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Abstract— The swift expansion of astronomical data requires the automated classification of celestial 
objects for practical use. Because of its manual and monotonous nature, classification is more prone to errors 
and is rapidly losing its viability. This study performs the classification of stars, galaxies, and quasars from 
SDSS (Sloan Digital Sky Survey) data using the Random Forest, XGBoost, Decision Tree, Gradient Boosting, 
Linear SVM, KNN, and Logistic Regression. In order to fix the imbalance in the data, the SMOTE algorithm 
was used, making the model more robust. Random Forest topped the models with their accuracy and 
reliability across many multiple data releases, hitting an astonishing 99.12% accuracy in SDSS DR18. This work 
shows how much machine deep learning can change astronomical surveys, providing readily available, 
precise techniques that are much more effective than manual approaches. The results add towards the 
development of astrophysics while simultaneously meeting Sustainable Development Goal 9 on fostering 
innovation through the need for infrastructure.  
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I. INTRODUCTION 

 Due to mobility, professional astronomers encounter 
many challenges because of the exponential growth in 
astronomical data, especially in the area of classification of 
objects in the sky. The process of identifying celestial objects 
using conventional methods, such as human identification 
and classification methods based on the observable 
characteristics, is becoming extremely difficult and 
unfeasible due to the vast amount of data captured by 
modern telescopes such as the Sloan Digital Sky Survey 
(SDSS). Through multiple SDSS data release, including DR12, 
DR14, DR16, DR17 and DR18, had supplied us with extensive 
spectroscopic and photometric datasets, with over 400,000 
celestial objects recorded across these data releases. All of 
the datasets releases offered detail and rich datasets. This 
enables researchers to analyze the structure, motion and 
composition of astronomical entities with greater accuracy 
and efficiency [23], [26]-[29]. However, these manual 
classification approaches are not only labour intensive but 
are also prone to human error. This will make it harder for 
professional astronomers to effectively gain valuable 
insights from the available data for more scientific 
discoveries and advancement [1][9]. 
 Today, the amount of data is growing rapidly, which 
causes the traditional classification method used by 
astronomers to become insufficient due to the slow process 
of classification and high probability of making errors [1][9]. 
There is a requirement for designing and implementing the 

automated classification systems to fulfil the requirements 
of astronomers in analysis and classification of very large 
data accurately [7][8]. This matter should be addressed as 
soon as possible because it slows down the developments in 
astronomical science and creation of new inventions [3],[11]. 

The aim of this work is to design a reliable machine 
learning model capable of classifying objects such as 
galaxies, QSOs, or stars. The goal of the research is to train 
classifier capable of handling the rich nature of astronomical 
information by using large dataset of SDSS from several data 
release. This type of model is important to construct 
because of the drawbacks of conventional classification 
methods and it will make it easier for astronomers to 
manage and evaluate a large amount of data. 

The research also focuses on assessing and comparing 
different classifiers that are used to design the machine 
learning models. Each classifier must be evaluated by the 
metrics like precision, accuracy, f1-score and recall because 
to unearth out the most efficient classifier for classifying the 
astronomical objects. 

In the assessment of SDSS, the study deploys the data 
source to build and test a variety of machine learning models 
for classifying a variety of astronomical objects. The stages 
include data preparation, model developing and model 
assessment that ensure the proper application of 
classification methods. The algorithms are presented and 
compared in a detailed yet concise manner, taking into 
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account a variety of evaluation metrics, including precision, 
recall, accuracy, and F1 score. 

The main audience of this project is astronomers and 
academic researchers because they are always active in 
researching and analysing objects in space using the data 
they obtain. This study will also benefit institutions related 
to astronomical research because they always take data and 
pictures of objects in space using their modern telescopes. 

Python language will be used because of its strong 
support for data science and machine learning where the 
various libraries available are Scikit-learn, Pandas, Numpy, 
Matplotlib among others. The computationally demanding 
experiments will be conducted on good performance 
computing that is capable of handling large datasets. 

This research can enhance the progress of astronomical 
research because it is able to provide a more effective 
technique in classifying celestial objects as well as helping 
astronomers to improve their knowledge and 
understanding of nature more deeply. This initiative to 
create a classification model will help the advancement of 
this field of astronomy. 

Furthermore, this initiative will significantly enhance 
research efficiency by facilitating quick analysis and 
processing of large amounts of astronomical data. 
Conventional classification techniques are inadequate due 
to the rapid increase in data collected by present-day 
telescopes. The use of machine learning in classifying 
celestial objects can speed up the classification process as 
well as save time and resources and give astronomers the 
opportunity to focus on more complex studies that require 
more effort. This will increase their productivity and 
facilitate their process of making new discoveries in the 
astronomy field. 

II. LITERATURE REVIEW 

The proposed study builds insights and methods from the 
reviewed literature to create an effective framework for 
classifying celestial objects into stars, quasars, and galaxies 
(see Appendix 1 and 2). Key adaptations and improvements 
have been made at various steps of the process to enhance 
performance and address limitations identified in prior 
studies. They make the study both reliable and efficient in 
terms of the methodology to be used in the study. 

This dataset was sourced from the Sloan Digital Sky 
Survey as used by a number of authors such as Solorio-
Ramirez et al. [5] and Er and Bilgin [33]. The selection is 
further supported by Zeraatgari et al. [35], who, together 
with the ALLWISE catalog data, managed to combine it 
successfully for classification purposes. Furthermore, Cruz 
et al. [32] reported SDSS is a good reference for spectral 
classification and accuracy of over 94 percent were carried 
out using Random Forest and Neural Networks. 

Preprocessing remained a key focus as the data had to be 
prepared to give optimal results before analysis. This was 
done in order to manage missing data, remove duplicates, 
and ensure equitable distribution of cases and controls. 
Following the Hassina [7] and Zhang [34] methodologies, 
class imbalance was addressed by the application of SMOTE 
as the primary step of the class balancing which is essential 
for accurate prediction on the datasets with severely 
imbalanced categories. This point has been captured further 
by Er and Bilgin [33] who demonstrated that class balancing 
improved the accuracy of the predictive model from 87.71% 
to 94.67%, which is a substantial increase. 

Increased efficiency in computation and improvement in 
model parameters was achieved through selective feature 
choices. Such conclusions are backed by Sharma and Sharma 
[9] as well as Vavilova et al. [1] who discussed the 
significance of making work with the model more effective 
through feature reduction and irrelevant features removal. 
Zhang [34] added to this information showing that the 
narrowing of focus during feature selection particularly to 
redshift and photometric features boosted the accuracy to 
99.39% with XGBoost. 

Because all features were expected to contribute to 
learning, data was normalized following Yoshino et al. [8] 
and Zeraatgari et al. [35]. Such normalization avoided 
algorithms, such as SVM, from struggling because of 
sensitivity to input scale. Exploratory analysis was done to 
understand the data, align with patterns, trends, or outliers 
like Smita et al. [11] did. 

As quoted by Ashai et al. [2], the dataset was SMOTE 
oversampled to balance it out. This not only enhanced the 
model’s performance but also provided artificial data for the 
minority categories which has been approved by Er and 
Bilgin [33], who did a systematic review on supervised 
machine learning techniques. These methods allowed for 
precision modeling with fairly evenly distributed data sets, 
especially for the more seldom detected quasars and other 
minority classes. 

