
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.490

118

A Comparative Performance of Different Convolutional
Neural Network Activation Functions on Image Classification

Muhammad Zulhazmi Rafiqi Azhary, Amelia Ritahani Ismail*
Department of Computer Science, Kulliyyah of Information and Communication Technology,

International Islamic University Malaysia, Kuala Lumpur, Malaysia

*Corresponding author amelia@iium.edu.my
(Received: 8th June 2024; Accepted: 16th July 2024; Published on-line: 30th July 2024)

Abstract— Activation functions are crucial in optimising Convolutional Neural Networks (CNNs) for image
classification. While CNNs excel at capturing spatial hierarchies in images, the activation functions
substantially impact their effectiveness. Traditional functions, such as ReLU and Sigmoid, have drawbacks,
including the "dying ReLU" problem and vanishing gradients, which can inhibit learning and efficacy. The
study seeks to comprehensively analyse various activation functions across different CNN architectures to
determine their impact on performance. The findings suggest that Swish and Leaky ReLU outperform other
functions, with Swish particularly promising in complicated networks such as ResNet. This emphasises the
relevance of activation function selection in improving CNN performance and implies that investigating
alternative functions can lead to more accurate and efficient models for image classification tasks.

Keywords— Activation Functions, Convolutional Neural Network , Image Classification

I. INTRODUCTION

Convolutional Neural Networks (CNNs) is a common
machine learning algorithm used for image classification
tasks. Image inputs are suitable for CNNs because of their
ability to capture spatial hierarchies through convolutional
layers. There are several factors that affect the effectiveness
of a CNN in learning complex image patterns and features;
this includes the CNN architecture, optimisation algorithms,
and hyperparameters such as activation functions [1].

Activation functions are an important factor that impact
the performance of neural networks. This is because they
introduce non-linearity into the model. As such, they enable
the model to learn from complex data and performs
machine learning tasks such as classification. Currently,
there are various activation functions that have been
developed and are available to be used. These activation
functions have their own strengths and limitations over each
other. The most commonly used activation functions include
Rectified Linear Unit (ReLU), Sigmoid, Tanh, Leaky ReLU,
Exponential Linear Unit (ELU), and a recently proposed
Swish [2][10].

The purpose of this study is to provide an extensive
analysis of these activation functions across different CNN
architectures on image classification tasks. We intend to
discover further on how the selection of activation function
affects the effectiveness of CNNs by systematically
evaluating the performance of a simple CNN, VGG-like CNN,
and ResNet-like CNN models using an array of activation

functions. Our evaluations are done on the CIFAR-10
image dataset.

The findings of this study will assist researchers
in selecting optimal activation functions for their CNN
models. This will result in a more accurate and efficient
neural networks for image classification.

II. RELATED WORK

This study presents Cone and Parabolic-Cone activation
functions, which outperform ReLU and Sigmoidal functions
on CIFAR-10 and Imagenette benchmarks. These new
functions enable finer input space division, improving
accuracy and training speed with fewer neurons [1]. This
suggests a potential shift in neural network design, as they
provide superior performance and efficiency compared to
traditional ReLU and Sigmoidal functions, particularly for
complex, non-linear datasets.

This study compares past and current functions, noting
that while ReLU excels in classification, it struggles in
physics-informed tasks. Alternatives functions like
hyperbolic tangent, Swish, and sine, especially adaptive
ones, perform better in complex scenarios [2]. This is
because they offer smoother gradients and better
adaptability for complex and physics-informed problems
compared to ReLU, which can struggle with gradient
consistency and specific task requirements.

This study introduces the "seagull" activation function,
which, when used in layers handling exchangeable variables,
greatly improves performance and reduces errors, even for

https://doi.org/10.31436/ijpcc.v10i2.490
mailto:amelia@iium.edu.my

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.490

119

high-dimensional data like CIFAR10 [3]. It can notably
enhance neural network performance and error reduction,
making it a valuable approach for both low and high-
dimensional data.

This study surveys activation functions (AFs) in deep
learning, covering types like Logistic Sigmoid, Tanh, ReLU,
ELU, Swish, and Mish. It reviews their characteristics and
compares the performance of 18 AFs across different
networks and datasets to help researchers and practitioners
choose the best options [4]. The survey highlights that
understanding and choosing the right activation function is
crucial for optimising neural network performance, as
different functions offer distinct advantages depending on
the network and dataset.

