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Abstract— Quality assurance (QA) is a process put in place in the hospital to guarantee ideal diagnostic image 
quality with minimum danger to patients. It entails frequent quality control checks, preventive support 
procedures, authoritative approaches, and planning. The process of acquiring quality images, especially for 
radiography students and trainees, requires a steep learning curve. This study proposes deep learning 
models that may serve as a guide to ensure proper images are captured and help improve the quality 
assurance process. The models are intended to determine that the images captured are optimal by ensuring 
adequate precautions in the capturing process, thereby automatically identifying and correcting any 
mistakes or issues in the quality or interpretation of the image. This study acquired 4955 radiographs that 
have been labeled by dental experts. Four deep learning models, specifically CNN, AlexNet, RestNet-50, and 
ViTs have developed with respective accuracies of 78.98%, 24.84%, 78.03%, and 81.34%. The performance 
results show that deep learning models have the potential to be utilized to assist dental practitioners in error 
detection and quality assurance. 
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I. INTRODUCTION 

Artificial intelligence (AI) has witnessed an exciting surge 
in advancement in recent times. Machines and equipment 
are evolving rapidly to make human tasks and chores easier. 
Nonetheless, a prevalent design issue remains in their ability 
to consistently produce high-quality output. The reason 
behind this is that achieving a quality output fundamentally 
relies on domain-specific solutions, requiring concerted 
efforts. Complex machines entail numerous quality 
assurance procedures and demand technical expertise. This 
indicates that human effort and time continue to hold a 
considerable level of importance. This is particularly relevant 
in the application of machine learning in the medical field, 
such as radiography. Radiography is a medical technique 
that encompasses the creation of diagnostic images like X-
ray, ultrasound, Computerized Tomography(CT) scan, and 
Magnetic Resonance Imaging (MRI). Analyzing radiographic 
images for diagnosis where individuals had to endure over a 
month-long wait for their X-ray results to be processed may 
not be desirable for an efficient health care system. This 
delay can be attributed to the time-consuming nature of 
imaging examinations and procedures that heavily rely on 

human involvement. In radiographic diagnosis, there exists 
considerable potential for errors, due to human factors as 
well as defective machines. 

Anomalies of the human body are captured by imaging 
techniques. In order to diagnose, and plan therapy for the 
anomalies, it is necessary to comprehend the collected 
images. Medical experts with expertise often interpret 
medical images. Nevertheless, the efficiency of image 
interpretation carried out by qualified medical specialists is 
limited by the scarcity of human experts, their weariness, 
and the imprecise estimation processes associated with 
them. Errors in assessing radiographic images may lead to 
either a false positive or a false negative. In the case of a 
false positive, a patient may be subjected to emotional 
trauma, asked to undergo a life-changing procedure, incur 
an expensive financial loss, and a considerable waste of time. 
False negative, on the other hand, could lead to delayed 
treatment consequently increasing the chances of further 
complications which in turn would lead to more critical 
procedures and impact the patient’s life.  In this study, an 
attempt has been made to auto-detect and classify the 
common errors in bitewing X-ray images. The experiment 
was conducted to determine or detect that the images 
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captured through the process of radiography satisfy the 
required quality. This is to identify and correct any mistakes 
or issues in terms of the quality of the image and to ensure 
the quality assurance process of the image does not stray 
when conducting the radiography process. Deep learning 
classification algorithms based on the Convolutional Neurol 
Networks (CNNs), as well as other variants such as the 
Inception Neural Networks (InceptionNets), Residual Neural 
Networks (ResNets), and Vision Transformer (ViTs), have 
been employed in conducting the image classification of the 
quality of the X-ray images. The experiment aims to assist 
radiographers as well as medical students in increasing the 
quality of X-ray images. Additionally, previous data would be 
useful as a reference for medical students to avoid 
preventable errors when an X-ray image is being taken. 

II. RELATED WORK 

Researchers’ interest in the application of deep learning 
to medical domains has been consistently growing in recent 
years. Deep neural networks, or DNNs, form the core of 
emerging artificial intelligence (AI) systems. The most 
established algorithm among various deep learning models 
especially for medical images is convolutional neural 
networks (CNNs), a class of artificial neural networks that 
has been a dominant method in computer vision tasks. 
Convolutional neural networks (CNNs) process shift-
invariant input, such as images, by introducing convolutional 
layers and pooling layers ultimately linked to the fully 
connected layer for final classification.Applications of CNNs 
among radiology researchers have been published in areas 
such as lesion detection, disease classification, infected area 
segmentation, image reconstruction, and natural language 
processing [1]. Researchers using CNNs for medical imaging 
and radiology duties could potentially impact clinical 
radiologists' work. This covers CNN's opportunities and 
potential future paths while concentrating on the 
fundamental ideas of AI and how they apply to different 
radiology applications [2]. 

