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Abstract— The functions and operations of a modern automobile are becoming increasingly computerised, 
with this transformation made possible by Electronic Control Units (ECUs) that communicate and coordinate 
with each other on the in-vehicle network. Controller Area Network (CAN) is one of the most popular 
protocols for the in-vehicle network, supporting low latency and reliable communications. However, the CAN 
protocol does not have provisions for security, such as encryption, authentication, and authorisation, which 
makes it vulnerable to cyberattacks, particularly in today’s automotive landscape characterised by extensive 
connectivity with external devices, vehicles, and infrastructure. While intrusion detection systems (IDS) for 
CAN have emerged as a key security measure, assessing their performance against realistic attacks remains 
a challenge since testing with real vehicles poses significant costs and safety risks and testbeds suffer from 
a lack of fidelity in terms of the CAN frame transmission timings and generated payloads. This work proposes 
a digital twin (DT)-based framework for CAN IDS evaluation that replicates the functionality of real-world 
ECUs and CAN bus of a vehicle with real-time flow of data from the physical bus to its virtual representation. 
The main contribution of this work is a CAN DT that can not only enable the generation of realistic attack 
traffic for simple and sophisticated attack scenarios but also the generation of diverse combinations of 
attack and real driving scenarios. This DT can facilitate the evaluation of both the detection capability and 
performance of CAN IDS. This work presents the methodology for generating the proposed DT and discusses 
current findings as well as future work.   
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I. INTRODUCTION 

The modern vehicle is capable of more than just moving 
passengers and cargo from one point to another – it has a 
myriad of features and functionalities that facilitate driving, 
enable safety and comfort, and support navigation, 
communication, and entertainment. These systems, which 
are increasingly computerised in modern vehicles, are 
enabled by as many as 150 microcontrollers called Electronic 
Control Units (ECUs) [1]. ECUs coordinate with each other by 
communicating the current state of the vehicle on internal 
vehicular networks or in-vehicle networks. Numerous 
protocols are implemented for in-vehicle networks with the 
most common being Controller Area Network (CAN). 

The CAN protocol enables low-latency, reliable 
communications but does not provide mechanisms for 
encryption, authentication, or authorisation. This makes 
vehicular CAN bus vulnerable to a variety of cyberattacks 
that can allow car theft or cause dangerous accidents. This 
is especially true in today’s automotive landscape where 
vehicles are equipped with a wide range of communication 
interfaces to enable vehicle-to-everything (V2X) connectivity. 
These interfaces, which include Wi-Fi, Bluetooth, and radio, 
enable external entities access to the in-vehicle network and 
become potential attack vectors.  While Koscher et al. [2] 
established the vulnerability of vehicular CAN bus to injected 

CAN frames, Checkoway et al. [3] demonstrated the 
possibility of remotely attacking a vehicle’s CAN bus. More 
recent work on CAN bus hacking underscores the continued 
need to secure the vehicular CAN bus [4], [5]. 

The development of intrusion detection systems (IDS) 
has emerged as a key effort towards securing the vehicular 
CAN bus. CAN IDS vary in the technique used as well as the 
feature of CAN bus traffic used for detection. Unlike 
conventional computer networks, a vehicular network 
represents a safety-critical system where a CAN IDS would 
need to detect attacks accurately and as quickly as possible 
to minimise harm to occupants and surroundings. As such, 
all CAN IDS need to be evaluated against realistic CAN bus 
traffic and attack scenarios to ensure their performance in a 
real in-vehicle network.  

However, generating realistic attack scenarios remains a 
challenge since using real vehicles for security testing is a 
costly option and poses a safety risk to personnel and the 
environment. While testbeds and simulations do not have 
these issues and are an attractive alternative for security 
testing [6], [7], current proposals have limitations in fidelity, 
specifically in the behaviour and interactions of ECUs. This 
impacts the realism of the generated CAN frame payloads, 
particularly in attack scenarios and undermines the 
evaluation of payload-based CAN IDS carried out on such 
solutions.  
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The main contribution of this work is to propose a digital 
twin (DT)-based framework for generating a virtual 
representation of a real-world CAN bus, capable of 
accurately emulating the behaviour and interactions of real 
ECUs. This DT can, thus, be used to simulate both simple and 
sophisticated attacks and generate CAN attack traffic that is 
realistic in terms of frame transmission timings and payloads. 
Establishing the flow of data from the physical CAN bus to 
the virtual CAN bus can further enable the generation of 
countless combinations of attack and driving scenarios, 
resulting in robust security and performance assessment of 
CAN IDS.  

The rest of the work is organised in the following manner: 
Section II provides an overview of the CAN protocol as well 
as the concept of Digital Twins. Section III discusses current 
proposals for CAN testbeds, simulations, and DT. Section IV 
outlines the proposed framework while Section V presents 
current results. Finally, Section VI concludes this work and 
discusses future work.  

II. BACKGROUND 

A. Controller Area Network (CAN) 

The Controller Area Network (CAN) protocol was 
introduced in the 1980s with the aim of enabling efficient, 
reliable communication for in-vehicle networks. It uses a bus 
architecture to connect Electronic Control Units (ECUs) 
within a vehicle that control and coordinate the various 
operations of the vehicle. This bus architecture significantly 
reduces the weight and complexity of the in-vehicle network 
compared to older point-to-point connections [8], [9]. CAN 
finds usage in critical vehicular subsystems such as 
powertrain and chassis that enable functions like power 
steering, braking and transmission [10].  

CAN is a multi-master, message-based communication 
protocol, which means that any node on a CAN bus can 
transmit frames, and all frames are received by all nodes on 
the bus. A CAN data frame consists mainly of an arbitration 
identifier (AID), a data length code (DLC), and a data field 
[11]. The AID identifies a data frame and the information 
contained in the data field. While an ECU may broadcast 
multiple AIDs, a particular AID is typically broadcast by only 
one ECU [12]. Every ECU also subscribes to a list of AIDs and 
only reads the data frames of received frames that match 
these AIDs. The DLC specifies the number of bytes in the 
subsequent data field of the frame. The data field, which can 
be up to 64 bits, encodes the information being conveyed by 
the frame and represents the frame’s payload.  

An ECU encodes values of a particular set of signals in the 
data field of each AID and transmits the latest signal values 
to update all other nodes of the bus and coordinate the 
operations of the vehicle. While most AIDs are broadcast at 
fixed frequencies, some AIDs may be event-triggered and 
broadcast occasionally. The signals associated with each AID 

and the way they are encoded in the data field are specified 
in the form of rules in a CAN database (DBC). Unlike the 
format of a CAN frame which is specified by the CAN 
protocol, the CAN DBC may vary among different vehicle 
makes and models and is often kept proprietary and 
confidential.  