A set of algorithms were implemented for machine 
learning to facilitate building a complex classification system. 
The Random Forest algorithm was included because it is 
known to be effective with noisy and mixed data [5], [32]. 
Gradient boosting and XGBoost were selected because of 
their multi-stage error reducing method [3], [34]. SVM was 
applied to classify data with large dimensionality [9], [1]. K-
Nearest Neighbors (KNN) was chosen because it is effective 
in classification problems of this sort [2]. Another set of 
algorithms for classifying cases is based on Decision Trees 
because they are easy to use, and easy to understand [10]. 
At last, the Logistic Regression model was employed 
because, traditionally, it is very effective in classification 
problems whether binary or multi-class, and it is able to 
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provide reliable midpoints in the cases of the galaxy 
morphological types and could appropriate high levels of 
accuracy [1]. 

Although the introduction of Neural Networks (NNs) 
have successfully accomplished complex tasks, but for the 
scope of the research conducted in this case, NNs were not 
the recommended choice. Primarily, NNs will not perform to 
their best capabilities without ample amounts of data, which 
greatly exceeds the availability of the SDSS dataset. 
Secondly, even without considering NNs, models such as 
Random Forest and XGBoost already claimed remarkable 
results on previously conducted astronomical classification 
studies, thus eliminating the requirement of more advanced 
models [5], [8]. Furthermore, the vast majority of NNs are 
not as easily interpretable compared to regression trees 
which was a major concern for this research when it came to 
analysis of feature importance. 

As for focusing on ensemble methods, Random Forest, 
XGBoost, and Gradient Boosting were selected because they 

have addressed multilevel class imbalances effectively as 
the literature review showed (See Appendix 1). AdaBoost 
and Extra Trees, on the other hand, were not selected 
because those models will simply serve to add redundancy, 
and are based on the same ideas as the selected models 
without outperforming them in other relevant researches 
[3], [7]. The requirements did not set any constraints and 
instead concentrated on the relative aspects of 
interpretability, efficiency of computation, and precision of 
classification provided by single robust algorithms, which 
can easily be accomplished through the existing 
benchmarks in the field. 

III. METHODOLOGY 

The dataset comes from the images that have been 
previously taken by the SDSS cameras, and then the pre-
processed data was shared on Kaggle. This study focuses on 
classifying the data into three categories: galaxies, QSOs, 
and stars. 

 

Fig.  1 The process flow of methodology 

 

A. Tools: Python and Pycharm 
The tools applied to this project were selected in order to 

implement the intended system for formation of celestial 
objects classification using machine learning. Python was 
the primary coding language due to variety and availability 

of numerous valuable libraries for data science and machine 
learning streams. Dealing with the dataset was facilitated by 
Pandas while NumPy was used for operations such as 
operation on the arrays and matrices. A package, Matplotlib, 
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was used for the plotting and visualizing of data, as a way of 
making sense of patterns into the data generated. 

B. Dataset 
This dataset for this project was obtained from the Sloan 

Digital Sky Survey (SDSS) Data Releases 12, 14, 16, 17, and 18 
and includes 418,070 rows of spectroscopic and 
photometric data concerning celestial objects. SDSS is a 
large-scale survey conducted at the Apache Point 
Observatory in New Mexico, using a specialized 2.5-meter-
wide angle optical telescope. This survey has collected data 
on millions of celestial objects, providing deep, multicolour 
photographs that cover one-third of the sky [24].  

This project focused on three types of celestial objects: 
galaxies, stars, and quasars. These were chosen because 
they emit their own light, making them easier to observe 
compared to objects like planets, gases, or black holes that 
rely on external light sources to be visible. By narrowing the 
scope to these three categories, the dataset became more 
manageable and relevant for building and evaluating 
machine learning models. The richness and detail of the 
SDSS dataset made it an ideal choice for this research, 
providing a strong foundation for accurate and meaningful 
classification [1]. 

C. Data Preprocessing  
Data preprocessing was started with the first step, which 

is loading the dataset into a Pandas DataFrame. First, it was 
done to gain insight into the structure of the obtained data 
set. The researcher adopted the use of the command 
df.head() to get a preview of the content in a DataFrame. 
Thus, df.dtypes was used to check if each of the columns 
contained integer, floats, string or object values. In order to 
learn about the structure of the dataset containing integers, 
floats, strings or objects, the command df.shape was used. 

The next challenge was how to handle missing values, 
which are detrimental to many machine learning models. 
These were detected using df.isnull().sum() command, on 
the data frame and then they were excluded by using the 
statement df.dropna(inplace=True). Rows were repeated 
which could bring a bias and redundancy, this was sorted out 
using df.duplicated() and removed using 
df.drop_duplicates(inplace=True). The target variable was 
basically in the form of categorical attributes where 
distributions and objects were classified as ‘GALAXY,’ ‘STAR,’ 
and ‘QSO.’ For machine learning purposes, numerical labels 
were given to each of these categories. In particular, 
‘GALAXY’ was equated with ‘0,’ ‘STAR’ with ‘1’ and ‘QSO’ 
with ‘2.’ Preprocessing steps have made the clean and 
effective preparation of dataset suitable for training the 
machine learning algorithm. 

 
 

D. Exploratory Data Analysis (EDA) 
Exploratory Data Analysis (EDA) was carried out to better 

understand the dataset and visualize the relationships 
between features. The main steps included: 

1. Feature Distributions: 
• Histograms were created to show how the values of 

each feature are spread across the dataset for 
different data releases. 

• Boxplots were used to detect outliers and 
understand the range of each feature, helping to 
determine if outliers were meaningful or caused by 
errors. 

2. Pairwise Relationships: 
• Pair plots were generated to show the relationships 

between features. These plots helped us see how 
features like photometric bands and redshift are 
related and whether there are clusters or patterns in 
the data. 

3. Correlation Matrix: 
• Numerical features’ association strength checking 

was based on the use of a correlation matrix. This 
assisted in detecting features whose relation is high 
and ‘broadly’ similar to the correlations identified 
between certain photometric bands (like r and i) and 
redshift adds additional information. 

Such steps allowed receiving useful information about 
the given dataset and selecting features which are more 
significant for classification of celestial objects. This analysis 
was useful in the process of building this model and 
enhancing the outcomes of the research as well. 

 
E. Feature Selection 

Feature selection is a critical step in machine learning 
process and plays an enormous role in the improvement of 
input signals. The following is because, it saves time for 
computation, it is less likely to over-fit, and it is suitable for 
other unseen data. To reduce the dimensionality of the data 
set a process of feature selection was conducted to remove 
unneeded columns and features with variance of zero and 
the final dataset only contained features that were 
meaningful for classification of celestial objects. 

The first operation performed was to detect features with 
feature variance equal to zero and then eliminate them. 
Variance can be defined as statistical measure of dispersion 
that quantifies how far apart from the mean of a feature 
values are. Features that have variance of zero have the 
same value for all observation which makes them unhelpful 
when doing predictive modelling. The features were flagged 
as comprising two variables: objid and rerun; these were 
excluded from the data set. 