     Convolutional neural networks (CNNs) are effective 
tools for image understanding. They have been shown to 
outperform human experts in many image analysis and 
understanding tasks [3]. The ultimate goal is to encourage 
academics studying medical image interpretation to utilize 
CNNs extensively for diagnosis and research. Many 
researchers have designed automated systems for 
extracting fundamental features from images [4]. 
Convolutional Neural Network (CNN) is a popular deep 
learning method for computer vision applications [7]. The 
human ability to recognize objects visually served as the 
inspiration for this deep learning system [8]. One of the 
algorithms created to help academics and researchers with 
classification issues is CNN where it makes the possible to 

use images as input, which moves artificial intelligence 
technology one step closer to mimicking humans’ use of 
sight, a different sense, to understand their environment. 
Only words and numbers could be fed into its older 
algorithms. CNN uses artificial neurons instead of actual 
ones to detect objects in a similar manner to how people use 
their own brain neurons [9]. To enable the computer to 
distinguish between each pixel in an image and produce the 
right result, CNN would process and extract from an image 
through multiple levels of processing. 

Another recent model is the Transformer, which mainly 
utilizes the self-attention mechanism, to extract intrinsic 
features. Often, this is mainly utilized in large language 
models showing great potential for extensive use in AI 
applications [5]. When the Transformer model was initially 
used, it significantly improved natural language processing 
(NLP) tasks. For machine translation and English 
constituency parsing tasks, for instance, initially proposed 
the transformer model based on the attention mechanism. 
A novel language representation approach, Bidirectional 
Encoder Representations from Transformers (BERT) was 
proposed to pre-trains a transformer on unlabelled text by 
considering the bidirectional nature of each word's context 
[6]. Images are thought to be more challenging for 
generative modeling than text because they incorporate 
additional dimensions, noise, and duplicate modality. The 
transformer can be used as the backbone network for image 
categorization in addition to CNNs. Wu et al, substituted 
vision transformers for the last convolutional layer and used 
Residual Network (ResNet) as a practical baseline [Wu et al]. 
Convolutional layers are specifically used to extract low-
level characteristics, which are then sent into the vision 
transformer. To arrange pixels into a limited number of 
visual tokens for the vision transformer, each of which 
represents a semantic concept in the picture, employing a 
tokenizer. The direct application of these visual tokens has 
been seen in picture categorization.    

III. METHODOLOGY 

The deep learning architectures that will be employed in 
this study are CNN and variants such as InceptionNets, 
DesNets and AlexNets. 

A. Convolutional Layer 

In this research, the dataset was acquired from IIUM 
Kuantan Medical Campus after approval from the university 
ethics committee. Subsequently, the dataset was manually 
extracted from the machines, while Dental experts assigned 
classes to the extracted images. This dataset is then 
prepared for the deep learning models. The features from 
the provided dataset were extracted using a conventional 
CNN architecture. The dental X-ray image dataset needs to 
be preprocessed before being fed into the models, as will be 
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covered in more detail subsequently. As can be seen in 
Figure 1, the CNN model consists of convolution layers, max-
pooling, average pooling, and fully connected layers. The 
number of channels and fully connected layers (FC) as well 
as the filter size of the convolutional layers are indicated by 

the notation in each block. The ReLU function, max-pooling 
layer, average pooling, and flattened layer are indicated by 
additional block labels [10]. 

 

 

Fig. 1 Methodology of the project for CNN 
 
Since images are inherently non-linear, the Rectified 

Linear Activation function (ReLU) is applied after each 
convolutional layer to introduce non-linearity into the model 
since it returns the same results regardless of whether they 
are positive or negative, this method also aids in speed (see 
Figure 2). 