Since any node on the CAN bus can transmit frames, CAN 
implements an arbitration mechanism when two nodes 
attempt to broadcast frames at the same time. In the event 
of bus contention, a frame with a lower-valued AID has 
higher priority and is broadcast first, while the higher-valued 
AID has lower priority and is retransmitted later. CAN has an 
error-handling mechanism implemented through cyclic 
redundancy checks and acknowledgement bits in the frame. 
It also has a method for error confinement to prevent errors 
from propagating in the bus whereby each node implements 
an error counter and is removed from the bus when the 
value of the error counter becomes too high (bus-off) [13], 
[14]. 

B. CAN Attack Model 

CAN was designed for in-vehicle networks at a time when 
they were isolated systems. The security of the in-vehicle 
network was less of a concern while low latency and 
reliability were prioritised for the protocol. As a result, CAN 
lacks key security features like encryption, authentication, 
authorisation and integrity [8]. The modern vehicle also has 
many communication interfaces that allow external access 
to the in-vehicle network and thus act as attack vectors. 
These two factors combine to make the vehicular CAN bus 
vulnerable to a range of cyberattacks.  

Cho & Shin [15] as well as Verma et al. [13] propose an 
attack model for the CAN bus which begins with the 
distinction between a weakly compromised node and a 
strongly compromised node. A weakly compromised node is 
one that an adversary has stopped from transmitting frames, 
while a strongly compromised node is one that the 
adversary has complete control over and can use to transmit 
malicious frames on the bus. This attack model categorises 
CAN bus attacks in the following manner:  

1)  Fabrication attacks:  Fabrication attacks represent the 
most common type of CAN bus attacks, whereby an attacker 
uses a strongly compromised node to inject malicious 
frames. These include the following attacks:  

 Denial of Service (DoS): A DoS attack is carried out by 
injecting frames with AID 0x000 and an arbitrary data 
field at a high frequency. This attack takes advantage 
of the CAN arbitration mechanism and prevents the 
broadcast of other legitimate frames. To evade 
security mechanisms in newer vehicles that prevent 
the transmission of frames with invalid AIDs, a DoS can 
be carried out by injecting the lowest-valued valid AID 
that appears in normal CAN traffic [8].  
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 Fuzzing: A fuzzing attack involves the injection of 
frames with random AIDs and payloads at a high 
frequency. While the injection of random AIDs 
generally disrupts the transmission of legitimate 
frames, the random AIDs can include valid AIDs which 
can confuse ECUs about the real values of signals.  

 Targeted ID or Spoofing: In a targeted ID attack, the 
adversary injects frames with a specific valid AID and 
manipulated payloads to cause ECUs that subscribe to 
the AID to malfunction. The fabricated frames may be 
injected at a high frequency in what is called a flooding 
delivery, or immediately following the appearance of 
legitimate frames of the same AID in a flam delivery. 
Both flooding and flam delivery achieve the same 
effect, but the latter does so with fewer fabricated 
frames. 

 Replay: A replay attack is carried out by capturing a 
sequence of frames from the CAN bus and injecting 
them again at a later point in time when the vehicle is 
in a different state.  

2)  Suspension:  A suspension attack involves weakly 
compromising a node on the CAN bus so that the node stops 
broadcasting CAN frames. This results in frames of the 
associated AIDs being missing from the bus traffic. A node 
can be prevented from broadcasting frames using any 
technique, such as by forcing it into the bus-off state [16]. 

3)  Masquerade:  A masquerade attack can be thought of 
as combining a suspension and a spoofing attack: legitimate 
transmissions of an AID are first suspended and then a 
malicious node injects spoofed frames of the same AID with 
manipulated payloads. This scenario is different from a 
spoofing attack where the fabricated frames appear 
alongside legitimate frames of the same AID, making it a 
more subtle, difficult-to-detect attack. 

C. Digital Twin 

The concept of digital twin (DT) was introduced by 
Grieves in 2003 who described it as “rich representations of 
products that are virtually indistinguishable from their 
physical counterparts” [17]. The DT concept model was 
described as including three components: physical objects, 
their virtual representations, and the data and information 
that connect these counterparts. From this early definition, 
the idea of what constitutes a digital twin has evolved [18], 
[19] but Guo et al. [20] find no consistent definition of DT in 
their survey. In the current literature, there are three levels 
of understanding of what a digital twin is that vary on the 
kind of interaction between the physical and virtual 
counterparts [18], [19]. The first may be described as a digital 
model where the virtual representation is built of a specific 
physical object, but there is no persistent flow of data 
between the two counterparts. The second may be 
described as a digital shadow, where there is a unidirectional 

flow of data from the physical twin to the virtual twin, with 
changes in the physical twin resulting in changes to the 
virtual twin. Finally, there is the fully integrated digital twin, 
represented in Fig. 1, where there is a bidirectional flow of 
data between the physical and virtual twin such that the 
virtual twin adapts to changes in the physical twin and 
provides feedback to the physical twin.  

While some works [18], [19] emphasise the real-time, 
bidirectional flow of data between the virtual and physical 
counterparts as a key component of digital twins, such 
stipulations are considered restrictive in [21]. VanDerHorn 
and Mahadevan [21] consider two factors that distinguish a 
DT from a digital model or a simulation: a DT represents a 
particular instance of a physical object (e.g. a specific vehicle) 
instead of the entire class of the physical object, and the 
flow of data from the physical object to the virtual object 
over time. Other requirements on the digital twin may be 
considered with respect to the use case for which a 
particular implementation is aimed.  

Digital twin technology is envisioned as an enabler of 
smart manufacturing and Industry 4.0. In the review of 
digital twin applications in the industry, [18] finds extensive 
applications of digital twins for product design, production, 
and product health management. Apart from these, DT can 
also be used for security applications such as in [22]. In this 
‘virtual testing’ application of DT, DT is akin to a “more 
realistic and accurate” simulation and is used to simulate 
and explore different attack scenarios that would cause 
damage to real systems [19]. 

III. LITERATURE REVIEW 

Intrusion detection systems (IDS) have emerged as a key 
mechanism for securing the vehicular CAN bus alongside 
encryption and authentication schemes. Current CAN IDS 
show a wide variety in the technique used for attack 
detection, ranging from relatively simpler statistical 
methods to advanced methods based on traditional 

 

 
Fig. 1 Interactions in a fully-integrated DT 
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machine learning (ML) as well as deep learning (DL) [23], 
[24]. CAN IDS also vary in terms of the features utilised for 
intrusion detection – an IDS may use the timing of CAN 
frames, sequences of AIDs, the payload of CAN frames, or 
any combination of these features for analysis and attack 
detection [10]. The in-vehicle network where a CAN IDS 
operates is distinct from conventional computer networks 
due to the limited computing capability of ECUs. The safety-
critical nature of the in-vehicle network also necessitates 
low false-positive and false-negative rates, as well as fast 
attack detection.  Therefore, in addition to meeting 
detection capability requirements measured using security 
metrics such as accuracy and F1-score, a CAN IDS should also 
meet non-functional requirements characterised by 
performance metrics such as detection latency [23].  