This study finds that combining ReLU, tanh, and sin
activation functions can optimise neural network
performance. ReLU is dominant, but initial layers favor ReLU
or LeakyReLU, while deeper layers perform better with
more convergent functions [5]. This suggests that the
practice of optimising activation functions by combining
different types can enhance neural network performance,
with ReLU being dominant in early layers and more
convergent functions benefiting deeper layers.

This study introduces Saturated Gaussian Error Linear
Units (SGELU), SSiLU, and SMish, new activation functions
that combine ReLU with non-monotonic functions.
Experiments on CIFAR-100 show these functions
outperform existing activation functions in various deep
learning models [6]. This can significantly enhance
performance in deep learning models, as demonstrated by
their superior results on CIFAR-100.

This study offers an updated overview of popular
activation functions, addressing their properties and
evolution from traditional ones like logistic and ReLU to
newer functions. It serves as a useful resource for
understanding and applying activation functions in neural
networks [7]. This indicates that understanding the
properties and evolution of both traditional and new
activation functions is crucial for effectively applying them
in neural networks and deep learning.

This study introduces four new oscillatory activation
functions that allow neurons to learn functions like XOR and
outperform popular functions in classification tasks. These
functions also address the vanishing gradient problem,
which occurs when gradients become too small during
backpropagation, preventing proper weight updates and
training. The paper also discusses various activation
functions, including the widely used sigmoid function,
known for its nonlinearity and computational efficiency [8].
This enhances learning and performance in neural networks
by overcoming the vanishing gradient problem, offering
improvements over traditional functions like sigmoid.

This study examines how ReLU activation functions
contribute to vulnerabilities in deep learning models to
adversarial examples. It proposes a modified ReLU function
that enhances robustness against such attacks and shows
through experiments that this modification, combined with
adversarial training, improves model resilience [9]. This
suggests that by modifying ReLU activation functions, it can
improve deep learning models' resilience to adversarial
attacks, and combining this with adversarial training further
enhances robustness.

This study compares a CNN using Swish activation (76%
accuracy) with one using Adaptive Piecewise Linear
activation (74.4%) for skin cancer detection, showing that
Swish as a separate layer improves accuracy and reduces
loss [10]. This indicates that using Swish activation as a
separate layer in a CNN for skin cancer detection improves
accuracy and reduces loss compared to using Adaptive
Piecewise Linear (APL) activation, demonstrating the
effectiveness of Swish in enhancing model performance.

Fig. 1 shows a comparison between six different
activation functions used in neural networks: ReLU, Sigmoid,
Tanh, Leaky ReLU, ELU, and Swish. These functions are
critical for defining how neurons in a neural network
activate, which affects the model's learning ability and
performance. It depicts how each function converts input
values (x-axis) to output values (y-axis). ReLU (blue line)
activates only positive inputs and outputs them directly,
whereas Sigmoid (green dashed line) and Tanh (red dashed
line) squish inputs to a range of (0, 1) and (-1, 1), respectively,
yielding smooth gradients but potentially vanishing
gradients. Leaky ReLU (purple dotted line) introduces a
slight slope for negative inputs, which alleviates the dying
ReLU problem.

Fig. 1 Activation functions graphs comparison

III. METHODOLOGY

https://doi.org/10.31436/ijpcc.v10i2.490

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.490

120

A. Dataset

The image dataset used in this experiment is CIFAR-10. This
dataset consists of 60,000 colour images with an image size
of 32 px x 32 px. It has 10 classes, with 6,000 images per class.
It is a common dataset used for image classification
algorithms benchmark due to the diversity of its classes and
a relatively small image size.

B. Data Preprocessing

The image dataset was transformed to tensors and
normalised with a mean and standard deviation of 0.5 for
each colour channels.

C. Model Architectures

 Simple CNN: This architecture includes two
convolutional layers with the following parameters:
filters of [32, 64], kernel size of 3, stride and padding
of 1. Then, activation functions are applied to the
convolutional layers, followed by a max pooling layer
with a kernel size and stride of 2. Finally, a fully
connected layer with filters of 512 for classification. It
serves as a baseline model to assess basic
performance of activations functions.

 VGG-like CNN: This architecture is based on the VGG
architecture, it incorporates several convolutional
layers with the following parameters: filters of [64, 128,
256], kernel size of 3, and padding of 1. Then, each
convolutional blocks are followed by activation
functions and max pooling layers with a kernel size of
2 and stride of 2. It ends with three fully connected
layers with filter of 512, followed by activation
functions for the first two layers. This architecture
aims to capture more complex features and evaluate
the impact of activation functions in deeper networks.