 
 
 
 
 
 
 
 

 
 

Fig. 2  ReLU Activation Function 

B. Pooling Layer 

Following input through the first convolutional layer, the 
feature map is shrunk by the pooling layer, which consists of 
a pool and a stride[11][12]. A pool will move across the 

feature map in accordance with the pooling approach in 
order to extract features. The pool action’s both horizontal 
and verticals are determined by a stride.One of the several 
pooling layers in this model is max-pooling. Prior to 
traversing the flattened layer, each convolution’s output will 
undergo max-pooling. A number of methods can be used to 
achieve pooling, for instance max, average, and min pooling, 
which produce the maximum, average and minimum values 
from the dental X-ray section that corresponds to the kernel, 
respectively. Similar to the convolutional layer before it, the 
pooling layer considers factors like stride and layer size.. 

C.  Fully Connected Layer 

The dental X-ray feature map is extracted using the 
global average pooling operation after completing the last 
module and before it reaches the fully connected layer. The 
network’s final layer is the fully connected layer, which 
offers better classification performance than features 
retrieved from earlier layers. It is an illustration of a 
traditional neural network architecture, where a dense 
network is created by connecting every neuron in one layer 
to every other layer’s neuron [13]. The fully connected layer 
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receives the final convolution’s output as input, flattens it, 
and then passes it through the fully connected network for 
classification. Before the inputs are fed into the fully 
connected layer, the flattening operations is necessary 
because the final convolution produces a dimensional 
matrix as its output. All of the matrix values will be 
converted into vectors in order to achieve flattening 
necessary to perform the SoftMax procedure before 
classification. 

𝑦 = 𝑓(𝑊𝑥 + 𝐵)               (1) 
 
In artificial neural networks, this is a standard equation. 

Wx is the dot product between the weight matrix W and the 
input vectorx[14]. The bias term b is added to the result of 
this dot product. Finally, the activation function f is applied 
element-wise to the result. 

For this research, the input will be categorized into three 
previously described classes of dental X-rays based on the 
probability of the item in the classes [15][16]. 

The Transformer architecture was first created for 
natural language processing, but Vision Transformers, or 
ViTs, is a deep learning model that adapts it for computer 
vision tasks. It has drawn interest because it can perform 
competitively without the use of convolutional neural 

networks (CNNs) in image classification and other vision 
tasks. 

Vision Transformer employs a technique known as self-
attention [5]. Because it allows computers to comprehend 
the relationships between the various components of an 
image, it is also known as self-attention. Additionally, a self-
aware computer can concentrate on distinct image patches 
and comprehend how they connect to create a complete 
picture. In essence, what Vision Transformers do is divide 
the image into smaller units known as patches, and by 
turning them into a series of tokens, the Transformer model 
is able to analyze and comprehend each component of the 
image independently. 

D. Transformer Model 

The Transformer network is intended to resemble the 
attention process. Instead of using visual cues like movie 
frames, words in a sentence, notes, or even individual pixels 
in an image, it uses attention to comprehend the order of 
information [5]. Therefore, even when components are far 
apart, Transformer networks are still able to capture the 
dependencies and relationships between them. For tasks 
like language understanding, transformer networks are 
particularly effective because of their capacity to capture 
long-range dependencies (see Figure 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Methodology of the project for Vision Transformer
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E. Linear Projection 

Visual projection that is linear each 1-D vector will be 
converted into a lower dimensional vector by the 
transformer as it works on these flattened patches, while 
keeping the connections and significant elements. The two 
primary steps in linear projection are bias addition and 
weight matrix multiplication. 

   After completing these two stages, a vector is 
transformed into one with a lower dimensionality, or one 
with fewer elements or components than the original vector 
to extract key characteristics and record the most crucial 
data while eliminating the less crucial details. By removing 
noise and pointless variations from the data, dimensionality 
reduction actions can strengthen and narrow the focus of 
the vector representation to the most important features. 

F. Position Embedding 

Every image patch has position embedding added to it, 
which shows every location in the image. Data were fed into 
the transformer using positional encoding and  with the help 
of this positional embedding, position information for every 
patch that is available were fed to the transformer vector, 
which is then fed to the subsequent layers in the vision 
transformer for additional processing.   

G. Self-Attention Layer 

The transformer encoder's first layer is the self-attention 
layer. Self-attention enables every patch to pay attention 
and learn from other patches. It allows the model to take the 
global context into account by capturing dependencies 
between the patches. 

Understanding the relationship between the patches or 
tokens in an image is aided by the self-attention layer. It 
assists the model in determining which patches are related 
and how important to one another . 