Many CAN IDS proposals are evaluated in offline 
experiments using publicly available CAN intrusion datasets 
whereby the proposed methods are used to analyse the 
dataset. Using such datasets allows reproducibility of results 
and comparison of different methods under similar 
experimental settings [23]. However, evaluation using 
datasets are restricted to the attack scenarios contained in 
these datasets, which do not contain realistic samples of 
advanced attacks such as suspension and masquerade [13], 
[23]. Furthermore, evaluations with these datasets do not 
allow robust assessment of non-functional properties like 
detection latency and resource consumption in a realistic 
environment. As such, it is necessary to move towards 
online methods of evaluations which can allow the 
assessment of both detection capability and performance in 
varied attack scenarios and in experimental settings closely 
resembling real in-vehicle networks. 

The best option for online testing is real vehicular CAN 
buses which are closest to real operating environments. 
Stachowski et al. [25] present an assessment methodology 
where CAN IDS products under test are integrated into a real 
vehicle for real-time performance evaluation. Three 
undisclosed anomaly-based CAN IDS products were 
evaluated in a vehicle on which various targeted ID attacks 
were performed while the vehicle was both stationary and 
in motion in a private test track. Their methodology 
encompasses both qualitative and quantitative metrics: 
while the quantitative metrics measure detection capability, 
the qualitative metrics include the effort required to 
integrate the IDS solution in a vehicle, flexibility of the 
solution, forensic capabilities, etc. However, only 
quantitative security metrics were reported, and 
performance metrics were not measured. There are further 
challenges associated with using real test vehicles. 
Conducting attacks on real vehicles runs the risk of 
permanently damaging the internal electronics. There is also 
a safety risk towards drivers, passengers, bystanders and 
surroundings [13], [26]. Furthermore, safely conducting 

security tests with a real vehicle also incurs significant costs, 
an example of which is a dynamometer used by Verma et al. 
[13] during CAN traffic collection. On the other hand, 
testbeds and simulations can mitigate these challenges by 
minimising the safety risks associated with running attack 
scenarios as well as minimising financial costs [26].  

A. CAN Security Testbeds and Simulations 

Numerous CAN testbeds and simulations have been 
developed for cybersecurity applications, such as for testing 
encryption schemes, reverse engineering, and penetration 
testing. Cros et al. [27] present a simulation platform called 
Cacao, aimed towards the evaluation of encryption and 
signature solution for CAN communications. Raspberry Pi 
devices are used to simulate nodes on a CAN network that 
has been used for monitoring bandwidth usage as a means 
of detecting brute-force attacks. Mundhenk et al. [28] also 
propose a discrete event simulator for assessing encryption 
schemes for CAN. Unlike Cacao, this platform was used to 
analyse real-time performance aspects like computation 
time and memory usage for authentication protocols. 

Zheng et al. [29] propose a testbed architecture for 
security analysis of a vehicular CAN network, which can be 
used to capture CAN bus traffic for analysis and to simulate 
attacks. It consists of a real-time CAN bus simulation along 
with an emulated infotainment system that was used to 
simulate a DoS attack. Fowler et al. [30] also propose a CAN 
testbed based on a commercial Hardware-in-the-loop (HIL) 
solution, which they use to perform a penetration test in a 
case study, where vehicle network vulnerabilities are 
exploited using a dongle connected to the On-Board 
Diagnostic (OBD-II) port. Instead of simulating complete 
vehicle functionality, Granata et al. [31] aim to simplify 
security testing by emulating the minimum set of 
components to effectively reproduce security vulnerabilities. 
Their hybrid CAN bus simulation system, called HybridgeCAN, 
is proposed as a low-cost testbed alternative to expensive 
hardware-in-the-loop (HIL) testing systems and real vehicles. 

Everett & McCoy [32] provide a software package and 
hardware framework as part of the Open Car Testbed and 
Network Experiments (OCTANE) testbed geared towards 
reverse engineering and testing of automotive networks. 
The software has a layered architecture, making it flexible 
and adaptable, while the hardware framework does not 
require specific hardware components. Portable 
Automotive Security Testbed with Adaptability (PASTA) [33] 
is another CAN testbed that focuses on white box ECUs 
which can be reprogrammed to set up the development 
environment as well as implement and test security 
solutions. It either disposes of or uses scaled-down versions 
of actuators and does not use expensive sensors to reduce 
cost and enhance safety and portability. A limitation of this 
testbed is that the software vehicle simulator does not 
reflect actual vehicle behaviour accurately. 
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While these testbeds are suitable for reverse-engineering, 
penetrating testing, and evaluating encryption methods, 
they do not focus on emulating realistic interaction among 
ECU nodes, hindering direct application for IDS evaluations.  

B. Testbeds and Simulations for CAN IDS Evaluation 

Compared to other cybersecurity applications, fewer 
testbeds and simulations are geared towards testing and 
evaluation of CAN IDS. A platform for evaluating CAN IDS 
employing various detection techniques and CAN bus traffic 
features would entail accurate simulation of CAN bus 
communications, not only in terms of the timing of 
messages but also the generation of realistic message 
payload data. 

A real-time vehicular CAN bus testbed is provided by 
Jadidbonab et al. (2021) which can be used for training and 
testing CAN IDS. A virtual car in the CARLA autonomous 
vehicle simulator serves as the source of physical data input 
to simulated ECUs in a virtual CAN bus implemented in 
Vector CANoe that generates CAN bus traffic. While the 
virtual car enables the generation of realistic driving 
scenarios, the virtual CAN bus can be connected to a physical 
CAN bus consisting of an attack and IDS nodes. A clustering-
based intrusion detection algorithm was tested against a 
targeted ID attack in two ways: offline, against a previously 
collected CAN bus log; and online, as a plug-and-play 
addition to the testbed. The classifier yielded lower accuracy 
and precision in the latter evaluation, which the authors 
discuss could be due to an overfitted model, inadequately 
representative training data, or issues with data parsing. 
However, the differences in the results underline the 
importance of performing online tests with CAN IDS. A 
limitation of this testbed is that it does not include 
bidirectional communication with the virtual car, i.e. the 
driving behaviour is not influenced by attacks on the virtual 
CAN bus. 

