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Abstract— Skyline query processing is essential in multi-criteria decision-making, as it retrieves optimal 
results without requiring user-defined weights. Traditional skyline methods, however, face significant 
challenges when applied to large-scale and incomplete datasets. This study proposes a hybrid approach that 
integrates the ISkyline dominance graph technique with Graph Neural Networks (GNNs) to improve skyline 
query performance under such conditions. The GNN component is utilized to predict skyline tuples in the 
presence of missing or incomplete data. Evaluation on both synthetic and real-world datasets demonstrates 
enhanced accuracy and efficiency when compared to established methods such as ISkyline, SIDS, and OIS. 
This work demonstrates the potential of creating a more efficient query processing, supporting applications 
in e-commerce, finance, and smart data systems, while aligning with the 9th Sustainable Development Goal 
on industry, innovation, and infrastructure. 
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I. INTRODUCTION 
Skyline query processing is widely used in multi-criteria 

decision-making applications such as route planning, 
product recommendation, and health diagnostics. However, 
existing skyline methods face major challenges when 
applied to large and incomplete datasets, conditions that 
are increasingly common in real-world scenarios. 

This paper introduces a hybrid approach that combines 
Graph Neural Networks (GNNs) with the ISkyline dominance 
graph technique to enhance skyline query performance. The 
proposed method is designed to handle missing data and 
scale efficiently, allowing for improved prediction of skyline 
tuples even in complex, incomplete environments. 
Experimental results on both synthetic and real-world 
datasets demonstrate that this method outperforms state-
of-the-art techniques in accuracy and efficiency. 

Skyline queries aim to retrieve data records that are not 
dominated by any others across multiple dimensions, often 
referred to as Pareto-optimal points. While powerful, these 
queries are computationally expensive, especially when 
applied to massive graph-based data or datasets with 
incomplete attributes. Existing solutions like ISkyline and 
SIDS attempt to address scalability, but they still struggle 
with prediction under uncertainty or data loss. 

Recent advances in deep learning, particularly Graph 
Neural Networks (GNNs), offer promising capabilities for 

learning from structured and incomplete data. By 
integrating GNNs into the skyline processing workflow, the 
proposed method leverages graph-based feature learning 
to support more robust and intelligent skyline selection. 

This research contributes to the development of more 
adaptive skyline frameworks and aligns with Sustainable 
Development Goal 3 (Good Health and Well-being) by 
enabling more informed decision-making from health-
related graph data. 

Skyline queries are essential for identifying optimal data 
points from multi-dimensional datasets based on 
dominance relationships. However, traditional skyline query 
algorithms face significant limitations in processing large-
scale and incomplete graph datasets. These methods often 
encounter challenges related to scalability, computational 
overhead, and inefficiencies in handling dynamic database 
environments [1]–[2]. Furthermore, approaches like Bucket 
and ISkyline struggle with integrating missing data 
effectively, resulting in suboptimal accuracy and high 
processing costs [3]. Current solutions lack a comprehensive 
framework that integrates cutting-edge advancements in 
machine learning, particularly Graph Neural Networks 
(GNNs), which offer the potential to address these 
challenges by improving scalability, accuracy, and 
adaptability [4]. 
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Despite the promising capabilities of machine learning, 
including its ability to model complex relationships in graph-
structured data, its application in optimizing skyline queries 
remains underexplored [5]. Existing research does not 
adequately leverage the dynamic adaptability and efficiency 
of machine learning techniques, leaving a critical gap in 
addressing the computational and data-handling 
shortcomings of traditional methods. This study aims to 
bridge these gaps by introducing a novel framework that 
combines Pareto optimality principles with advanced 
machine learning methods, offering robust solutions for 
scalable and efficient skyline computations in real-world 
scenarios. 

The objectives of this research are threefold. First, to 
develop a unified framework that integrates Pareto 
optimality principles with advanced machine learning 
techniques, particularly Graph Neural Networks (GNNs), to 
improve skyline query processing over large-scale and 
attribute-incomplete graphs. Second, to evaluate the 
performance of the proposed framework across real-world 
and synthetic datasets using comprehensive metrics, 
including accuracy (target > 99%), F1-score (target > 99%), 
AUC-ROC (target > 99%), query response time, and memory 
usage, with a focus on ensuring scalability, efficiency, and 
adaptability in dynamic environments. Third, to compare the 
effectiveness of the proposed framework against traditional 
skyline algorithms and alternative machine learning models 
in order to identify the most suitable method for skyline 
query processing on incomplete graph-structured data. 