All of the patches in the image are taken by the self-
attention, and each patch is assigned by three unique jobs 
that seek queries, functioning similarly to a patch searching 
for other patches to focus on, while the key functions 
similarly to a patch being examined by other patches, and 
valuefunctions similarly to the patch's details or information. 

It computes a similarity score between every patch inside 
of it. The more closely related the patches are, the higher the 
score. These similarity scores are then applied to each patch 
to determine the relative importance of each word in the 
image. More attention will be paid to the patch with the 
higher score. Subsequently, the self-attention will aggregate 
the relevant patch values according to their respective 
attention weights andbuilds a new representation for every 
patch by assembling the relevant image's details. 

 

H. Feed Forward Neural Network 

The next in line after the self-attention layer is the feed 
forward neural network. Every patch's output is sent 
through the feed forward, which uses it to help identify 
intricate non-linear relationships between the patches. 

I. Add & Norm (Residual Connection) 

The add and norm layer, also referred to as the residual 
connection or skip connection, performs an element-by-
element edition between the feed-forward or attention 
output and the output of the preceding layer. The original 
data from the previous layer, which aligns the model to learn 
and update the new information captured by the supplying 
layer, is preserved with this addition. By including this 
sublayer's output, the original input add layer gave the 
model a shortcut path for information flow and aided in the 
gradients' effective propagation during training. Thus, these 
layers are essential for managing information flow and 
maintaining training process stability. 

J. Dataset 

The bitewing radiographs data for the study was 
collected at thefaculty of dentistry, International Islamic 
University Malaysia, Kuantan by dental experts after 
receiving ethical approval from the committe. A total of 
3060 bitewing radiographs were extracted and labelled into 
classes. The  dataset contains 765 of each of the classes, 
namely cone cut, normal, scratch and tilted respectively. 
Samples of the different classes are shown in Figure 4. 

 

 
Fig. 4 Labelled radiograph 

K. Preprocessing 
 

The first stage in the CNN techniques to preprocess the 
image for classification [17]. 

normal 

scratch tilted 

Cone cut 
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     The training and test sets are split in a 80:20 ratio which 
consists of a total of 96 radiographs batches according to 
the size of batches. 

     The radiographs' channels are rescaled between 0 and 
1 before the model is trained to standardize the input. To 
increase the pace of model training, they are reshaped to 
224 by 224 pixels [18]. 

L. Training 

Each of the models for CNNs architecture is being set for 
the same structure to compare the effectiveness with 30 
epochs to avoid model overfitting. As for the batch size, it is 
set to 64 to maximize the speed of the device.  

On the other hand, for the Vision Transformer model, it 
has a different architecture compared  to CNN model. In ViTs, 
there is the need to measure input features set to 768 
(16*16*3) and output features to classesnce the ViTs 
requires a high hardware specification, the utilization of 
transfer learning is necessary to avoid exceptions from 
occurring during training. The epochs are being set to 30 
epochs to measure training efficiency. The batch size is 
setup to 64 to train the batches available. In the data loader, 
the number of workers has been fixed to a maximum of 4 to 
carry the full potential of the CPU and GPU available. The 
model of CNNs is being trained using the Intel(R) Core(TM) 
i5-8250U CPU @ 1.60GHz 1.80 GHz processor (CPU) for the 
laptop specification. As for the ViTs is being trained using the 
Nvidia GeForce 16 series (GPU) with 4 gigabytes (GB) of 
Video Random Access Memory (VRAM) on Desktop. The 
CNNs model is built on Python v3.10.3 with Keras v2.10.0 and 
TensorFlow 2.10.0 as site backend. While ViTs, build on same 
Python version with Pytorch v2.1.2 along with CUDA v11.8 to 
utilize GPU. 

M. CNNs architecture 

CNN is the most common deep learning algorithm in 
image classification. Generally, it is a deep neural network 
model that consists of two parts, namely; image feature 
extraction and classification. The proposed baseline CNN 
has 3 layers of convolution with Rectified Linear Unit (ReLU) 
activation and pooling, which are inserted alternately. 
Multiple dropout layers of 0.2 and 0.5 dropout rates are 
implemented in between. Eventually, there are roughly 65 
hundred thousand trainable parameters. 

The design that has been recommended consists of two 
dense layer blocks, three pooling blocks, and three 
convolutional blocks, in that sequence. A few batch 
normalizations are being done to make matrix computation 
faster [19], [20].   