Jichici et al. [7] also use Vector CANoe in their framework 
that integrates adversary model and intrusion detection 
nodes in a simulated CAN bus. CAN bus logs collected from 
a real vehicle are replayed in the virtual CAN bus, while an 
application interface is developed that allows configuration 
and launching of fuzzing and targeted ID attacks. MATLAB is 
used in this framework to enable implementation of CAN 
IDS, with a k-Nearest Neighbor (kNN) classifier used to 
demonstrate CAN IDS evaluation. Both message interval and 
data fields of the CAN bus traffic were used as features for 
the classifier, which generally yielded very good detection 
results in terms of sensitivity, specificity, false negative rate 
(FNR) and false positive rate (FPR). While the usage of real-
world data in an industry-standard simulator makes for a 
realistic testbed, this testbed does not emulate ECUs. 
Furthermore, performance metrics like detection latency 
are not measured. 

Another CAN bus security testbed is provided by Shi et al. 
[34] which focuses on maintaining similarity in timing 
between real-world CAN messages and those generated in 
the testbed. A real CAN bus log is fed into an ECU Operation 
Centre which in turn feeds corresponding time series data to 
each emulated ECU on the testbed CAN bus. A collector 
module is also implemented which reads messages 
broadcast by the emulated ECUs to a testbed database. The 
simulation is evaluated for stability and effectiveness, with 
the testbed messages demonstrating a relative delay of 0.8% 
and a negligible packet loss. Using a dynamic time warping 
(DTW) algorithm, it is also found that the similarity between 
the real CAN log and the CAN log collected from the testbed 
is very high. While all the fabrication attacks as well as 
suspension and masquerade attacks are described and 
implemented in this testbed, they have not been analysed or 
used for any form of security testing in this work. 

An important limitation of these works is that they do not 
emulate the behaviour of ECUs. In other words, the 
simulations do not involve emulated ECUs that read data 
from the CAN bus. Therefore, attacks like fuzzing, targeted 
ID, and masquerade attacks that manipulate payloads of 
certain AIDs would not affect the payloads of other related 
AIDs. Analysis conducted in [35] using data from a CAN 
digital twin indicates that even during attacks, there is a 
correlation between messages containing related signals. In 
their example, an attack on messages containing vehicle 
speed is correlated with the change in engine speed. This 
implies that attacks targeting a particular AID affects 
messages of related AIDs as well, which would have a 
bearing on the performance of CAN IDS that analyse 
payloads. As such, a platform for simulating attacks on a 
CAN bus should be able to emulate the interactions between 
related ECUs for effective assessment of CAN IDS.  

C. Digital Twin for Automotive CAN  

Digital twin already finds diverse applications within the 
automotive field. Bhatti et al. [36] identify seven areas of 
application of digital twin technology in the automotive 
industry in their survey: (a) intelligent driver assistance, (b) 
autonomous navigation, (c) converters and inverters, (d) 
consumer centered development, (e) digital design and 
manufacturing, (f) health monitoring, and (g) battery 
management systems. In these application areas, DT is 
utilised to model all or some aspects of a vehicle’s functions 
and operations in a virtual representation, which can be 
used to predict and analyse the behaviour and state of the 
replicated functions in various scenarios. 

In the domain of automotive cybersecurity, digital twin-
based approaches have been presented for privacy 
assessment and enhancement [37] as well as automated 
software security testing [38]. However, while the concept 
of a digital twin has already been applied for intrusion and 
anomaly detection in industrial cyber-physical systems [39], 
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[40], it has not been sufficiently explored in the literature 
with regard to utility for intrusion detection for automotive 
systems. 

A DT-based approach to enable the design, 
implementation, and maintenance of vehicular wiring 
harnesses has been proposed in [41]. However, the use of 
DT for the simulation of in-vehicle networks remains a 
relatively nascent area of study. To enable use cases such as 
analysing effects of cyberattacks on in-vehicle networks and 
the development of security countermeasures, a digital twin 
of a real-world vehicular CAN bus called CarTwin is proposed 
by Popa et al. [35]. While previous work in this area focuses 
on replicating vehicle dynamics, this work replicates a real 
CAN bus in details like wire lengths, stub lengths, number of 
nodes, as well as data transmitted on the network. Seven 
different ECUs of the real CAN bus, related to power 
steering, instrument panel cluster, powertrain, etc., are 
emulated using MATLAB Simulink models implemented on 
development boards. These emulated ECUs not only 
broadcast CAN messages but also read CAN messages from 
the bus, thus simulating interactions of related subsystems 
on the CAN network. A software application with a user 
interface is used to provide input signals required by the ECU 
models. Experiments using signals from real CAN logs as 
input reveal a high correlation between output computed by 
the digital twin ECUs and the data in the real CAN log. The 
utility of this digital twin for security analysis is further 
demonstrated by an analysis of a targeted ID attack on the 
vehicle speed, where the authors find that messages 
communicating engine speed are also influenced. This is in 
contrast to a generic attack-free CAN log manipulated to 
simulate an attack, where there is no correlation between 
the targeted vehicle speed and the engine speed. However, 
this work does not focus on attack implementation or using 
the proposed DT for IDS evaluation. While CarTwin 
replicates a real-world CAN bus, it does not use the 
corresponding DBC for the CAN bus communications. 
Furthermore, an automatic flow of data from the physical 
CAN bus to the virtual representation is absent in this 
proposal, which makes it the ‘digital model’ level of DT.  

D. Research Gap 

An important limitation of prior CAN testbeds for IDS 
evaluation is that they lack ECU behaviour emulation. Since 
ECUs read and use data transmitted by other ECUs on the 
CAN bus, changes in a signal (e.g. braking signal) may result 
in changes in related signals (e.g. vehicle speed).  As such, a 
spoofing or masquerading attack that targets a particular 
AID does not impact only signals of the targeted AID but also 
related signals in other AIDs. Therefore, if this interaction 
among ECUs is not replicated in the CAN testbed, the 
generated CAN data payloads would not reflect real-world 
data and would not be appropriate for evaluating CAN IDS. 
The fidelity of generated payloads is especially significant for 

the evaluation of CAN IDS that utilise frame payloads and 
leverage correlation among signals for anomaly detection. 

While some works like [29], [35] implement ECU models 
to simulate ECU interactions, they are not geared towards 
IDS evaluations and do not implement diverse attack 
scenarios such as fuzzing or spoofing attacks. Simulations of 
driving scenarios in prior testbeds are also limited to 
replaying previously captured CAN traffic or generating CAN 
traffic with unrealistic signal values.  

The present work aims to address these gaps by not only 
emulating the functionality and interactions of a real-world 
vehicular CAN bus but also implementing unidirectional, 
real-time data flow from the physical CAN bus to its virtual 
representation. By emulating ECU behaviours, we can 
generate realistic CAN bus data in both normal and attack 
scenarios. Furthermore, the data flow from the physical to 
the virtual twin would allow us to examine the impact of 
different attacks in any driving scenario the physical vehicle 
is in. The present work is thus a step closer to a true digital 
twin which can be used for robust evaluation of CAN IDS 
that is reflective of their performance in a real car.  