This research contributes significantly to both academia 
and real-world applications by introducing a novel 
framework that integrates Pareto optimality and Graph 
Neural Networks (GNNs) to enhance skyline query 
processing in large-scale and incomplete datasets. 
Traditional methods often falter with scalability and missing 
data, but this hybrid approach leverages Pareto optimality 
for identifying non-dominated points and GNNs for learning 
from graph-structured, incomplete data. Their 
complementary strengths result in improved accuracy, F1-
score, and AUC-ROC. The study also establishes 
standardized benchmarks using synthetic and real datasets, 
evaluating performance through metrics like accuracy, F1-
score, AUC-ROC, query response time, and memory usage. 
Practically, the solution is scalable and adaptive, benefiting 
industries such as e-commerce, finance, and smart 
infrastructure by enabling efficient, real-time decision-
making even with incomplete data. Supporting UN 
Sustainable Development Goal 9, this work promotes 
innovation and resilient digital infrastructure through a 
robust and adaptable data processing framework. 

 
 

II. LITERATURE REVIEW 
 
A. Theoretical Background 

Skyline queries, based on Pareto optimality, identify 
optimal data points that are not dominated by others across 
multiple dimensions, making them valuable for multi-criteria 
decision-making. While effective on small, complete 
datasets, traditional methods struggle with scalability and 
missing values, especially in graph-structured data. 

Skyline queries find the best choices from a big dataset 
like picking top products that are cheap, fast, and well-rated. 
GNNs help when some product info is missing or when 
relationships matter. 
 

1) Skyline Queries 
“The skyline operator introduced by [6] filters the 

collection of objects in a data set by selecting those objects 
that are not dominated by any other objects. An object 
dominates another object if it is as good as the other object 
in all dimensions and better in at least one dimension. This 
approach is commonly used to identify the best, most 
preferred objects known as skylines, from a given data set in 
satisfying a user’s preferences that are specified as the 
skyline query” [5]. 

“Skyline queries have become a significant focus in the 
database research community, particularly for applications 
involving multi-criteria decision-making. Since the 
introduction of the skyline operator by [6], numerous 
algorithms have been developed to enhance skyline 
computation efficiency [7]-[9]. These algorithms vary based 
on several factors, including: (i) the types of data they 
process, such as uncertain, incomplete, encrypted, 
streaming, or big data; (ii) the computational platforms they 
utilize, such as distributed systems, cloud computing, or 
road networks; and (iii) the kinds of skyline queries they 
handle, including range skyline, spatial skyline, or reverse 
skyline queries” [5]. 
 

2) Pareto Optimality 
“Skyline queries, grounded in the concept of Pareto 

dominance, are designed to filter objects from a potentially 
large multi-dimensional dataset by selecting those that best 
align with user preferences. These queries retain the most 
favorable objects while disregarding others that do not 
meet the criteria” [10]. 

“The concept of Pareto optimality originated from 
economic equilibrium and welfare theories in the early 20th 
century. This principle states that a system achieves optimal 
efficiency when it is impossible to improve one individual’s 
condition without negatively impacting another’s. Named 
after Italian economist Vilfredo Pareto (1848–1923), this 
concept has since become a cornerstone in economics and 
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has found applications across disciplines, including social 
sciences, engineering, management, and information 
systems” [11]. 
 

3) Machine Learning 
According to Afifi et al. [4], “Graph Neural Networks 

(GNNs) have recently become highly effective for managing 
graph-structured data. These networks utilize permutation-
invariant aggregation or pooling methods along with 
permutation-equivariant message-passing techniques to 
identify patterns in the data, ensuring the graph's topology 
is maintained without requiring a specific arrangement of its 
nodes and edges [12]”. 

“Reinforcement learning involves determining the best 
course of action by associating situations with actions to 
maximize a numerical reward. Rather than being explicitly 
instructed on which actions to take, the learner must 
explore and identify the actions that yield the highest 
rewards through experimentation. In complex scenarios, 
actions can influence not only the immediate reward but 
also the subsequent state and, consequently, future 
rewards. The two defining aspects of reinforcement 
learning are its reliance on trial-and-error exploration and 
the concept of delayed rewards” [13]. 
 