Other columns that were dropped since they contributed 
little to the classification of astronomical objects include 
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features with zero variance. Often, these columns included 
miscellaneous information or ID’s, etc., that excluded from 
the observation layer; in other words, the column could be 
less relevant during the classification process. The following 
features were excluded from the dataset: 

• specobjid: Spectroscopic object identifier 
• ra: Right ascension of the object 
• dec: Declination of the object 
• run: SDSS imaging run identifier 
• camcol: Camera column 
• field: Field number 
• plate: Plate number 
• mjd: Modified Julian Date 
• fiberid: Fiber ID 

Id-depending information and observational meta-
information and extra information on the photometric or 
morphological aspect were taken out of the dataset to 
classify the feature space as simple as possible. The last 
subset of features chosen for the model is redshift together 
with u, g, r, i, z photometric bands. This was done to counter 
the observed variability in feature selection found in the 
current literature. However, these specific features such as 
redshift and photometric bands were applied persistently in 
many studies [3], [5], [7], [8]. While other features were 
selected, the justification for doing so was not always 
comprehensible, and the same can apply to the repeated 
use of this strategy. These theses prove the significance of 
these features for the classification of celestial objects. 
Redshift gives important data about distance and velocities 
of objects and with photometric bands that give information 
about the spectrum energy distribution which help to 
distinguish between stars, galaxies and quasars. 
 
F. Data Normalization 

In this study, all numerical features, other than the target 
variable class, were normalized using the StandardScaler 
function from the sklearn.preprocessing library. This 
method made each feature to have mean equal to zero and 
the standard deviation equal to one [25]. The cases include 
algorithms like Support Vector Machines (SVM) where 
standardization must be performed due to its scale of input 
data. It also stops feature with large value dominating 
features with small value, thus all numerical features are 
given an equal input into making the model. 
 
G. Data Splitting 

The data was split into two parts: X and y. The variable X 
was a combination of all features after normalization except 
the class and y was the target variable class which contained 
the labels for celestial objects. Using the function in sklearn. 
model_selection which is train_test_split, the data was split 
into train data at 70% and test data at 30%. Another 

configuration for the state of each component was a purely 
random choice of 42 in order to achieve a reproducible result. 
This split created four parts: These are; X_train (training 
features), y_train (training target), X_test (testing features), 
and y_test (testing target).  

The 70/30 split is widely used in machine learning as it is 
effective in balancing between the need for a sufficient 
training data to optimize model and to adequate testing 
data to evaluate its performance. Empirical studies shown 
that by allocating 20 – 30% of data for testing provides the 
best trade off between minimizing approximation errors 
and also maximizing the validity of the model results. So, this 
ensures that the model generalizes well to unseen data 
while avoiding overfitting, as highlighted in [30]. 

K-fold cross validation provides a more robust approach 
as it uses the entire dataset for training and validating in 
multiple iterations. However, it can be computationally 
expensive especially for the large datasets like the one used 
for this study. So, the 70/30 split is computationally efficient 
and suitable for this project after considering the size of 
SDSS dataset and the available computational resources.  
 
H. Applying Synthetic Minority Over-Sampling Technique 

(SMOTE) 
Using Synthetic Minority Over-Sampling Technique 

(SMOTE) to handle imbalanced dataset, where one class has 
the most number or frequency compared to other class. In 
this study, SMOTE was applied using the imblearn library. 
The fit_resample method was used on the training data 
(X_train and y_train) to generate new data for the minority 
class, making the dataset balanced. 

 

Fig.  2 Class distribution of training data before SMOTE 
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Fig.  3 Class distribution of training data after SMOTE 

I. Modelling  

The model was trained using seven different machine 
learning algorithms on raw and balanced data to assess and 
understand their behaviour under different data conditions, 
each with its own approach to classification: 

• Gradient Boosting builds models iteratively, with 
each new model minimizing the errors of the 
previous one, combining them into a strong learner 
[16]. 

• XGBoost is an optimized version of Gradient Boosting 
designed for speed and efficiency, using ensemble 
learning to improve predictions [14][15]. 

• Decision Tree uses a tree-like structure where nodes 
represent decisions, branches represent outcomes, 
and leaves represent predictions, splitting the data 
based on selected features [13]. 

• Linear SVM finds the optimal decision boundary 
(hyperplane) that separates data points into 
different classes in feature space [19]. 

• Random Forest creates multiple decision trees using 
subsets of data and combines their outputs for a final 
prediction [18]. 

• K-Nearest Neighbours (KNN) predicts the label of a 
data point by analysing the labels of its closest K 
neighbours based on distance [17]. 

• Logistic Regression models the relationship between 
variables to calculate the probability of a data point 
belonging to a specific class [12]. 

Although the introduction of Neural Networks (NNs) 
have successfully accomplished complex tasks, but for 
the scope of the research conducted in this case, NNs 
were not the recommended choice. Primarily, NNs will 

not perform to their best capabilities without ample 
amounts of data, which greatly exceeds the availability 
of the SDSS dataset. Secondly, even without considering 
NNs, models such as Random Forest and XGBoost 
already claimed remarkable results on previously 
conducted astronomical classification studies, thus 
eliminating the requirement of more advanced models 
[5][8]. Furthermore, the vast majority of NNs are not as 
easily interpretable compared to regression trees which 
was a major concern for this research when it came to 
analysis of feature importance. 

As for focusing on ensemble methods, Random 
Forest, XGBoost, and Gradient Boosting were selected 
because they have addressed multilevel class imbalances 
effectively as the literature review showed (Appendix I). 
AdaBoost and Extra Trees, on the other hand, were not 
selected because those models will simply serve to add 
redundancy, and are based on the same ideas as the 
selected models without outperforming them in other 
relevant researches [3][7]. The requirements did not set 
any constraints and instead concentrated on the relative 
aspects of interpretability, efficiency of computation, 
and precision of classification provided by single robust 
algorithms, which can easily be accomplished through 
the existing benchmarks in the field. 
 

J. Model Evaluation 
The evaluation of the machine learning models was 

performed using several key metrics to ensure a 
comprehensive understanding of their performance: 

1) Accuracy: This metric represents the overall 
correctness of the model by calculating the ratio of 
correctly predicted instances to the total number of 
instances in the dataset. Accuracy is particularly 
useful for providing a general understanding of 
model performance but can be misleading in the 
presence of class imbalance. 

2) Precision: Precision measures the ratio of true 
positive predictions to the total number of 
predicted positives. This metric is particularly 
important in cases where minimizing false positives 
is crucial, such as identifying quasars from other 
celestial objects. 

3) Recall: Recall, also known as sensitivity, calculates 
the ratio of true positive predictions to the total 
actual positives. This metric is crucial for 
understanding how well the model identifies all 
instances of a particular class, especially for rare 
classes like quasars in the dataset. 
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4) F1-Score: The F1-score is the harmonic mean of 
precision and recall, providing a balanced measure 
that is particularly useful when there is a significant 
class imbalance in the dataset. This metric ensures 
that both precision and recall are considered 
equally in the evaluation. 

5) Confusion Matrix: A confusion matrix was 
generated to provide a detailed view of the model’s 
performance across each class. It shows the counts 
of true positives, false positives, true negatives, and 
false negatives for each class (galaxies, stars, and 
QSOs). This matrix is essential for understanding 
the specific misclassification patterns and 
identifying areas where the model could be 
improved. 

The evaluation was conducted on both the raw and 
balanced datasets, ensuring that the impact of class 
balancing techniques, such as SMOTE, was considered in the 
analysis. The metrics were calculated for each of the three 

classes—galaxies, stars, and quasars—individually to 
evaluate the model’s performance across different celestial 
object categories comprehensively. This multi-metric 
evaluation approach ensured a robust comparison of the 
models and helped in identifying the best-performing 
algorithms for the classification of celestial objects using the 
SDSS data. 
 