IV. PROPOSED EVALUATION FRAMEWORK 

The DT-based evaluation framework proposed in this 
work seeks to address the need for high fidelity, low risk, 
and low-cost alternatives for evaluating CAN IDS against 
diverse attack scenarios. The scope of the proposed CAN DT 
is to simulate the behaviour of ECUs on the real-world CAN 
bus to enable the generation of CAN bus traffic that is 
realistic in terms of timing and frame payloads, in both 
normal and attacks scenarios. Towards achieving this, data 
and specifications from a real-world vehicular CAN bus are 
collected and used to understand architecture of the target 
CAN bus as well as the bus traffic that is to be simulated. This 
information is used to implement a virtual CAN bus with 
virtual ECUs that simulate the behaviour and interactions of 
their physical counterparts. This would enable the 
generation of realistic CAN bus traffic, particularly under 
attack scenarios that are too risky to be conducted on a real 
vehicle. The generated CAN traffic can thus be used to 
perform detection capability and performance assessments 
of CAN IDS. The proposed DT framework allows not just 
repeatable experiments for IDS evaluation, but also has the 
potential to generate attack traffic for different driving 
scenarios using unidirectional flow of data from the physical 
CAN bus to its virtual twin. The proposed CAN DT-based 
framework is described in further detail in the following 
subsections. 

A. Data Collection 

To implement a realistic DT simulation of a selected 
vehicular CAN bus, we identify the following information 
and data that should be collected:  
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1)  Sample CAN bus traffic: A sample of bus traffic collected 
from the target vehicular CAN bus is required to obtain the 
set of valid AIDs that are observed during normal operation 
as well as their normal observed transmission frequencies. 
In combination with the vehicle’s DBC, this sample also 
serves as the source of bus traffic for running repeatable 
simulations of normal and attack scenarios. For vehicles that 
allow it, this sample may be collected from a vehicle’s CAN 
bus via the OBD-II port. For other CAN buses not accessible 
via the OBD-II port, it is possible to tap the CAN bus and 
collect this data. We collected data from a Hyundai Sonata 
2018, which provides direct access to a CAN bus via its OBD-
II port. A sample of CAN bus traffic was collected with the 
aid of a Korlan USB2CAN adapter [42] which was used to 
connect a Linux laptop to the vehicle’s CAN bus via the OBD-
II port. The SocketCAN package in Linux provides the can-
utils library which includes the functionality to log traffic 
from a CAN bus with not just the AID, DLC, and data field but 
also the timestamp. 

2)  DBC: The DBC for a vehicle specifies the rules for how 
signal data are encoded in frames of each AID. As such, it 
provides information such as the signals that are encoded by 
each AID, along with the ECUs that transmit each AID and 
the expected receivers. Although the best case would be to 
obtain the DBC for the vehicle from the Original Equipment 
Manufacturer (OEM), DBCs are often proprietary and 
commonly confidential to hinder CAN bus hacking. In such a 
situation, open source DBCs contributed to repositories like 
opendbc [43] may be leveraged. For the Hyundai Sonata 2018, 
we find a corresponding DBC in opendbc, 
hyundai_2015_ccan.dbc, that is applicable to the vehicle’s 
CAN data. 

3)  Wiring diagram: The wiring diagram for the vehicle 
model, often part of auto mechanic manuals and available 
online, supplements the information that can be obtained 
from the DBC with respect to the wiring harness – the CAN 
bus segments that are present along with the number and 
functionality of ECUs on each segment. These details inform 
the architecture of the virtual CAN bus as well as the 
computational model that needs to be implemented for 
each virtual ECU.  

B. Data Analysis 

In this stage, the CAN bus traffic is analysed to examine (1) 
transmission frequencies of each AID, and (2) the 
relationships among signals transmitted by each AID.  

Frames of each AID are typically broadcast by only one 
ECU and at regular intervals [13]. The time interval for each 
AID, which is not specified in the DBC, should be obtained 
from the collected CAN bus sample by analysing each stream 
of AIDs so that the virtual representations of the respective 
ECUs can be modelled to perform transmissions at similar 
intervals.  

The DBC for the vehicle may be used to decode the signals 
transmitted in the captured CAN traffic. A pairwise 
correlation test performed among all the decoded signals 
from the dataset should reveal groups of signals showing 
high correlation among each other. Attacks targeting a 
particular AID, such as in a spoofing or masquerade attack, 
should result in changes not just to the signals of that AID, 
but also other AIDs with highly-correlated signals. These 
groups of correlated signals and AIDs can allow us to select 
a subset of ECUs if we are interested in a smaller scale 
simulation that can produce realistic changes under attack 
scenarios.  

The data analysis may be performed with any statistical 
packages, such as the pandas and numpy Python packages 
in our case. For the deserialising signals from CAN frames 
using the DBC, we use the cantools Python library that 
provides utilities for parsing DBC files, encoding and 
decoding signals, monitoring and plotting CAN signals [44].  

C. ECU Modelling 

After identifying the signals and AIDs of interest and the 
corresponding ECUs, the behaviour of these ECUs needs to 
be emulated with respect to their functionalities and data 
transmission. For each ECU, given the set of input and 
output signals, we need to implement the computation 
model that can generate output signals from input. The 
virtual counterpart of each ECU, thus, uses the DBC to 
decode input signals from received CAN frames, compute 
output signals, and then encode the output signals in frames 
for transmission. The virtual ECUs transmit their respective 
AIDs at the time intervals determined in the data analysis 
stage. The virtual ECUs are connected on a virtual CAN bus 
which serves as the digital twin of the real-world CAN bus. 
The virtual CAN bus is interfaced with the physical 
counterpart so that signals generated on the real CAN bus 
can be sent to the virtual CAN bus as input.  

We implement the virtual ECUs and CAN bus using the 
Vehicle Network Toolbox from MathWorks [45], which 
provides functions and blocks for CAN communication 
simulations.  This virtual CAN bus is bridged to the real-world 
CAN bus, which could be via the vehicle’s OBD-II port or, in 
the case of attack simulations repeated with a single driving 
scenario, a CAN bus prototype with an appropriate 
connector. If we consider a smaller scale DT whereby only a 
subset of ECUs are emulated, then frames transmitted by 
the other ECUs are replayed from the real CAN bus in the 
manner of a restbus simulation [35], [46].  
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D. Attack Implementation 

Once the virtual CAN bus twin is operational, the attack 
scenarios required for IDS evaluation may be implemented. 
In the attack model that we consider, most attacks require a 
strongly compromised node that is capable of injecting 
frames on the CAN bus. As such, an attack node is added to 
the virtual CAN bus which can be programmed to inject 
frames at appropriate frequencies and suspend 
transmissions for fabrication, suspension, and masquerade 
attacks. Given that the virtual CAN bus represents a white 
box system where the AIDs and signals associated with all 
functionalities are known, the attack node can be set to 
execute spoofing, suspension, and masquerade attacks that 
target specific functionalities and inject malicious frames 
with the targeted AID.  Executing DoS and fuzzing attacks 
are relatively simpler, and so is a replay attack, which entails 
capturing and replaying bus traffic from the real or virtual 
CAN bus.  