B. Previous Empirical Research 

 
1) Skyline Queries Over Large Scale Graphs 

“Wang et al. [1] explored methods for processing skyline 
queries in large, incomplete databases and proposed an 
approach called Skyline Preference Query (SPQ). This 
method involves three main stages. First, the incomplete 
database is divided into two subsets based on the priority 
levels of attributes. The skylines of the first subset, referred 
to as local skylines, are determined using the Skyline 
Incomplete Data Sets (SIDS) concept introduced by [14]. 
Second, a bitmap representation technique is combined 
with the divide-and-conquer (DC) strategy from [6] to 
identify the skylines of the second subset. Finally, the local 
skylines from both subsets are compared to produce the 
overall skyline of the database. However, SPQ requires 
generating multiple arrays and performing sequential 
processing, which involves exhaustive pairwise comparisons. 
This approach increases processing time because 
unnecessary comparisons are often conducted while 
identifying local skylines within each subset” [15]. 

“Processing skyline queries on massive datasets poses 
additional challenges due to the large number of candidates 
and the high computational cost of pairwise comparisons. 
Sorted-based algorithms address this by leveraging pre-
sorted structures to select tuples with high dominance 

potential, thereby pruning non-skyline tuples. However, this 
method requires multiple passes over the dataset, leading 
to high input/output (I/O) costs, especially with large 
datasets. In the context of incomplete skyline computation, 
the criteria for dominance are broader than for complete 
datasets, resulting in a larger number of skyline candidates. 
Bucket-based algorithms, often used for this purpose, 
require significant resources due to the high number of 
buckets and local skyline results. These processes, 
particularly the computation and merging of local skyline 
results, incur substantial computational and I/O costs. As a 
result, existing algorithms struggle to efficiently handle 
incomplete skyline queries on massive datasets” [16]. 

 
2) Skyline Queries Over Incomplete Graphs 

“Khalefa et al. [2] introduced two algorithms, Bucket and 
Iskyline, for addressing the issue of skyline queries on 
incomplete data. The Bucket algorithm uses a bitmap 
representation to divide database tuples into distinct 
buckets, where each bucket contains tuples with similar 
missing attributes. A conventional skyline algorithm is then 
applied to each bucket to identify local skylines. These local 
skylines are compared across buckets to determine the 
global skylines of the entire database. The Iskyline algorithm 
improves upon this by introducing optimization techniques 
such as virtual points and shadow skylines, which reduce the 
number of local skylines in each bucket. This reduction 
minimizes pairwise comparisons, though the use of virtual 
points increases computational overhead due to additional 
comparisons” [15]. 
“Bharuka and Kumar [14] proposed the Sort-based 
Incomplete Data Skyline (SIDS) algorithm, which adapts a 
sorting mechanism for skyline computation as outlined by 
[17]. SIDS processes tuples round-robin by attributes, 
pruning dominated tuples early to minimize pairwise 
comparisons. If a tuple remains unpruned after k iterations, 
where k is the count of its complete attributes, it is deemed 
a skyline. While efficient in sequential access, SIDS faces 
performance challenges with increasing attribute lists and 
lacks optimization for databases with dynamic content. This 
limitation makes it less suitable for systems requiring real-
time updates” [15]. 

 
III. METHODOLOGY 

This chapter aims to detail the methodologies employed 
in this study, drawing from the design science research cycle 
as outlined by [18]. The approach integrates three cycles to 
enhance the identification and comprehension of design 
science research initiatives. Fig. 1 illustrates the adapted 
design science research framework based on the work of 
[19]. 
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Fig. 1  Design Science Research Framework [19] 

 
 “The Relevance Cycle connects the research project's 

contextual environment with design science activities, 
ensuring that the needs and requirements for achieving the 
research objectives are properly identified. The Rigor Cycle 
ties design science activities to a knowledge base of 
scientific principles, expertise, and prior experiences that 
inform and influence the research process” [20]. At the core 
is the Design Cycle, which focuses on developing and 
evaluating design artifacts and research processes. This 
cycle plays a pivotal role in describing the research activities. 
Fig. 2 illustrates the sequential flow of the research process 
within this framework.  