K. Statistical Analysis 
Stastical analysis were conducted in order to validate the 
performance comparisons between each machine learning 
models. The analysis was done according to a detailed 
statistical framework. This framework combined parametric 
and non-parametric statistical test to validate the 
comparative performance of the models acrross multiple 
datasets of data release. The analysis was guided by the 
framework outlined by Chatzi and Doody [31] which 
emphasizes testing assumptions before choosing the 
appropriate statistical methods.  

 

Fig.  4 Framework for selecting statistical analysis methods. Adapted from [31]. 
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1) Normality Assessment 
The distributions of accuracy for each machine 

learning models were examined using the Shapiro-
Wilk’s test. A threshold of 0.05 was used to determine 
whether the data was significantly distributed and thus 
normal. Models that had a p value less than or equal to 
0.05 were considered as having non-normal 
distributions. The findings clearly demonstrated that all 
models did not exhibit normality and some of them 
particularly Gradient Boosting and KNN did not satisfy 
the normality assumption. As discussed [31], this 
normality testing was important in deciding whether to 
use a parametric or a non-parametric test. 
2) Homogeneity of Variance 

Levene’s test was performed to assess the equality 
of variances among the models’ accuracies. The test 
results ( 𝑝 ≥ 0.05 ) confirmed that homogeneity of 
variance. This fulfilled one of the criteria to allow the 
application of parametric. Variance homogeneity is one 
of the key assumption for parametric tests such as 
Analysis of Variance (ANOVA) and was addressed to 
ensure accurate comparison, consistent with [31]. 
However, if the normality assumption fails then, then 
analysis can only proceed to non-parametric tests. 
3) Group Comparisons 

 This test was done to check the differences of 
mean accuracy value across models when both 
normality and homogeneity assumptions are 
satisfied. According to [31], ANOVA is perfectly 
able to compare more than two means at one 
time and eliminates Type I error. 

 Kruskal-Wallis Test: 
For those models which did not meet normality 
assumptions, the Kruskal-Wallis non-
parametric test was used to detect any 
deviation from median accuracy. The p-value 
for this test was set at 0.05. Such results 
indicate that at least one model did not agree 
with the rest. This concurs with [31] warnings 
on the use of non-parametric methods where 
assumptions are known to fail. 

4) Post-Hoc Analysis 
Post hoc analysis aims to pinpoint the model which 
has impacted the research in question the most. [31] 
suggested that for Kruskal-Wallace test, Dunn’s test 
with Bonferroni correction should be made for 
pairwise difference decision to eliminate Type 1 
error. For ANOVA, the difference of means HSD test 
will assist in figuring out pairwise differences 
between models. 

IV. RESULTS 

A. Comparative Performance Across SDSS Data Releases  
Figure 5 depicts the comparative performance of various 
machine learning algorithms—Random Forest, XGBoost, 
Gradient Boosting, Decision Tree, Linear SVM, KNN, and 
Logistic Regression—across multiple Sloan Digital Sky Survey 
(SDSS) data releases (DR12 to DR18). The results presented 
offer a comprehensive analysis of the models' accuracies 
under varying dataset complexities, shedding light on their 
adaptability and robustness. 

 

 

Fig. 5  Comparison of Accuracy Across Different Machine Learning Algorithms (e.g., Random Forest, XGBoost) for Classifying Celestial Objects Across 
SDSS Data Releases (DR12 to DR18) 
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Random Forest consistently excels across all data 
releases and emerges as the most dependable algorithm. Its 
peak performance of 99.12% on DR18 validates its robustness 
and highlights its scalability to handle complex and diverse 
datasets. Its reliability in earlier datasets like DR12 (97.95%) 
further underscores its consistency. These findings 
corroborate previous research, such as [5], emphasizing the 
algorithm's capability to manage noisy, imbalanced data 
environments. 

XGBoost, closely trailing Random Forest, 
demonstrates exceptional capability in minimizing 
misclassifications and managing high-dimensional datasets. 
Its peak accuracy in DR18 with 99.21% accuracy and 
competitive performance across earlier releases reinforce 
its versatility. The algorithm’s strong adaptability to 
different celestial object classes suggests its potential as an 
alternative when precision is crucial, especially in classifying 
stars and galaxies. 

Gradient Boosting, while achieving an accuracy of 
98.69% in DR18, illustrates a trade-off between accuracy and 
interpretability. Its limitations become apparent in datasets 
with overlapping spectral features, such as DR16, where 
minor declines in accuracy were noted. Despite these 
drawbacks, its balanced performance across multiple 
datasets makes it a viable option for tasks requiring a 
compromise between transparency and performance. 

Although decision Tree models are efficient for 
straightforward tasks like star classification, they face 
challenges in handling complex boundaries, such as those 
required for quasars. Their reduced F1 scores and accuracy 
dips in DR17 and DR18 highlight these limitations. 
Nevertheless, Decision Trees can serve as foundational 
elements in ensemble methods, offering simplicity and 
interpretability. 

Linear SVM, with accuracies consistently exceeding 
94%, struggles to address non-linear separability. This 
limitation, particularly evident in the classification of quasars, 
calls for kernel-based enhancements or feature 
transformations to boost its effectiveness. 

Logistic Regression, maintaining a baseline accuracy 
above 94% across all data releases, highlights its simplicity 
and reliability for less complex tasks. However, its inability 
to handle intricate datasets underscores the need for more 
sophisticated models in applications involving substantial 
feature overlap. 

K-Nearest Neighbors (KNN) recorded the lowest 
performance among the evaluated algorithms, which 
underscores its sensitivity to high-dimensional spaces and 
feature overlap. This trend is most apparent in DR16, where 
noticeable accuracy drops were observed. These findings 
emphasize KNN’s limitations for large-scale and complex 
datasets, such as those in SDSS. 

The results reveal practical implications for astronomical 
classification tasks: 

1. Ensemble Methods: Random Forest and XGBoost 
are ideal candidates for automated classification 
pipelines in large astronomical surveys due to their 
scalability and robustness. 

2. Simpler Models for Benchmarking: Logistic 
Regression and Decision Trees, while less suitable 
for complex classifications, serve as valuable 
benchmarks for evaluating advanced algorithms. 

3. Dataset Characteristics Matter: The consistently 
superior accuracy in DR18 suggests that improved 
data quality and volume significantly enhance 
model performance. This underscores the 
importance of well-curated datasets in achieving 
optimal results. 
Figure 15 confirms that ensemble methods like 

Random Forest and XGBoost dominate in performance, 
meeting the study's objectives by providing reliable and 
efficient solutions for celestial object classification. 
Meanwhile, the limitations of simpler models like KNN and 
Logistic Regression reinforce the necessity of advanced 
techniques for managing the complexities of astronomical 
data. These findings not only validate the research's 
approach but also provide a clear roadmap for future 
explorations in automated astronomical data analysis. 

 
B. Robustness and Variability of Model Accuracy  
Figure 6 provides a complete breakdown of how each 
machine learning algorithms' accuracy differed with respect 
to the SDSS data versions under consideration. This 
particular analysis demonstrates parallels and 
inconsistencies of algorithm efficiency, thus revealing how 
each model reacts to the varying datasets. 

Random Forest: The IQR of Random Forest is narrow 
suggesting that it is consistent with achieving high accuracy 
score in all of the data versions. In addition, its lack of 
variability means that it is quite resilient to changes in data. 
It is worth mentioning that the usage of random outliers is 
almost non-existent. This attribute of random forest 
enhances its generalization capabilities on different sets of 
astronomical data. 