E. IDS Evaluation 

At this stage, the CAN DT may be used for IDS evaluation 
against different attack scenarios and in different driving 
scenarios. A node running the IDS as well as measuring 
evaluation metrics is added to the virtual DT for testing 
against the generated CAN traffic. The DT simulation can be 
run using either recorded sample of CAN bus traffic or real-
time CAN traffic from the physical CAN bus. The former case 
allows data collected during a particular driving scenario to 
be used to drive a simulation multiple times with different 

attack scenarios. With this, one or more IDS can be 
evaluated against multiple attacks to obtain statistically 
significant results. In the case of using real-time CAN traffic 
from the physical CAN bus, attacks can be run against the 
vehicular CAN bus while the vehicle is in different driving 
situations, e.g. stationary, driving at high speeds. This can 
allow the evaluation of any CAN IDS against a wide variety 
of attack and driving scenario combinations. 

While the DT can be used for real-time assessment of CAN 
IDS to measure both security and performance metrics, it 
can also be used to generate realistic attack datasets. 
Generated datasets used to evaluate a particular CAN IDS 
can also be made available along with the IDS so that future 
IDS proposals can be directly compared or benchmarked 
using the same datasets.  

V. FINDINGS AND DISCUSSION 

As mentioned previously, we begin with collecting a sample 
of data from a Hyundai Sonata 2018. Approximately 14 
minutes of driving data was collected while it was driven on 
urban roads. The collected data consisted of a total of 
1,754,253 CAN frames, averaging 2054.82 frames 
transmitted per second. A total of 61 unique AIDs were 
found in this log. In Fig. 2 which shows the number of frames 
of each AID, we can see that, with some exceptions, frames 
with lower-valued AIDs appear the most on the CAN bus. 
This can be a result of the arbitration mechanism whereby 
lower-valued AIDs have higher priority for transmission and 
higher-valued AIDs have to wait for retransmission in the 
event of bus contention. Lower-valued AIDs are therefore 

 

Fig. 2 Number of CAN frames by AID 
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always able to broadcast, while high-valued AIDs are 
transmitted fewer times due to lost arbitration in some 
situations.  

A. Timing Analysis 

We divided the collected CAN bus log into streams of 
frames of each AID and calculated the time interval for each 
frame. The time interval for a frame can be described as the 
period of time between the transmission of the frame and 
the transmission of the previous frame of the same AID. 
From these, we calculated the average time interval as well 
as the maximum percentage of deviation from the mean for 
each AID. 

Apart from a few AIDs that appear at intervals of 1-2 
seconds, a majority of the AIDs (50) in the CAN bus log were 
broadcast at time intervals under 0.2 seconds. In Fig. 3 which 
provides a distribution of these AIDs by average time 
interval, we can see that the time intervals even among 
these AIDs vary in magnitude and scale, ranging from 0.01 to 
0.2 second.  

The maximum percentage error from the mean time 
interval was calculated for each AID stream to understand 
the regularity of the CAN bus transmissions. As can be 
observed in Fig. 4, the largest number of AIDs show under 
40% deviation from the average time interval, indicating that 
these are transmitted at reliably regular intervals. A smaller 
number of AIDs show greater variation, which is indicative 
of irregular or event-triggered transmissions. Variations in 
time intervals also arise from ECUs losing arbitration to 
higher-priority frame and having to wait to attempt 
retransmission of lower-priority frames.  

It is important for any CAN bus modelling effort to take 
into consideration these timing features in CAN traffic. While 
lower-valued AIDs may always be transmitted at regular 
intervals without losing arbitration and without having 
frames delayed, higher-valued AIDs may lose arbitration and 
show delayed transmissions more often. These differences 
in timing characteristics are relevant considerations for 
timing- and frequency-based CAN IDS, which detect 
deviations from normal patterns in time intervals or 
frequencies. In the event of DoS or fuzzing attacks, it is 
expected for time intervals of legitimate frames to increase 
as the injected frames hinder normal transmissions, while a 
spoofing attack would cause time intervals of the targeted 
AID to decrease. Overall, a faithful CAN bus model should 
not only incorporate the dynamics of frame timing under 
normal operation, but also during different attack scenarios, 
for more accurate CAN IDS evaluations.   
  

 

Fig. 3 Distribution of AIDs by average time interval, excluding AIDs with 
average time intervals greater than 0.25 second 

 

 

Fig. 4 Distribution of AIDs by maximum percent error from average time 
interval 

 
TABLE 1  

SENDER ECUS FOUND IN COLLECTED CAN LOG 

Acronym 
in DBC 

Full name 

DATC Dual Automatic Temperature Control 

BCM Body Control Module 

TCU Transmission Control Unit 

ESC Electronic Stability Control 

EMS Engine Management System 

MDPS Motor Driven Power Steering 

ABS Anti-lock Brake System 

CLU Cluster Module 

ACU Airbag Control Unit  

FPCM Fuel injection Pump Control Module 

LCA Lane Centering/Change Assist 

ODS Occupant Detection System 
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B. Signal Analysis 

The data collected from the Hyundai Sonata 2018 
consisted of CAN data frames with payloads in raw bytes. To 
deserialise the signals encoded in these data frames, we use 
the hyundai_2015_ccan.db file from opendbc, using which we 
are able to deserialise signals for 48 AIDs. These 48 AIDs are 
transmitted by 12 ECUs responsible for different subsystems, 
which are listed in Table 1. 

The cantools library was used to deserialise signals from 
the CAN log using the aforementioned DBC file to yield a 
total of 627 signals. Of these signals, 493 signals remain 

constant throughout the CAN bus log, leaving 134 signals for 
analysis. We visualise the steering angle signal from AID 
0x2B0, transmitted by the MDPS ECU in Error! Reference 
source not found. as well as the individual wheel speeds 
from AID 0x386, transmitted by the ABS ECU in Fig. 6.  

To understand how different signals are related to each 
other and identify groups of correlated signals, we perform 
a pairwise Pearson correlation test on the non-constant 134 
signals and generate a correlation heatmap, which is 
available at [47]. Signals showing a magnitude of correlation 
coefficient higher than 0.5 are listed in Table 2.  The signals 
in the heatmap are reorganised by applying hierarchical 
agglomerative clustering with complete linkage, to facilitate 
the identification of signal clusters showing high 
correlations. While it may be expected to find correlations 
among signals originating from the same ECUs, we see in 
this heatmap significant correlations among signals 
originating from different AIDs and ECUs. An example is 
wheel speed signals from ABS AIDs showing a high positive 
correlation with signals from TCU and EMS ECUs. These 
correlations indicate that it is possible for changes in a signal 
to result in changes in other related signals. This is due to the 
fact that each ECU uses data transmitted by other ECUs as 
input for its respective functions and in turn, transmits 
signals that are used by other ECUs.  

