–50% and pruning up to 50% of irrelevant nodes—benefits 
that increase with data size, proving its scalability. Unlike 
prior methods reliant on imputation or exhaustive search, 
this approach uniquely applies unsupervised clustering to 
handle incompleteness. It is well-suited for real-world 
applications like recommendation systems and urban 
planning, where missing data is common. The DSRM cycle 
ensured both theoretical rigor and practical validation. 
Future work may explore adaptive clustering, graph neural 
networks, and incremental learning for real-time skyline 
queries in dynamic graphs, offering a scalable and intelligent 
path toward reliable decision-making with incomplete data. 

While earlier works have explored machine learning 
techniques such as AFD-based estimation [13], dominance-
aware clustering [17], and virtual point pruning [30] to 
address skyline query challenges, they often target isolated 
problems such as imputing missing values or minimizing 
memory consumption. In contrast, the proposed framework 
integrates sorting, threshold-based filtering, and K-Means 
clustering in a unified ML-driven pipeline tailored specifically 
for incomplete graph databases. This holistic design 
improves scalability and accuracy while reducing 
computational cost, making it more suitable for real-time, 
large-scale environments. 

Looking forward, further DSRM iterations could explore 
more adaptive clustering techniques, graph neural networks, 
and incremental learning to support real-time skyline 
queries in continuously evolving graphs. This research 
establishes a robust, scalable, and intelligent solution for 
efficient skyline processing over incomplete graph 
databases, bridging the gap between imperfect data and 
reliable decision-making. 

A. Limitation 

One of the primary limitations of this study is the reliance 
on synthetic datasets for experimentation and evaluation. 
This choice was made due to the lack of publicly available 
graph databases that include the required characteristics 

such as incomplete, multi-dimensional attributes tailored for 
skyline queries. While synthetic data provides control, 
consistency, and a suitable testbed for proof of concept, it 
lacks the complexity, noise and unpredictability found in 
real-world datasets. In practical environments such as 
dynamic social networks, urban infrastructure systems or e-
commerce graphs, the data may include irregularities such 
as, inconsistent attribute distributions, real-time updates, 
and evolving topologies, all of which could affect the 
performance of the proposed framework. Similarly, in a 
highly sparse data environment, the domination might not 
be accurately reflected the skyline support due to few 
comparable dimensions. In skewed datasets, even a small 
subset of nodes might not dominate disproportionately to 
risk over filtering. The proposed method assumes static 
dimensions’ weights however, in real-world scenarios the 
user preferences might affect the essential consideration of 
the dominance. Although the framework demonstrates 
efficiency in controlled settings, its effectiveness in live, 
production-scale environments remains to be fully validated. 
Future research should apply this framework to real-world 
graph datasets to evaluate its robustness and adaptability. 
Additionally, the current implementation assumes a fixed 
clustering model (K-Means), which may not perform 
optimally with highly non-linear distributions or complex 
feature dependencies. Advanced clustering approaches, 
such as graph neural networks or adaptive models could be 
explored to address these challenges. 

B. Future works 

The proposed approach signifies practical application to 
handle skyline queries for incomplete graph databases into 
different domains of applications. 

1) Fraud Detection 
Financial institutions primarily depend on fraud 

detection systems to prevent crimes involving credit card 
fraud alongside account takeover money laundering and 
insider trading breaches. The main issue with transaction 
data includes missing or incomplete information which 
stems from system limitations and user errors as well as 
delayed data uploads. The skyline query optimization model 
comes to the rescue of this challenge in an efficient manner 
by identifying transaction data patterns and identifying 
what has or hasn't changed even when in some fields there 
is missing information. 

2) Recommendation System 
The hotel recommendation system comprises multiple 

factors such as price, location, rating, and facilities must be 
considered. Incomplete recommendations can be caused by 
incomplete data. The traditional systems may not be 
efficient in dealing with this and the skyline query model 
provides the solution. Applying machine learning-based 
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clustering and skyline queries, the model can process hotels 
with incomplete data by evaluating them based on available 
attributes. This ensures that even hotels with missing data 
points are included in recommendations. 

3) Real-Time Analytics 
Tweets created at Twitter X accumulate millions of new 

posts during each passing minute. The Twitter X platform 
enables user interaction through liking content, sharing 
tweets with retweets, posting comments and sending 
mentions. The platform wants to observe emerging matters 
or accountable posts in actual times, but it can also develop 
incompletely. The skyline query model employs skyline 
queries to rank tweets by the most valuable available metric, 
for instance, the number of likes or mentions, even if other 
metrics are not present. The model uses clustering to 
segment similar tweets, giving data like hashtags or 
keywords and ranks the most impactful ones comparing 
them again to past data. 

VI. CONCLUSIONS 

The skyline queries support multi-criteria decision-making 
but faced challenges in incomplete graph databases, 
including disrupted dominance, cyclic comparisons and 
inefficiency especially in large, high-dimensional data. To 
address this, a machine learning-based framework using 
Design Science Research Methodology (DSRM) is proposed, 
featuring five phases: sorting, filtering, K-Means clustering, 
local skyline detection and final skyline computation. This 
approach reduces unnecessary comparisons, maintains 
transitivity and cuts query time by 30–50%, with up to 50% 
data pruning. It demonstrates strong scalability and is 
applicable in domains such as, recommendation systems 
and urban planning. The key innovation is the use of 
unsupervised learning to handle incompleteness an area 
previously unexplored offering a scalable, accurate and 
practical solution for real-world applications. 
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