K-Nearest Neighbors: Judging by KNN, the narrowest IQR 
implies that all other algorithms exhibit much broader outliers. 
This means that KNN is highly dependent on the feature 
overlaps or class imbalances in the dataset. The presence of 
multiple outliers in the controlled experimentation means the 
algorithm is performing inconsistently at bestangement 
pointing towards the proximity based classifiers for larger 
matrices that are highly dimensional like SDSS ones has their 
disadvantages. 
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Fig. 6 Accuracy Distributions Across Machine Learning Algorithms 

Logistic Regression: KNN is captured by the least 
variability against the other algorithms. Logistic Regression 
maintains a moderate median accuracy score while 
exhibiting central measures variability. This assumption 
stems from the model's linear structure. 

 
C. Statistical Validation of Performance Differences 

 

Fig. 7 Dunn’s Test Pairwise P-Values Heatmap 

Dunn's test results in Figure 7 elucidate the 
alignment and differences in the accuracy outcomes of 
different machine learning algorithms. As can be seen from 

the Random Forest’s results, it's performance is quite 
different when analyzed through the use of K-Nearest 
Neighbors (KNN) thus showcasing its effectiveness and 
ability to generalize more robustly. This correlates with the 
results aim of finding a model that can classify celestial 
objects accurately and with great certainty. 

Practically speaking, this study illustrates that Random 
Forest is optimal with respect to the processing of large 
volumes of astronomical data where the dimensionality and 
sparsity of the dataset is particularly high. The lack of 
significant differences between the XGBoost and the other 
algorithms results indicates that Decision Tree and Gradient 
Boosting may also be adopted as other reasonable methods 
depending on the nature of the data to be analyzed or the 
available computational power. 

These results highlight the utilization of advanced 
statistical techniques such as Dunn's post-hoc test in 
measuring differences in the performance of various 
algorithms. As stated earlier, this helps ensure the 
conclusions reached have both statistical and practical value 
and sets the stage for further research into ensemble 
techniques and hybrids that would benefit from different 
algorithms. In so doing, this particular study provides 
powerful closure to the insights gained by melding these 
statistical results with the core objectives of the study. This, 
in turn, culminates to enhancing the techniques employed in 
automated classification of celestial objects. 

The statistical analysis was done following a strict multi-
level approach in order to ensure reliability and validity of 
results with the claims made: 
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1) Normality Testing (Figure 18): 

As shown in figure 8, the Normality of the accuracy 
distributions for each machine learning technique was 
carried out with Shapiro-Wilk test. This was necessary 

for deciding the use of parametric or non-parametric 
statistical techniques in the next phases of analysis. 
From the results, the assumption of normality was not 
uniformly met by the algorithms. 

 

Fig. 8 Shapiro-Wilk Test Results for Evaluating Normality After Log and Square Root Transformations 

In particular, it was noted that certain algorithms such 
as Gradient Boosting, Random Forest, and KNN had a p-
value lower than 0.05, indicating a significant result as well 
as a non-normal distribution. These patterns denote that the 
precision metrics of these models are subject to dataset 
composition and model and thus do not permit parametric 
testing without some form of preconditioning on the data. 

On the other hand, algorithms like XGBoost, Decision 
Tree, Linear SVM, and Logistic Regression had a p-value 

greater than 0.05, supporting the notion that the accuracy 
distributions of these models are normal. These findings 
represent how the algorithms react differently to the 
dataset and emphasize the need to apply appropriate 
statistical models according to the specific data set 
attributes. Log-transformed and square root transformed 
data for normality testing results have been summarized in 
Figure 18. The figure highlights the differences in the p-
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values across algorithms and makes it easier to gauge the 
normality testing results. 

2) Variance Homogeneity: 

Levene’s test was conducted to check if the results of 
the algorithms tested had a common variance within them, 
and from the test, it generated a p-value of 0.4241. This 
implies that the percentage variation between the accuracy 
scores in the models is statistically homogeneous which 
allows proceeding with additional analyses. 

3) Kruskal-Wallis Test: 

As a result of non-mean distribution detected from the 
Shapiro-Wilk test, the non-parametric alternative for one-
way ANOVA was employed and proved effective. Accuracy 
when performing the algorithms was different among 
algorithms differing significantly, H-statistic 13.3028 and p-
value 0.0385. This data proves that there is sufficient 
variation in the performance of the model to justify further 
examination through pairwise analysis. 

4) Dunn’s Post-Hoc Test: 

In order to determine which algorithm pairs have a 
significant difference, Dunns test was examined with the 
heatmap generated by the Bonferroni correction, and its 
results showed difference between Random Forest and 
KNN (p=0.640). These results further support the notion 
that Random Forest is indeed more accurate than KNN and 
more importantly, that the difference is statistically 
significant. The increase in accuracy demonstrates that 

Random Forest is able to perform well with a broader range 
of datasets. 

These significant differences in the performance of 
Random Forest and the other models clearly demonstrate 
that the algorithm does a commendable job at classifying 
celestial objects. It is vital to note that, despite its success, 
models such as KNN are proficient in classification, albeit 
with much lower accuracy. The absence or rather lack of 
significant differences between the rest of the models 
above mentioned proves that maybe those models have 
distinct values for comparison but would also greatly 
depend upon the scope of the projects and budgetary 
allocations for computational resources. 

Such detailed scrutiny about Random Forest simply 
strengthens assumption that it is the best out did not 
consider one important aspect, which is, differencing out 
the outlier portion of these other models and making sense 
of the variance through analysis of variance is beneficial 
towards understanding machine learning on astronomy. 
 
D. Class-Specific Classification Metrics 

With respect to the classification of galaxies, stars, and 
QSOs in SDSS DR18, Figure 9 illustrates the performance 
comparison of Random Forest and XGBoost with respect to 
precision, recall and f1-scores. Such metrics provide further 
insight into the respective capabilities of the techniques 
with regard to the management of astronomical data, 
particularly in the presence of imbalanced classes 

 

Fig. 9 Comparison of Precision, Recall, and F1-Scores for Random Forest and XGBoost on DR18 Across Classes 
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1. Classification of galaxies 

Both Random Forest and XGBoost have the same precision 
when it comes to classifying galaxies, which indicates their 
ability to control the number of false positives generated. 
Nonetheless, Random Forest’s slightly greater recall speaks 
for its ability to capture a high number of true galaxy cases. 
Such balance renders Random Forest very useful in cases 
where the studies focus on more inclusiveness of galaxies, 
for instance, in the cases of broad cosmological studies. 
XGBoost’s modestly equal precision indicates that it may be 
useful in such cases where certain galaxies are targeted with 
reduced cases of misclassification. 

2. Classification of stars 

Almost full recall and precision for the stars as classified 
within the Random Forest demonstrates its capacities for 
working on well represented classes within a dataset. This 
system ensures that the instances are virtually missing, 
which makes it the best option for star catalogs which 
require high completeness. The somewhat lower measures 
of XGBoost represent a serve as margin of improvement, for 
instance dealing with class, whether large or well defined, 
and tweaking them accordingly. These results also show 
that Random’s ensemble structure is more effective in 
dealing with these spectral metrics differentiation of stars in 
the SDSS dataset. 