The workflow begins with a literature review, providing a 
foundational understanding of traditional skyline algorithms, 
machine learning frameworks, and graph-based 
methodologies. The process then advances to testing 
synthetic datasets as the initial step, followed by real 
datasets. Both workflows incorporate data preprocessing, 
which includes tasks such as normalizing data, handling 
missing values, and splitting datasets into training, 
validation, and test sets. For synthetic datasets, the research 

involves the selection of traditional algorithms (e.g., ISkyline) 
and machine learning frameworks (e.g., Graph Neural 
Networks), which are then unified to leverage the strengths 
of both approaches. The unified framework, along with 
traditional algorithms, is tested extensively, followed by a 
comparison of performance metrics such as processing time, 
memory usage, and accuracy. Results are analyzed to 
evaluate the effectiveness of the unified approach. Similarly, 
the real datasets testing follows the same workflow but 
includes an additional step of tuning the unified machine 
learning framework to optimize its performance for real-
world applications. This tuning involves hyperparameter 
adjustments and testing alternative architectures (e.g., 
GraphSAGE). Finally, the results from both workflows are 
consolidated, discussed comprehensively, and used to 
propose a final algorithm that demonstrates superior 
performance in terms of scalability, robustness, and 
adaptability. This expanded explanation ensures a clear 
understanding of how each step in the methodology 
contributes to achieving the research objectives. 
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Fig. 2  Design Cycle 
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A. Proposed Method: GNN + ISkyline 
This study proposes a hybrid method that integrates a 

traditional skyline query algorithm, ISkyline, with a Graph 
Neural Network (GNN) to handle attribute-level 
incompleteness in graph-structured data. The goal is to learn 
dominance relationships between data points and improve 
skyline prediction in incomplete datasets through graph-
based deep learning. 

The proposed methodology begins by computing the 
ground truth skyline using normalized and imputed data, 
applying a modified ISkyline algorithm that handles missing 
values by skipping comparisons with None entries. 
Dominance is determined through a custom function that 
checks if one point is greater than or equal to another across 
all comparable attributes and strictly greater in at least one. 
Each data point is then labeled as skyline or non-skyline. To 
address class imbalance, skyline points are oversampled to 
match non-skyline points, and a directed dominance graph 
is constructed where nodes represent products and edges 
represent dominance relationships. This graph feeds into a 
3-layer Graph Convolutional Network (GCN), which uses 
normalized attributes as node features and binary skyline 
labels for supervision. The model is trained using binary 
cross-entropy loss with class imbalance adjustments, 
evaluated over 200 epochs on standard classification and 
efficiency metrics. Designed to handle incomplete data, this 
hybrid approach leverages both ISkyline logic and GNN 
pattern recognition to infer skyline membership effectively. 
Figure 3.3 below illustrates the full pipeline of this hybrid 
methodology. 
 

 
Fig 3. Proposed GNN + ISkyline Framework 

 

By structuring the methodology in this modular fashion, 
the proposed approach offers transparency in its design 
while allowing each step to be independently assessed and 
improved. The integration of dominance relations with 
graph learning bridges classical skyline computation and 
modern neural representation learning, creating a more 
scalable and accurate solution for handling incomplete 
multi-criteria datasets. 

 
B. Dataset Preparation 

This study evaluates the proposed framework using three 
real-world datasets, CoIL 2000 [21], NBA Stats [22], and 
MovieLens [23], chosen for their diversity in domain, data 
size, and feature complexity. Each dataset was modified to 
include 20% attribute-level incompleteness, introduced 
either randomly or by building on existing missing values. 
CoIL 2000, with 5,822 complete customer records and 86 
attributes, had 20% of values randomly removed to simulate 
real-world data loss. The NBA Stats dataset includes 18,381 
player regular-season records across 17 features, combining 
historical basketball data from 1946 to 2005; existing 
missing values were supplemented to reach 20% 
incompleteness. MovieLens, originally complete with over 
one million ratings from 6,040 users, was also modified by 
randomly removing 20% of attribute values to replicate the 
sparsity typical in recommendation systems. 

To evaluate the robustness of the proposed framework 
under varying levels of attribute-level incompleteness, four 
synthetic e-commerce datasets were generated, each with 
5,000 product nodes and six attributes: Product ID, Price, 
Rating, Availability, Shipping Time, and Category. Products 
sharing the same category are connected, forming 1,249,533 
edges with an edge density of about 10%. The first dataset 
introduces targeted incompleteness to simulate a 
heterogeneous missing data pattern. Specifically, 
availability has 20% missing values, price and shipping time 
each have 10% missing values, and rating has 5% missing 
values, resulting in 2,250 missing values (7.5% overall). This 
dataset was used in preliminary work. The other three 
datasets introduce random incompleteness across all 
attributes at 10%, 20%, and 50%, enabling controlled 
robustness testing under progressively increasing levels of 
missing data. 