The correlation among related signals should also be 
maintained in attack scenarios like spoofing and 
masquerade where fabricated frames with manipulated 
payloads are injected to provide false information to ECUs. 
In this situation, when ECUs read and use the spoofed values 
of signals in the malicious frames, the anomaly cascades into 
the data transmitted by these ECUs. Such effects of attacks 
on CAN bus traffic are not captured in other methods of 
generating CAN bus data such as augmentation of benign 
CAN bus logs or testbeds that do not emulate ECU behaviour 
[35]. In such methods, the injected frames do not produce 
any changes in related frames, which is different from what 
would be observed in a real CAN bus and is thus not useful 
for evaluating CAN IDS particularly based on analysing frame 
payloads. 

VI. CONCLUSIONS AND FUTURE WORK 

Using real vehicles for attack simulation and security 
testing can be restrictive in terms of the associated costs, 
safety risks, and attack scenarios that can be conducted. 
While testbeds and simulations do not have these 
challenges, they do not provide sufficient fidelity for the 
assessment of CAN IDS that use different features of CAN 
bus traffic. An important limitation of current testbeds and 
simulations is that they do not emulate the interaction of 
ECUs or generate realistic CAN traffic. This work aims to 
address these gaps by proposing a DT-based evaluation 
framework for CAN IDS which can be used to generate 
diverse attack scenarios and perform detection capability 
and performance evaluations of CAN IDS. This CAN DT 
models a real-world CAN bus at the ECU level and interfaces 
with the real-world bus for data to drive the DT simulation. 
Not only can it allow repeatable simulations of attack 

 

Fig. 5 Steering angle signal from AID 0x2B0 

 

 

Fig. 6 Individual wheel speed signals from AID 0x386 
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scenarios for statistically significant IDS evaluations, but, 
with the flow of data from the real to the virtual CAN bus, it 
can be used to generate any combination of attack and 
driving scenarios for a thorough assessment of CAN IDS that 
is reflective of performance in the real-world. Towards 
building the DT of a real CAN bus, we collected data from a 

Hyundai Sonata 2018 and analysed timing and signal data to 
understand patterns that are relevant to intrusion detection 
and ECU modelling.  

There are several challenges with the proposed CAN DT 
for CAN IDS evaluation. Firstly, it relies on the vehicle DBC, 
which is not always available for all vehicle models. While we 

TABLE 2  
SIGNALS WITH ABSOLUTE CORRELATION COEFFICIENT GREATER THAN 0.5  

No. Signal AID Sender Highly correlated signals 

1 CR_Datc_OutTempF 044 DATC 59, 83 

2 CF_Tcu_Alive1 111 TCU 10, 15 

3 N_TC 111 TCU 8, 7, 12, 21, 23, 45, 42, 51, 50, 65, 64, 63, 62, 69, 71, 80, 84, 85, 86, 89 

4 SWI_CC 111 TCU 9, 7, 12, 36, 47, 42, 65, 64, 63, 62, 69, 71, 85 

5 SWI_GS 111 TCU 16 

6 TEMP_AT 111 TCU 53, 68, 74, 75, 77, 90 

7 VS_TCU 112 TCU 3, 4, 9, 8, 12, 21, 23, 36, 45, 42, 65, 64, 63, 62, 69, 71, 80, 84, 85 

8 N_TC_RAW 112 TCU 3, 7, 12, 21, 23, 45, 42, 51, 50, 65, 64, 63, 62, 69, 71, 80, 84, 85, 86, 89 

9 CUR_GR 112 TCU 4, 7, 12, 36, 42, 65, 64, 63, 62, 69, 71, 85 

10 CF_Tcu_Alive 112 TCU 2, 15 

11 N_INC_TCU 112 TCU 13 

12 CF_Tcu_TarGr 113 TCU 3, 4, 9, 8, 7, 21, 36, 42, 65, 64, 63, 62, 69, 71, 85 

13 N_TGT_LUP 113 TCU 11 

14 CF_Tcu_ShfPatt 113 TCU 38, 54 

15 CF_Tcu_Alive3 113 TCU 2, 10 

16 CF_Tcu_ITPhase 113 TCU 5 

17 AliveCounter_TCS1 153 ESC 18 

18 CheckSum_TCS1 153 ESC 17 

19 CF_Esc_AliveCnt 164 ESC 20, 29 

20 CF_Esc_Chksum 164 ESC 19, 29 

21 R_NEngIdlTgC 18F EMS 3, 8, 7, 12, 23, 45, 42, 51, 50, 65, 64, 63, 62, 69, 71, 80, 84, 85, 86, 89 

22 R_PAcnC 18F EMS 60, 61, 73, 76 

23 CF_Ems_PumpTPres 200 EMS 3, 8, 7, 21, 40, 45, 42, 51, 50, 65, 64, 63, 62, 69, 71, 80, 84, 85, 86, 89 

24 FCO 200 EMS 35, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89 

25 LONG_ACCEL 220 ESC 40, 35, 37, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89 

26 YAW_RATE 220 ESC 27, 30, 31, 32, 41, 56 

27 LAT_ACCEL 220 ESC 26, 30, 31, 32, 41, 56 

28 CYL_PRES 220 ESC 52, 72, 87 

29 ESP12_Checksum 220 ESC 19, 20 

30 CR_Mdps_OutTq 251 MDPS 27, 26, 31, 32, 41, 56 

31 CR_Mdps_StrColTq 251 MDPS 27, 26, 30, 32, 41, 56 

32 CR_Mdps_StrTq 251 MDPS 27, 26, 30, 31, 41, 56 

33 TQI_TARGET 260 EMS 24, 25, 40, 35, 37, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89 

34 TQI_MAX 260 EMS 46, 48, 87 

35 TQI 260 EMS 24, 25, 40, 37, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89 

36 SPK_TIME_CUR 260 EMS 4, 9, 7, 12, 47, 42, 65, 64, 63, 62, 69, 71, 81, 85 

37 TQI_MIN 260 EMS 25, 35, 33, 44, 43, 51, 50, 82, 86, 88, 89 

38 CRUISE_LAMP_S 260 EMS 14, 54 

39 CRUISE_LAMP_M 260 EMS 75, 77, 90 

40 CF_Ems_AclAct 260 EMS 23, 25, 35, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88, 89 

41 SAS_Angle 2B0 MDPS 27, 26, 30, 31, 32, 56 

42 VS 316 EMS 3, 4, 9, 8, 7, 12, 21, 23, 36, 45, 65, 64, 63, 62, 69, 71, 80, 84, 85 

43 TQI_ACOR 316 EMS 24, 25, 40, 35, 37, 33, 45, 44, 51, 50, 82, 84, 86, 88, 89 

44 TQI 316 EMS 24, 25, 40, 35, 37, 33, 45, 43, 51, 50, 82, 84, 86, 88, 89 

45 N 316 EMS 3, 8, 7, 21, 23, 24, 25, 40, 35, 33, 44, 43, 42, 51, 50, 65, 64, 63, 62, 69, 80, 82, 
84, 85, 86, 89 
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use an open-source DBC for our vehicle, such DBC is not 
available for all car models, which restricts the number of 
vehicles to which this methodology can be applied.  