1. QSO Classification 

In regard to QSOs reconstruction, Random Forest combines 
recall and precision ensuring better F1 score measures when 
compared with XGBoost. The advantage can be attributed 
to Random Forest features a better management of 
features that overlap and QSO class imbalanced which are a 
persistent challenge during QSOs identification. On the 
contrast, the higher precision of XGBoost might best serve 
in cases which need careful QSO picking for example 
focusing on spectroscopic follow-up studies which require 
minimal falsity. From the evidences presented, there lies a 
scope of optimizing XGBoost which would strengthen recall 
but still be high on accuracy of XGBoost. 

The evaluation of the two models reveals the 
randomness of forests and the systematic approaches of 
XGBoost are complementary with each other. This is 
beneficial while working with astronomical problems as 
Random Forest is a more general purpose algorithm 
especially for higher recall problems, performing well on 
tasks with class and label overlaps. The model outperformed 
managed challenges presented by minority classes and 
overshadowed bodies like QSOs by consistently achieving 
high accuracy rates across SDSS. 

On the other hand, when false positives have to be 
avoided at all costs, XGBoost’s focus on precision makes it a 
formidable option. As an example, it could be employed in 
focus areas designed to study the few existing objects of 
cover, where resource expenditure is vital. These 
observations open doors for further investigation who focus 
on the merging of strengths for both algorithms. A biome of 
XGBoost and Focused Random Forest may be used in 
combination with ensemble methods to lower the number 
of recalls required while increasing classification 
performance and flexibility. 

The results also stresses the need for focused building 
of algorithms with respect to the goals. Focusing on, The 
importance of Random Forests is found in understanding 
the need for robust algorithms while building an accurate 
training set for subsequent machine learning models while 
XGBoost is useful in constructing pipelines that prioritize 
recall when dealing with tasks like spectroscopic validation. 

 

E. Feature Importance Analysis in Random Forest Across Data 
Releases  

 

Fig. 10 Feature Importance Analysis: Random Forest vs. XGBoost (DR18). 

 Figure 10 illustrates the relative importance of 
features for a classification of celestial objects with data 
collected from SDSS DR18, as done by Random Forest and 
XGBoost methods. The photometric collected for analysis 
includes redshift, u, g, r, i, and z because these attributes are 
the basis of astronomical observations. This tells us how 
important these features are in both algorithms, which 
enhances our understanding of their approaches. 

1. Redshift  

• Random Forest: According to Random Forest's 
model, redshift is of moderate importance and thus 
indicates that there is some importance when it comes to 
the classification task, most likely to distinguish between 
quasi-stellar objects (QSO) and other objects in the universe. 
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• XGBoost: Redshift was marked of relatively less 
importance while using XGBoost as it was used with 
Random Forest. This explains why there is a lower reliance 
on this feature in XGBoost as it may ranging a greater degree 
of dependency on photometric bands such as U, G, R. 

2. U-Band (Ultraviolet) 

• Random Forest: In the Random Forest model, the U 
band is considered one of the least important features. This 
lower importance may be due to its inability to separate 
some classes, especially in the overlap areas of the dataset. 

• XGBoost: On the other hand, XGBoost gives a 
significantly higher weight to the U band. This means one 
can distinguish something useful in the ultraviolet 
observations and make use of it for classification. 

3. G-Band (Green) 

• Random Forest: The lack of significance of the G 
band in Random Forest is comparable to that of the U band. 
This pattern confirms that the Random Forest model places 
importance on other features such as Redshift and other 
wider photometric bands. 

• XGBoost: The G band is the most important feature 
for the XGBoost model. This demonstrates that XGBoost is 
able to use the feature to classify any celestial object Claude 
J. d’Orbigny has become baroclined around other objects 
with significantly strong overlaps in other spectral bands. 

4. R-Band (Red) 

• Random Forest: The R band is of moderate 
importance in the Random Forest because it helps to fill the 
gap between classes that overlap. 

• XGBoost: The R band is also important to XGBoost 
as it enforces the use of photometric information in the 
visible spectrum in classification. 

5. I-Band (Infrared) 

• Random Forest: The I-band has a relatively low 
importance in Random Forest, reflecting a similar trend 
observed in other photometric bands. 

• XGBoost: The I-band is a highly important feature 
for XGBoost because it can use the infrared observations to 
differentiate the classes of celestial objects, especially the 
quasars and stars. 

6. Z-Band (Deep Infrared) 

• Random Forest: The Z-band shows minimal 
importance in Random Forest, consistent with 
overemphasis on Redshift as compared to photometric 
features. 

• XGBoost: The Z-band has significant importance in 
the model of XGBoost and so it is expected of it where it 
assumes it needs photometric features. 

The analysis above reveals a few notable remarks 
towards the feature ranking of Random Forest and XGBoost. 
XGBoost is seen putting much more weight on the 
photometric features (U, G, R, I, and Z) as compared to 
Random Forest, which is significant. This preference stems 
from the expected behavior of XGBoost, especially in which 
it has more than sufficient coverage to utilize the 
information in the spectral features. On the other hand, 
Random Forest is more responsive to Redshift than to other 
features. This means that Random Forest assigns more 
importance to this feature than any other model of 
astronomy where this parameter is useful, presumably to 
identify quasars better than other extraterritorial bodies. 
This is an illustration of how the two algorithms differ in 
classification tasks where they have different feature sets 
that are of different importance. 

In terms of algorithmic behavior, Random Forest can be 
understood as a method that equally relies on Redshift and 
other features. This pattern of feature usage ensures that 
Random Forest remains robust to noise and complex 
datasets without overfitting. At the same time, Xgboost's 
heavy reliance on certain photometric bands demonstrates 
its ability to model complex high dimensional data. However, 
his phenomenon makes XGBoost more vulnerable to 
changes in the quality of photometric data. 

The practicality of these results demonstrates Random 
Forest to be a strong competitor against Xgboost in 
applications that are sensitive to noise. Meanwhile, 
Xgboost's reliance on photometric bands may be useful for 
tasks that require more precision in classification with rich 
spectral data. 

In future work, combining the two methods may lead to 
improved classification results. For instance, where Xgboost 
is powerful, the emphasis need to be put on Redshift only 
makes Robust Random Forest work even better. Moreover, 
deeper research on the particular use of photometric bands 
for classifications like QSO detection can help further 
understand their use in astronomical surveys. 

In brief, there is a gap in the feature importance 
comparison; it is evident that Random Forest and XGBoost 
process the available data to achieve classification results 
differently and for that reason, the two models exhibit 
classification accuracy. This is useful because it not only 
corroborates the workings of the algorithms but also adds 
to the practical knowledge on how to make the machine-
learning models developed in future better with regard to 
astronomy. 
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F. Confusion Matrix Analysis for XGBoost and Random Forest 

on SDSS DR18 

The results of the confusion matrices of both the XGBoost 
and Random Forest algorithms give their summary 
classifications of three celestial objects; Galaxy, Star, and 
QSO from SDSS DR18. Each matrix shows the counts of true 
positive, false positive and false negative predictions for an 
algorithm, which is important in this case to assess the 
advantages and disadvantages of these algorithms. 

 

Fig. 11 Random Forest Confusion Matrix (DR18) 

From the Random Forest confusion matrix, we can see that: 

• The Galaxy Class: Random forest achieved optimal 
results in galaxy detection as he correctly identified 63,634 
galaxies. He was also better than XGBoost in that there were 
only 122 galaxies that he misclassified as stars and 726 
galaxies that he misclassified as QSO. This indicates that 
Random Forest is more precise and reduces false positive 
rates in the galaxy class. 