 
C. Baseline Models 

To evaluate the effectiveness of the proposed machine 
learning-based framework, three traditional skyline query 
algorithms, ISkyline, SIDS, and OIS, were selected as 
baselines due to their prominence in handling incomplete 
data and large-scale graphs. ISkyline uses bitmap 
representations and shadow skylines to reduce dominance 
comparisons and manage missing values effectively. SIDS 
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employs a round-robin sorting mechanism to prune 
dominated tuples, offering efficiency for static datasets with 
partial incompleteness. OIS, while not tailored for missing 
data, minimizes I/O overhead and excels in large-scale 
environments. These diverse, well-established methods 
provide a solid benchmark for assessing improvements in 
robustness, scalability, and processing efficiency offered by 
the proposed learning-based approach. 

 
D. Selection and Implementation of Graph Neural Network 

(GNN) Model 
To capture dominance relationships in large-scale and 

incomplete graphs, this research proposes the development 
of a Graph Neural Network (GNN)-based framework. GNNs 
are particularly well-suited for this task due to their inherent 
capability to model graph-structured data. Skyline queries 
often involve multi-dimensional datasets, where dominance 
relationships between data points can naturally be 
represented as a graph. GNNs not only model the attributes 
of individual nodes but also capture the complex 
interdependencies and dominance relationships among 
them, making them an ideal choice for this context. 

One of the key advantages of GNNs is their ability to 
handle incomplete data effectively. By leveraging 
information from neighboring nodes, GNNs can infer or fill 
in missing attributes, allowing for more accurate and robust 
data analysis. Unlike traditional imputation techniques, 
GNNs dynamically learn which attributes and relationships 
are most important, resulting in more context-aware 
imputations. 

Scalability and efficiency are also major strengths of GNNs. 
Their design enables parallel processing and makes them 
inherently scalable to large datasets. During training and 
inference, GNNs focus on local neighborhoods rather than 
performing exhaustive pairwise comparisons, which 
significantly reduces computational overhead. Additionally, 
GNNs are highly adaptable to dynamic environments. Their 
message-passing mechanisms allow for incremental 
updates, meaning that changes such as data insertions or 
deletions can be incorporated without reprocessing the 
entire dataset which is an essential feature for real-time 
applications of skyline queries. 

Furthermore, GNNs integrate well into broader machine 
learning pipelines, supporting custom architectures like 
attention mechanisms or hierarchical structures that can be 
tailored to specific requirements of skyline query processing.  

Overall, the use of GNNs aligns closely with the research 
goals of improving scalability, adaptability, and efficiency in 
skyline queries over large-scale and incomplete graphs. By 
effectively leveraging both local and global graph structures, 
GNNs offer a modern and innovative solution to overcome 
the limitations of traditional methods. 

E. Evaluation and Benchmarking 
To assess the performance of the proposed GNN + 

ISkyline framework and baseline models in classifying 
skyline and non-skyline points, five key metrics are used: 
accuracy, precision, recall, F1-score, and AUC-ROC. These 
metrics are especially important in imbalanced datasets, 
where skyline points are often the minority. Accuracy 
measures overall correctness: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

Accuracy provides the overall correctness of 
classification but can be misleading in imbalanced settings. 
Thus, precision, recall, and F1-score are computed with the 
skyline class as the positive class. These were calculated 
using the sklearn.metrics module with average='binary', 
focusing on the model’s ability to correctly identify skyline 
points despite their rarity. 

Precision or the ratio of correctly predicted skyline points 
to all predicted skyline points, is given by: 

Precision =   
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

Recall reflects the model’s ability to detect actual skyline 
points: 

Recall =   
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

F1-score balances precision and recall using the harmonic 
mean: 

F1 − score =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

AUC-ROC measures the model’s ability to distinguish 
between classes across thresholds, with 1.0 indicating 
perfect classification and 0.5 representing random guessing. 
This was measured using the roc_auc_score function from 
scikit-learn applied on the model's predicted probabilities 
for the positive (skyline) class. In imbalanced settings, AUC-
ROC is particularly useful as it evaluates the true positive 
rate (TPR) against the false positive rate (FPR) at various 
thresholds, rather than relying on a single cutoff. All scores 
reported are based on test set predictions and represent 
binary classification performance under imbalance, with no 
need for averaging across multiple classes. 