     On the other hand, Vision Transformer is a variation of 
natural language processing model that focuses on the self-
attention layer where all the tokenization is arranged before 

patch embeddings. The utilization architecture consists of 
convolution projection, encoder blocks and linear heads. 

     The three CNN architectures are designed in such a way 
that the feature extraction part gradually pools the 
radiograph until it is an input of single-digit by single-digit 
pixels [21]. 

N. Hyperparameter settings 

All the CNNs will be trained using the same 
hyperparameter settings. A few of them, such as the 
number of epochs and batch sizes, have been mentioned. 
Weights are initialized based on the default settings. The 
loss function used is Categorical Crossentropy. It measures 
the dissimilarity between the predicted probability 
distribution and the true distribution. 

     The loss function is optimized by Adam optimizer and 
set to have a learning rate of 0.001. 

IV. RESULTS 

The results below will show the accomplishment that has 
been acquired after fitting the models between these CNN 
and ViTs models according to their limitations. 

 
A. Base CNN 
Based on Figure 5, we can conclude that the loss rate is 
minimum at most to 0.3 value rate while the starting loss rate 
count from 3.5 value rate when running under a total of 100 
epochs. Meanwhile, the loss rate for the validation reduces by 
only a portion of the loss which is a 1.0 loss rate starting from 
a 1.5 value on 100 epochs. 

 
Fig. 5 Figure shows the loss rate of Base CNN 

 

Based on Figure 6, the starting accuracy value is around 
0.25 while decently ascending as the number of epochs runs. 
The accuracy is around 0.92 on 100 epochs for training, 
followed up by the validation accuracy rate of 0.79 plus. 

Based on the prediction result in Figure 7, the number of 
actual labels that meet prediction for cone cut, normal, 
scratch, and tilted are 114, 133, 146, and 104 respectively. The 
most correctly predicted class is the scratch class. 
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Fig. 6 The accuracy rate of Base CNN 

 
Fig. 7. Confusion Matrix of the Base CNN 

 
 

B. AlexNet 
The result in figure 8 shows that the loss rate goes down 
aggressively during 0 to 2 epochs but after that, it starts to  

 
 
sustain up to 8 epochs while the validation loss went down 
from 1.7 to 1.3 until the 8 epoch. 

TABLE I 
RESULT OF QUALITY BASED ON MODELS 

Model Epoch Train Accuracy (%) Test Accuracy (%) Class Precision (%) F1-score (%) Recall (%) 

Base CNN 100 92.60 78.98 

Cone Cut 71 72 73 

Normal 82 83 84 

Scratch 88 88 87 

Tilted 75 73 72 

AlexNet 
10 

(early 
stopping) 

24.38 24.84 

Cone Cut 24 39 100 

Normal 0 0 0 

Scratch 0 0 0 

Tilted 0 0 0 

RestNet-50 
53 

(Early 
stopping) 

92.89 78.03 

Cone Cut 74 74 75 

Normal 81 81 81 

Scratch 83 80 77 

Tilted 72 74 77 

ViTs 30 75.40 81.34 

Cone Cut 75 82 78 

Normal 74 85 79 

Scratch 94 88 91 

Tilted 85 71 78 
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Fig. 8 Figure show the loss rate of AlexNet 

 
 

 
Fig. 9 The accuracy rate of AlexNet 

 

Based on the result in Figure 9, the accuracy of AlexNet is 
not stabilized throughout the training cycle. The 
measurement attained after 8 epochs is at most 0.25. 
Similarly, the validation accuracy goes down after the 6 
epochs. 

 

 
Fig. 10 Confusion Matrix of AlexNet 

Based on the result in Figure 10, it can be clearly seen that 
the 3 classes are missing from being included in the fitting 
model which is the reason for the low accuracy. 
Consequently, there is class imbalance that made the cone 
cut dominate the model prediction with 152 labels as true 
positive. 

C. RestNet-50 

 
Fig. 11 The Loss Rate of ResNet-50 from 0-53 Epochs. 

 
Based on Figure 11 and Figure 12, the lowest loss rate is 0.14 

achieved after 53 epochs during training while the lowest for 
the validation was achieved after 33 epochs. 
 

Fig 12 The Loss Rate of ResNet-50 from 0-33 epochs. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig13. The Accuracy Rate of ResNet-50 from 0-53 Epochs. 
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Fig. 14. The Accuracy Rate of ResNet-50 from 0-33 Epochs. 
 