• Star Class: Just like XGBoost, Random Forest also 
achieved stellar results with stars, pinpointing every 
instance of the 34,971 with only twenty-three stars 
misidentified as galaxies, and zero QSO misattributions. This 
flawless identification ratio only furthers the evidence of 
how dependable Random Forest is for this class. 

• QSO Class: With this problem, Random Forest 
managed to identify 15,262 instances correctly. However, 
776 QSOs were misclassified as galaxies, while eight were 
misidentified as stars. Although the results are a bit less 
favorable for QSOs as compared to XGBoost, the QSO 
balanced the performance. 
 

 
Fig. 12 XGBoost Confusion Matrix (DR18) 

 

The XGBoost confusion matrix highlights the following key 
observations: 

• Galaxy Class: XGBoost correctly classified 63,122 
galaxies out of the total, with 335 galaxies misclassified as 
stars and 1,025 galaxies misclassified as QSOs. This reflects a 
high precision for galaxies, as the majority of its predictions 
are correct. However, the 1,025 instances of misclassification 
as QSOs suggest minor overlap in feature representation for 
these two classes. 

• Star Class: Among stars, XGBoost achieved nearly 
perfect performance, correctly identifying 34,951 stars, with 
only 42 stars misclassified as galaxies and one star 
misclassified as a QSO. This excellent performance 
underscores XGBoost’s capability to handle the star class 
effectively. 

• QSO Class: XGBoost classifies the majority as it 
accurately identified 15,330 QSOs, however there were 709 
QSOs classified incorrectly as galaxies and 7 as stars. 
Although the overall performance for QSOs is commendable, 
the higher rate of misclassification as galaxies rather than 
QSO signals there are issues distinguishing features 
between QSO and galaxies which could be caused either by 
shared characteristics or subject matter imbalance. 

Comparative Analysis: 

1. Galaxy Classification: Random Forest performed 
better than XGBoost as he reduced the number of false 
positives classified as galaxies. The misclassification rate 
were lower for galaxies with stars and QSOs, making it 
relatively reliable for this class. 

2. Star Classification: For stars, both algorithm 
executed close-to perfect performance. Nonetheless, 
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Random Forest demonstrated slightly better precision for 
this DR through fewer stars classified into various classes. 

3. QSO Classification: RFB and XGBoost both excelled 
on the aforementioned criteria, but xgboost was superior in 
reducing false positive when QSO were targeted while 
maximizing the number of QSOs identified and 
misclassification into galaxies Additionally, this reflect 
xgboost were more precise to this minority group.. 

The outcomes surveyed the matrices, which substantiate 
the classification performance of the two algorithms, where 
Random Forest is somewhat more efficient than XGBoost 
regarding the dominant classes (galaxies and stars), and 
XGBoost is much more precise with QSOs. The results point 
out for the necessity of ensemble methods or more tuning 
to minimize the most classification errors for the weaker 
classes QSOs. This goal matches the research intention of 
coming up with strong, accurate classification of 
astronomical objects so that astronomers can reliably study 
and interpret huge volumes of astronomical data. 

 
G. Addressing Biases and Mitigation Strategies 

The use of feature selection greatly assisted in model 
efficiency; however, it required a delicate balance in order to 
get rid of bias. A few example biases would be Archival 
metadata like right ascension (ra) and declination (dec) 
since their role is not observational. Although, these 
coordinates should encode regional biases, Exploratory 
Data Analysis (EDA) figured out that there spatial clustering 
did not show any correlation with object classes [1]. In 
addition, other research showed that classification accuracy 
is determined by photometric bands and redshift rather 
than spatial coordinates [5] which is the reason why they 
were promptly removed. 

A single potential bias exists in the model that heavily 
relies on redshift; a variable that accounts for more than 60% 
of decision making (Fig. 10). While portraying redshift in 
Figure 10 should suffice, in reality it is much more 
complicated. During scenarios where its measurements are 
noisy or absent, it overemphasizes the importance of 
distance and velocity, and this in turn becomes problematic. 
In order to study these dependencies, the model was altered 
and tested in stratas of data with adjusted redshift values, 
resulting in minimal drop in accuracy SIMD 1.2%. This level of 
independence from redshift variability provided confidence 
in the SDSS context. 

Finally, the prioritization of the i and r photometric bands 
as opposed to the u and g bands (Fig. 10) could reveal biases 
associated with the SDSS spectral sensitivity. Quasars, for 
example, have a strong emission in the redshifted 
wavelengths, which may “steal” the limelight. In order to 

compensate for that, the photometric bands were set to 
scale so that widowed bands would not distort the results, 
and the verifications were performed on different releases 
of SDSS data (DR12–DR18) where the importance of bands 
was confirmed to be constant. This way, it was guaranteed 
that the bands which the model was dependent on had a link 
to the phenomena and were not the result of misleading 
impression arising from instruments. 

V. CONCLUSION 

The goal of this work is to build a reliable machine 
learning (ML) model to classify different celestial objects, 
namely stars, quasars, and galaxies within the observable 
universe. This model was adept at tackling a significant 
number of problems related to the processing of vast and 
intricate astronomical data. It provided a far more effective 
solution in comparison to the conventional classification 
techniques. The work was again able to make use of high 
quality data from the Sloan Digital Sky Survey (SDSS) 
through its diverse data releases to train and test the 
classification models. 

The study trained and evaluated ML models such as 
Random Forest, XG Boost, Gradient Boosting, et cetera. 
Random Forest came out on top achieving the highest score 
with over 99% accuracy on the most recent dataset, DR18, 
and continuing to perform well on older datasets. This can 
be explained through the algorithm’s accommodation of 
class imbalance, non-linearity, and feature interaction. 
Adding to this was the removal of dataset imbalance 
through the Synthetic Minority Over-sampling Technique 
(SMOTE) to ensure that all types of celestial objects were 
properly classified. The study's performance metrics – 
accuracy, precision, recall, and the F1 score – always showed 
the stronger performance of Random Forest than other 
algorithms which ensures that Remote Forest is trustworthy 
for the given problem. 

In comparison with previous studies, the model 
outcomes were remarkably improved by the approach’s 
novel introduction SMOTE and feature selection integration 
on top of each data release. The result signifies an 
advancement over existing methods for providing a clear 
insight into the physical features of such objects. It is 
essential to mark that Redshift was found to be the most 
dominant single predictor feature across all releases of SDSS 
data which is an improvement using data from greater than 
one release. More so, the multi data release approach to 
model evaluation was able to ensure the obtained results 
highlighted true generalizable findings, thereby 
distinguishing this study from many earlier efforts that were 
often based on static or limited datasets. 
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This work also reveals how machine learning can process 
and analyze voluminous astronomical datasets quickly and 
efficiently. The proposed framework does not stop at 
achieving high accuracy and interpretability; unlike manual 
traditional methods, it uses automatic classifiers, relieving 
the user of strenuous scalability tasks. The work equally 
advances the idea that performance is not guaranteed with 
size or enlarged features of a dataset but rather deliberate 
actions such as cleaning the data, choosing the right 
features, and applying appropriate model evaluation deliver 
better results. 