These metrics, computed on the test set, ensure a well-
rounded evaluation of model performance, particularly 
under varying levels of data incompleteness. 
 
F. Setup and Configuration 

All experiments were conducted locally on a MacBook Air 
with an Apple M2 chip (8-core CPU, 8-core GPU, 16-core 
Neural Engine), 8 GB unified memory, and a 256 GB SSD 
running macOS Sequoia. Despite modest hardware, the 
system efficiently supported the framework’s 
implementation in Python 3.11 using PyTorch (MPS backend), 
PyTorch Geometric, and Scikit-learn, with data handled via 
Pandas and NumPy, and visualizations done using Matplotlib 
and Seaborn. Model and batch optimizations enabled 
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smooth execution of experiments on both synthetic and 
real-world datasets, ensuring reproducibility and consistent 
performance across all tests. 

 
IV. RESULTS AND DISCUSSIONS 

A. Experimental Setup and Dataset Description 
To validate the proposed GNN–ISkyline framework, 

experiments were first conducted on a synthetic e-
commerce dataset with 5,000 product nodes and six 
attributes, where targeted missingness, 20% in availability, 10% 
in price and shipping time, and 5% in rating, resulted in 7.5% 
overall incompleteness. This preliminary dataset was 
designed to simulate structured real-world data sparsity and 
served as the initial testbed for evaluating the framework's 
performance before applying it to real-world datasets 
described in Chapter III. 

 
 

B. Method Execution 
The experiment involved several stages, beginning with 

data preprocessing where missing values were filled with 
zeros and attributes normalized using MinMaxScaler. 
Skyline labels were generated via dominance checks, and 
the dataset was balanced by oversampling skyline points. A 
dominance graph was then constructed with directed edges 
from dominating to dominated nodes and, along with 
feature and label tensors, was input into a 3-layer GCN model. 
The model was trained on 80% of the data and tested on the 
remaining 20%, with performance evaluated using accuracy, 
precision, recall, F1 score, and AUC-ROC, alongside query 
response time and peak memory usage as efficiency metrics. 

 
C. Comparison of Algorithms 

All of these preliminary results address objectives 1, 2 and 
3. 
 

TABLE I  
COMPARISON OF ALGORITHMS 

Algorithm Accuracy Precision Recall F1-Score AUC-ROC Query Response Time (s) Peak Memory Usage (KB) 

GNN 0.5140 0.5140 1.0000 0.6790 0.4979 137.5319 300.33 

Iskyline 0.9672 1.0000 0.0296 0.0575 0.5148 0.1725 172.81 

GNN + ISkyline 0.9968 0.9938 1.0000 0.9969 0.9964 761.0567 484740.23 

SIDS 0.9900 0.2063 1.0000 0.3421 0.9950 0.8583 3078.18 

GNN + SIDS 0.9940 0.9877 1.0000 0.9938 0.9957 733.0758 847785.79 

OIS 0.9684 0.0760 1.0000 0.1413 0.9842 0.7892 290.60 

GNN + OIS 0.9012 0.2534 0.9881 0.4033 0.9682 149.9154 104367.11 

The table provides a comprehensive comparison of 
algorithms based on various performance metrics. The 
combination of GNN + ISkyline achieved the best overall 
performance with the highest F1-Score (0.9969) and AUC-
ROC (0.9964), but at the expense of high query response 
time (761.0567 seconds) and substantial peak memory 
usage (484740.23 KB). Similarly, GNN + SIDS also delivered 
strong results, with an F1-Score of 0.9938 and AUC-ROC of 
0.9957, albeit with significant resource demands. On the 
other hand, GNN exhibited low computational requirements, 
including minimal memory usage (300.33 KB), but its AUC-
ROC (0.4979) and F1-Score (0.6790) were comparatively 
lower. ISkyline alone had poor recall (0.0296) and F1-Score 
(0.0575), making it ineffective without GNN. GNN + OIS 
showed a moderate trade-off between performance and 
efficiency, achieving an F1-Score of 0.4033 and AUC-ROC of 
0.9682 with moderate memory consumption (104367.11 KB). 
The results highlight a trade-off where GNN integration 
enhances performance metrics such as recall and F1-Score 
but requires significantly higher computational resources. 
The histogram illustrates the accuracy comparison across 
seven algorithms, highlighting a significant variation in 
performance. GNN demonstrates the lowest accuracy at 

0.5140, while "GNN + ISkyline" achieves the highest accuracy 
of 0.9968. 