Based on Figure 13 and Figure 14, the accuracy increased 
gradually after the 7 epochs of training with the highest 
peak value of 0.92 while the validation rate steadily goes up 
as the validation cycle goes on to 53 epochs with value of 
around 0.78. 

 

Fig. 15 The Confusion Matrix of ResNet-50. 

 

Based on Figure 15, it can be seen that the number of true 
positive according to the classes are 108, 139, 118 and 121 
respectively, given a total overall accuracy of 486 out of 628 
images. 

D. VITs 

 
Fig. 16 The Loss Rate of ViTs. 

Based on Figure 16, the loss rate during training gradually 
decreased as the number of epochs increased reaching the 
highest value of around 0.71 compared to the loss rate on 
the test set, but it goes to around 0.75. 

 

 
Fig 17. The Accuracy Rate of ViTs. 

 

Based on Figure 17, the training accuracy increased 
effectively as the number of epochs increasedto the highest 
value of around 0.75. Meanwhile, the test accuracy starts 
from 0.59 at zero epoch, and increases around 0.82 at 30 
epochs. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 18 The Confusion Matrix  of ViTs 

 

Based on the confusion matrix in Figure 18, the true 
positives based on the respective classes are 125, 130, 134 
and 109. The total of true positives is 498 out of 612 images. 
The Scratch has the highest true positive of 134. 

V. DISCUSSION 

Detection of errors is significantly important because they 
concern sensitive information in terms of health and privacy 
of the patients. To produce a panoramic cardiograph with 
constant image quality common errors must be kept to a 
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minimum [22]. Common errors, generally include cone cuts, 
scratch, elongated or deformed, and tilted radiographs. 
Errors in quality assurance can lead to incorrect diagnoses 
and inappropriate treatments which can have life-changing 
impacts on patients. To reduce the possibility of mistakes, 
it's critical to ensure that the X-ray machine is precisely 
oriented and that the film or image receptor is well 
positioned. Even though with time, technology will 
eventually be able to replace human labor in managing the 
quality of X-ray images, better quality radiographs may be 
captured by dental professionals and students with the help 
of early hardware or software inspection. 

This study compared CNN, ResNet-50, AlexNet, and ViTs 
in terms of how well they could classify radiograph mistakes. 
This is due to the fact that, based on their abilities, three of 
the four models that were selected for training produced 
some encouraging outcomes. Only one model, however, 
performed poorly when analyzing the images. But because 
these models rely on specific features and architectural 
elements, they have unique characteristics when it comes to 
analyzing X-ray images. 

     We may infer from the graphs that each model's results 
are influenced by the specific architectural flow. When using 
ViTs, the method matched well to keep the train and test 
cycle close. Assessing the distance between the train and 
test model for these CNN models shows poor performance 
was due to models having trouble balancing the training and 
test accuracy distance. However, ViTs are models that 
require certain hardware requirements to analyze larger 
datasets; in other words, they are high-speculation models 
intended for use with large datasets. Concentious care is 
needed to incorporate the X-ray images according to their 
design using the appropriate hyperparameters and data 
split to optimize the image quality. 

Future research can build upon these models to make 
them even better. The architecture's layers are highly 
effective in maximizing image accuracy throughout the 
experiment. It should be noted that the more hidden layers 
generated, the higher the trainable parameters must be, 
and the higher the hardware specifications to achieve the 
requirements. Additionally, a balanced dataset might be a 
crucial component in incorporating precision to diagnose 
any class discrepancies between them. Equally, 
experimenting with splitting data is advised to reduce 
overfitting or underfitting. In addition, the number of 
training cycles may additionally have an impact in tracking 
the peak accuracy of the fitting models. 

VI. CONCLUSION 

Radiograph processing is still a laborious procedure. It is 
essential to create quality assurance solutions that increase 
practitioners' productivity as well as safeguard patients 

from false positives and false negatives. In response to this 
problem, this research proposed various models to detect 
inaccuracies in bitewing radiographs, experimenting with 
each model's performance to achieve the best possible 
performance in terms of accuracy and loss rate. Even though 
more work is needed to ensure that the CNNs or ViTs were 
completely satisfactory, the findings could constitute a 
major advancement in the field. The capabilities of dental 
specialists may be improved by further development of 
CNNs and the ViTs paradigm. ViTs-enabled software may be 
employed due to its flexible training, despite its higher cost. 
This study demonstrates the value of artificial intelligence 
and machine learning can potentially provide in medical 
imaging quality assurance processes. 
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