The information derived from this analysis can be used as 
an excellent basis for more studies in the chosen area. Some 
of these additional studies could be the integration of new 
types of objects beyond the limits of celestial objects, 
application of more sophisticated ensemble methods, as 
well as a higher level of deep learning to automatically 
recognize finer details of the astronomical phenomena. Also, 
incorporating additional information domains within the 
scope of feature construction and model building 
interpretation can further improve the classification 
performance, while enabling data science and astronomy 
specialists to work hand in hand. 

In essence, the research is to lift some of the boundaries 
imposed on astronomical data scrutiny and classification of 
objects while frameworking new standards for automatic 
celestial object detection. By implementing contemporary 
machine learning procedures alongside effective 
assessment and data preprocessing methods, this work 
makes the developing of more accurate, effective, and 
advanced means of efficacy in astrophysics easier and faster. 
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APPENDIX 1 
COMPARISON BETWEEN EXISTING RESEARCH 

REFERENCE ALGORITHM/ METHODOLOGY RESULTS KEY FINDINGS 

[3] 
VOTING CLASSIFIER WITH GENETIC 

ALGORITHM 

ACCURACY: 99.16%, 
PRECISION: 98.78%, F1: 
98.32% 

INTRODUCED GENETIC OPTIMIZATION TO 

ENHANCE PERFORMANCE OF CLASSIFIERS. 

[7] RANDOM FOREST WITH SMOTE ACCURACY: 99.3% 
EFFECTIVE FOR CLASSIFICATION AND 

LOCALIZATION OF CELESTIAL OBJECTS. 

[8] 
XGBOOST, RANDOM FOREST; PCA, 
ANOMALY DETECTION 

HIGH ACCURACY FOR RANDOM 

FOREST 

PCA NEGATIVELY IMPACTED XGBOOST 

PERFORMANCE; RANDOM FOREST AND 

XGBOOST OUTPERFORMED OTHERS. 

[9] RANDOM FOREST, DECISION TREE 
HIGH ACCURACY; DECISION 

TREE: 97.17%, RANDOM 

FOREST: 96.8% 

IMPORTANCE OF FEATURE SELECTION 

HIGHLIGHTED; REDSHIFT WAS CRITICAL. 

[2] K-NEAREST NEIGHBOURS ACCURACY: 96.59% 
MANUALLY CURATED DATASET INTRODUCES 

POTENTIAL BIASES AND INCONSISTENCIES. 

[5] RANDOM FOREST 
HIGH SENSITIVITY AND 

SPECIFICITY; BALANCED 

ACCURACY: 95.5% 

PERFORMANCE DROPS WITH FEWER 

OBSERVATIONS AND FEATURES. 

[11] RANDOM FOREST 
STARS: 84% ACCURACY, 
GALAXIES: 85% RECALL 

LIMITED TO TWO CLASSES; QUALITY OF 

PREPROCESSING IMPACTED RESULTS. 

[32] 

ANN, RF, SVM, GRADIENT 

BOOSTING, NAIVE BAYES; 
PREPROCESSING: CALIBRATION, 
MIN-MAX NORMALIZATION, DATA 

BALANCING 

ANN: 95.33%, RF: 94.67% 

ANN AND RF WERE MOST EFFECTIVE IN 

HANDLING CLASS IMBALANCE AND MULTI-
CLASS CLASSIFICATION FOR GAIA DR3 

SPECTRAL DATA. 

[33] 
DECISION TREE, NAIVE BAYES, 
RANDOM FOREST 

RANDOM FOREST: 97.86% 

ACCURACY 

RANDOM FOREST OUTPERFORMED OTHER 

ALGORITHMS IN DISTINGUISHING BETWEEN 

CELESTIAL OBJECTS. 

[1] 
SVM, RANDOM FOREST, K-NN; 
PHOTOMETRY-BASED 

PREPROCESSING 
SVM: 96.4% ACCURACY 

FOCUSED ON MORPHOLOGICAL 

CLASSIFICATION; SVM AND RANDOM 

FOREST PERFORMED BEST. 

[10] 

COMPARE CLASSIFIERS 

WITH/WITHOUT PCA ON SDSS 

DATA. 

DECISION TREE: 97.17% 

ACCURACY. 
SCALE TO LARGE ASTRONOMICAL DATASETS. 

[4] 
CELESTIAL SPECTRA 

CLASSIFICATION USING MLP, SGD. 
VALIDATED ON LAMOST 

SURVEY DATA. 
OPTIMIZE MODELS FOR LARGE-SCALE DATA. 

[34] 
SDSS-DR16 CLASSIFICATION 

USING XGBOOST. 
HIGH F1-SCORES WITH 10-FOLD 

CV. 
TEST ON NEWER SDSS RELEASES. 

[35] 
MULTI-CLASS CLASSIFICATION WITH 

SDSS+ALLWISE. 
XGBOOST: 98.93% F1-SCORE. IMPROVE FAINT-SOURCE CLASSIFICATION AND 

MODEL GENERALIZATION. 
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Appendix 2 
COMPARISON ADVANTAGES AND DISADVANTAGES OF ALL RESEARCH 

REFERENCE ADVANTANGES DISADVANTAGES 

[3] 
HIGH ACCURACY; GENETIC OPTIMIZATION ENHANCES 

PERFORMANCE. 
SMALL DATASET (10K SAMPLES); LIMITED 

GENERALIZABILITY. 

[7] 
SDSS-V’S COMPREHENSIVE SPECTRA; EFFECTIVE 

IMBALANCE HANDLING. 
COMPUTATIONALLY INTENSIVE; NO SCALABILITY 

ANALYSIS. 

[8] 
HANDLES IMBALANCED DATA AND HIGH 

DIMENSIONALITY. 
PCA DEGRADED MODEL PERFORMANCE. 

[9] 
OPTIMAL COMPUTATION TIME; HIGHLIGHTED REDSHIFT 

IMPORTANCE. 
POOR SVM/LOGISTIC REGRESSION PERFORMANCE. 

[2] DETAILED ALGORITHM COMPARISON. MANUALLY CURATED DATASET RISKS BIAS. 

[5] ROBUST CROSS-DATASET VALIDATION. 
PERFORMANCE DROPS WITH FEWER 

FEATURES/OBSERVATIONS. 

[11] HANDLES LARGE IMAGE DATASETS. 
LIMITED TO TWO CLASSES; POOR PREPROCESSING 

IMPACTS RESULTS. 

[32] 
INTEGRATES OPTICAL/SPECTRAL DATA; VALIDATED ON 

REAL CANDIDATES. 
RELIES ON LOW-RESOLUTION GAIA DATA; SYNTHETIC 

DATA BIAS RISKS. 

[33] SMOTE FOR IMBALANCE; KNIME WORKFLOW. SINGLE-SOURCE DATASET; NO EXTERNAL VALIDATION. 

[1] ROBUST CLASS IMBALANCE HANDLING. OVERFITTING RISKS; DATASET-SPECIFIC RESULTS. 

[10] 
PCA IMPROVES EFFICIENCY. SMALL DATASET; ACCURACY DROPS WITH HIGH PCA 

VARIABLES. 

[4] METHODOLOGY ADAPTABLE TO OTHER DATASETS. PREPROCESSING STEPS COMPUTATIONALLY HEAVY. 

[34] STRONG GENERALIZATION. LIMITED TO XGBOOST; LOW INTERPRETABILITY. 

[35] COMBINES OPTICAL/IR DATA. STRUGGLES WITH FAINT SOURCES; SURVEY-SPECIFIC 

RESULTS. 
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