 

Fig 4. Accuracy Comparison of Algorithms 

 
The combination of algorithms generally performs better 

than standalone methods, as seen in "GNN + SIDS" (0.9940) 
outperforming "SIDS" (0.9900) and "GNN + ISkyline" 
surpassing "ISkyline" (0.9672). OIS and its combination with 
GNN display moderate accuracy levels of 0.9684 and 0.9012, 
respectively, indicating that the combination does not 
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always enhance accuracy. Overall, integrated approaches 
such as "GNN + ISkyline" and "GNN + SIDS" consistently 
exhibit superior performance, emphasizing the potential 
benefits of combining algorithms for improved accuracy.  

 

 
Fig 5. F1-Score Comparison of Algorithms 

 
The histogram showcases the F1-Score comparison across 

seven algorithms, highlighting significant variability in 
performance. "GNN + ISkyline" achieves the highest F1-
Score of 0.9969, indicating strong precision and recall 
balance. Similarly, "GNN + SIDS" performs exceptionally well 
with an F1-Score of 0.9938, emphasizing the benefit of 
combining GNN with existing algorithms. In contrast, 
standalone methods like "ISkyline" (0.0575) and "OIS" 
(0.1413) have the lowest F1-Scores, reflecting limited 
effectiveness in their predictions. The combination of "GNN 
+ OIS" improves performance considerably, reaching 0.4033, 
though it still lags behind other combinations. Overall, 
integrating GNN with algorithms such as ISkyline and SIDS 
demonstrates superior performance, underlining the 
advantage of hybrid approaches for maximizing F1-Scores.  

 

 
Fig 6. AUC-ROC Comparison of Algorithms 

The AUC-ROC comparison highlights the ability of various 
algorithms to distinguish between classes effectively. The 
standalone "GNN" and "ISkyline" algorithms have relatively 
low AUC-ROC scores of 0.4979 and 0.5148, respectively, 
indicating poor performance. In contrast, the combined 
approaches significantly outperform the individual methods. 
"GNN + ISkyline" achieves an AUC-ROC of 0.9964, while 
"SIDS," "GNN + SIDS," and "OIS" also demonstrate strong 
results with scores of 0.9950, 0.9957, and 0.9842, 
respectively. The integration of GNN with "OIS" also yields a 
competitive score of 0.9682. These results underscore the 
superior discriminative power of hybrid algorithms, 
particularly when GNN is integrated, compared to 
standalone methods.  

 

 
Fig 7. Comparison of Algorithms 

 
The comparison of metrics across algorithms highlights 

the strengths and weaknesses of each method in terms of 
accuracy, precision, recall, F1-score, and AUC-ROC. Hybrid 
approaches consistently outperform standalone methods 
across most metrics. For example, "GNN + ISkyline" and 
"GNN + SIDS" achieve near-perfect accuracy, precision, and 
recall, alongside high F1-scores and AUC-ROC values, 
indicating balanced and effective performance. Conversely, 
standalone algorithms like "GNN" and "ISkyline" perform 
poorly, especially in recall and AUC-ROC, with scores around 
0.50, reflecting suboptimal class distinction. "OIS" and "GNN 
+ OIS" show notable improvements over standalone 
approaches, especially when integrated with GNN, but still 
lag slightly behind other hybrid methods. Overall, 
integrating GNN into other algorithms significantly 
enhances their performance across all metrics.  
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TABLE II 
 COMPARISON OF MACHINE LEARNING PRELIMINARY RESULTS 

Algorithm Accuracy Precision Recall F1-Score AUC-ROC Query Response Time (s) Peak Memory Usage (KB) 