Moreover, the implementation of data flow between the 
physical CAN bus and the device hosting its virtual twin may 
introduce a new attack vector and raise security and privacy 

concerns. This attack vector could potentially be exploited 
to sniff the physical CAN bus and steal data revealing 
information such as driving behaviour or conduct attacks on 
the physical CAN bus that interfere with normal operation. 
It is necessary to implement security measures while 
establishing communication between the physical and 

TABLE 2 (CONTD.) 
SIGNALS WITH ABSOLUTE CORRELATION COEFFICIENT GREATER THAN 0.5  

No. Signal AID Sender Highly correlated signals 

46 RATIO_TQI_BAS_MAX_STND 316 EMS 34 

47 PUC_STAT 316 EMS 4, 36, 81 

48 TQFR 316 EMS 34 

49 TEMP_ENG 329 EMS 59, 83 

50 TPS 329 EMS 3, 8, 21, 23, 24, 25, 40, 35, 37, 33, 45, 44, 43, 51, 82, 84, 86, 88, 89 

51 PV_AV_CAN 329 EMS 3, 8, 21, 23, 24, 25, 40, 35, 37, 33, 45, 44, 43, 50, 82, 84, 86, 88, 89 

52 BRAKE_ACT 329 EMS 28, 72, 87 

53 MAF_FAC_ALTI_MMV 329 EMS 6, 68, 74, 75, 77, 90 

54 ACC_ACT 329 EMS 14, 38 

55 MUL_CODE 329 EMS 66 

56 CR_Mdps_DrvTq 381 MDPS 27, 26, 30, 31, 32, 41 

57 CF_Fatc_ChkSum 383 DATC 58 

58 CF_Fatc_MsgCnt 383 DATC 57 

59 CR_Fatc_OutTemp 383 DATC 1, 49, 83 

60 CR_Fatc_OutTempSns 383 DATC 22, 61, 73, 76 

61 CR_Fatc_TqAcnOut 383 DATC 22, 60, 73 

62 WHL_SPD_RR 386 ABS 3, 4, 9, 8, 7, 12, 21, 23, 36, 45, 42, 65, 64, 63, 69, 71, 80, 84, 85 

63 WHL_SPD_RL 386 ABS 3, 4, 9, 8, 7, 12, 21, 23, 36, 45, 42, 65, 64, 62, 69, 71, 80, 84, 85 

64 WHL_SPD_FR 386 ABS 3, 4, 9, 8, 7, 12, 21, 23, 36, 45, 42, 65, 63, 62, 69, 71, 80, 84, 85 

65 WHL_SPD_FL 386 ABS 3, 4, 9, 8, 7, 12, 21, 23, 36, 45, 42, 64, 63, 62, 69, 71, 80, 84, 85 

66 WHL_SPD_AliveCounter_MSB 386 ABS 55 

67 CF_Ems_ModeledAmbTemp 492 EMS 70, 76 

68 CR_Ems_EngOilTemp 492 EMS 6, 53, 74, 77, 90 

69 CF_Clu_Vanz 4F1 CLU 3, 4, 9, 8, 7, 12, 21, 23, 36, 45, 42, 65, 64, 63, 62, 71, 80, 84, 85 

70 CF_Clu_DTE 50C CLU 67, 73, 76 

71 CF_Clu_VehicleSpeed 52A CLU 3, 4, 9, 8, 7, 12, 21, 23, 36, 42, 65, 64, 63, 62, 69, 80, 84, 85 

72 BAT_Alt_FR_Duty 545 EMS 28, 52, 87 

73 TEMP_FUEL 545 EMS 22, 60, 61, 70, 76 

74 AMP_CAN 545 EMS 6, 53, 68, 75, 77, 90 

75 CTR_CDN_OBD 547 EMS 6, 39, 53, 74, 77, 90 

76 IntAirTemp 547 EMS 22, 60, 67, 70, 73 

77 STATE_DC_OBD 547 EMS 6, 39, 53, 68, 74, 75, 90 

78 BAT_SOH 549 EMS 79 

79 BAT_SOC 549 EMS 78 

80 CR_Fpcm_LPActPre 555 FPCM 3, 8, 7, 21, 23, 45, 42, 65, 64, 63, 62, 69, 71, 84, 85 

81 PID_03h 556 EMS 36, 47 

82 PID_04h 556 EMS 24, 25, 40, 35, 37, 33, 45, 44, 43, 51, 50, 84, 86, 88, 89 

83 PID_05h 556 EMS 1, 49, 59 

84 PID_0Ch 556 EMS 3, 8, 7, 21, 23, 24, 25, 40, 35, 33, 45, 44, 43, 42, 51, 50, 65, 64, 63, 62, 
69, 71, 80, 82, 85, 86, 89 

85 PID_0Dh 556 EMS 3, 4, 9, 8, 7, 12, 21, 23, 36, 45, 42, 65, 64, 63, 62, 69, 71, 80, 84 

86 PID_11h 556 EMS 3, 8, 21, 23, 24, 25, 40, 35, 37, 33, 45, 44, 43, 51, 50, 82, 84, 88, 89 

87 PID_07h 557 EMS 28, 34, 52, 72 

88 PID_0Bh 557 EMS 24, 25, 40, 35, 37, 33, 44, 43, 51, 50, 82, 86, 89 

89 PID_23h 557 EMS 3, 8, 21, 23, 24, 25, 40, 35, 37, 33, 45, 44, 43, 51, 50, 82, 84, 86, 88 

90 CF_Clu_Odometer 5B0 CLU 6, 39, 53, 68, 74, 75, 77 
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digital twin to ensure that these threats do not become a 
reality. Finally, it is also pertinent to explore resource 
utilisation of the virtual twin, especially if we are interested 
in scaling up the virtual representation by increasing the 
number of ECUs that are emulated in the virtual CAN bus.  

Implementation of the CAN DT using insights gathered 
from data analysis and validating the accuracy of generated 
CAN bus traffic remain as future work. 
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