GNN + ISkyline 0.9968 0.9938 1.0000 0.9969 0.9964 761.0567 484740.23 

GAT + ISkyline 0.6999 0.9067 0.4471 0.5989 0.6818 770.9333 503018.83 

XGBoost + 
ISkyline 

0.9922 0.9841 1.0000 0.992 0.9997 576.8285 714168.83 

RL + ISkyline 0.8914 0.816 1.0000 0.8986 0.8952 859.4463 1205176.55 

OL + ISkyline 0.7998 0.7155 0.9699 0.8235 0.9353 559.007 713776.89 

The table compares the performance of ISkyline 
enhanced with various techniques (GNN, GAT, XGBoost, RL, 
and OL) across multiple evaluation metrics. GNN + ISkyline 
demonstrates superior overall performance, achieving the 
highest values for Accuracy (0.9968), Recall (1.0000), F1-
Score (0.9969), and AUC-ROC (0.9964), with a moderately 
low memory usage. In contrast, GAT + ISkyline exhibits the 
lowest Recall (0.4471) and F1-Score (0.5989), indicating 
subpar effectiveness. XGBoost + ISkyline offers a balance of 
high Accuracy (0.9922) and AUC-ROC (0.9997) but at the 
cost of increased memory usage. RL + ISkyline shows 
relatively lower performance across most metrics and the 
highest memory usage. Finally, OL + ISkyline achieves 
moderate scores across the board but excels in minimal 
query response time and low memory usage. Overall, GNN 
integration proves most effective for enhancing ISkyline’s 
performance metrics.  

 
 

 
Fig 8. Comparison of ISkyline Variants Across Metrics 

 
The chart compares the performance of various ISkyline-

based algorithm variants across standard evaluation metrics. 
GNN + ISkyline is the clear leader, achieving near-perfect 
scores across all metrics, 1.00 in accuracy, recall, F1-score, 
and AUC-ROC, with precision at 0.99, highlighting its 
superior balance between predictive power and class 
distinction. XGBoost + ISkyline also performs exceptionally 

well, closely trailing with high values (all ≥ 0.98), suggesting 

it is a highly reliable alternative. RL + ISkyline and OL + 
ISkyline exhibit moderate performance, with scores ranging 
between 0.80–0.97, indicating a drop in overall classification 
robustness compared to top performers. GAT + ISkyline, 
however, underperforms with notably low recall (0.45) and 
F1-score (0.60) despite a high precision (0.91), implying it 
struggles with false negatives. Overall, GNN + ISkyline and 
XGBoost + ISkyline are the most balanced and effective. 
 

V. CONCLUSION 
This research on “Skyline Query Processing for Large-

Scale and Incomplete Graphs Using Machine Learning” 
showed that integrating Graph Neural Networks (GNNs) 
with Pareto optimality principles improves skyline query 
performance by enhancing scalability, reducing 
computational overhead, and effectively handling 
incomplete data. The proposed GNN-based framework 
outperformed traditional algorithms like ISkyline, SIDS, and 
OIS in accuracy, F1-score, and AUC-ROC, and proved 
adaptable in dynamic environments with real-time updates. 
Benchmarks using metrics such as accuracy, F1-score, AUC-
ROC, query response time, and memory usage validated its 
effectiveness across synthetic and real-world datasets. The 
study also emphasized the practical relevance of this 
method for decision-making and data-intensive applications, 
while highlighting the limitations of conventional skyline 
methods and aligning with UN Sustainable Development 
Goal 9 for fostering industry innovation. 

Despite the promising results of machine learning models 
in skyline query processing, several practical limitations 
remain. First, GNN-based methods exhibit high memory 
usage, especially when processing large or dense graphs, 
which may hinder scalability in resource-constrained 
environments. Second, these deep learning models often 
suffer from interpretability challenges, making it difficult to 
understand how specific dominance relationships are 
learned or how skyline classifications are made, an issue that 
can limit their adoption in critical decision-making systems 
where transparency is essential. Third, while synthetic 
datasets enable controlled experimentation, they may not 
fully capture the complexity and noise of real-world data, 
potentially limiting the generalizability of the models trained 
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on them. These limitations highlight the need for further 
research into optimizing resource use, enhancing model 
explainability, and validating findings against more diverse, 
real-world datasets. 
 

VI. FUTURE WORKS 
The While the proposed GNN + ISkyline framework 

performs well in handling skyline queries on incomplete 
graph data, future work should focus on improving model 
interpretability, scalability, and adaptability. Currently, the 
GNN's decision-making is opaque, which limits transparency 
in high-stakes applications; integrating explainability tools 
like GNNExplainer or GraphLIME, or leveraging ISkyline's 
transparent logic, could offer more human-understandable 
insights. Additional efforts should explore advanced 
imputation techniques, develop more efficient and 
parallelizable GNN variants, and enhance adaptability to 
dynamic databases. Domain-specific customization for fields 
like healthcare or transportation, energy-efficient model 
design, and broader benchmarking across real-world 
datasets are also key directions. Improving visualization 
tools to trace input influence and enhancing interpretability 
can further build trust, aid debugging, and support 
responsible AI use in decision-making systems. 
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