 ResNet-like CNN: This architecture is based on the
ResNet architecture, it includes residual blocks that
allow for deep networks by addressing the vanishing
gradient problem through skip connections. The
convolutional layers in the model have filters of [64,
128, 256, 512] with a kernel size of 3, stride and padding
of 1. Then, followed by batch normalisation layers and
activation functions. Before passing into the final fully
connected layer, the output wen through an average
pooling layer. This architecture is used to investigate
the performance of activation functions in very deep
networks.

D. Activation Functions

 ReLU: It outputs the input directly if it is positive;
otherwise, it outputs zero. While it is effective in many
situations, it can suffer from the "dying ReLU" issue,
where neurons can become inactive and stop learning
if they consistently receive negative inputs.

 Sigmoid: It outputs values between 0 and 1, making it
useful for binary classification tasks as it can be
interpreted as a probability. However, in deep
networks, it often encounters vanishing gradients due
to its tendency to saturate at the extremes, which can
slow down the learning process.

 Tanh: It outputs values between -1 and 1, providing
stronger gradients compared to sigmoid. This helps
with learning in deeper networks, but it still suffers
from gradient saturation at its extreme values, which
can hinder training speed and effectiveness.

 Leaky ReLU: It addresses the "dying ReLU" issue by
allowing a small, non-zero gradient when the input is
negative. This adjustment helps prevent neurons from
becoming inactive, maintaining learning efficiency
while preserving the simplicity and speed of ReLU.

 ELU: It offers a smooth gradient for negative inputs,
which helps mitigate the vanishing gradient issue. It
allows for a more gradual learning curve by providing
a small gradient when the input is negative, which can
lead to faster and more stable training.

 Swish: It combines the input with a sigmoid function
applied to that input, creating a smooth and non-
monotonic activation function. This characteristic
often results in better performance and training
efficiency compared to tradition functions like ReLU,
especially in deeper networks.

E. Experimental Setup

Each CNN architecture was trained using each activation
function on CIFAR-10 dataset. All models were trained using
the same set of hyperparameters as shown in Table I. This is
done to keep the differences in results solely dependent to
the changes of activation function used in the training;
hence, ensuring a fair comparison.

TABLE I
CONSTANT HYPERPARAMETERS VALUES FOR EXPERIMENT

 Hyperparameter

Optimizer Adam

Criterion Cross-Entropy

Learning rate 0.001

Batch size 64

Epochs 15

F. Performance Evaluation Metrics

Results from this experiment is evaluated using a test set
consisting of 10,000 images from CIFAR-10 with the
following metrics: accuracy and loss. Accuracy would
indicate the overall effectiveness of the model in predicting
correct labels, while the loss value computed using the
cross-entropy loss function providing insights how well the
predictions of the model align with the true labels.

https://doi.org/10.31436/ijpcc.v10i2.490

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.490

121

IV. RESULTS AND DISCUSSION

The results obtained from the experiment provide an
extensive evaluation of the impact of different activation
functions on three distinct CNN architectures: Simple CNN,
VGG-like CNN, and ResNet-like CNN, with the CIFAR-10
dataset. The Adam optimiser, cross-entropy loss, a batch
size of 64, 15 epochs, and a learning rate of 0.001 are the
constant hyperparameters used throughout every
experiment. These constant settings enable a fair
comparison of the activation functions' performance.

Table II shows that ReLU, Tanh, and Leaky ReLU achieved
reasonably high test accuracies of 70.96%, 71.30%, and 72.57%,
respectively with the simple CNN. Despite the constant
hyperparameters, all activation functions demonstrated
varying levels of success, most likely due to their unique
mathematical features. Leaky ReLU slightly beat the others
in terms of test accuracy, whereas Tanh had the smallest
train loss of 0.0017, indicating efficient training. However,
Sigmoid and ELU performed poorly, with Sigmoid getting
the lowest accuracy of 66.88% and ELU having the largest
test loss of 2.382. Swish performed moderately, with a test
accuracy of 71.58%, suggesting a modest improvement over
ReLU but a greater test loss.

Table III indicates that Swish and Leaky ReLU
outperformed other VGG-like CNNs, with test accuracies of
75.84% and 78.67%, respectively. Swish's smooth and non-
monotonic characteristics resulted in a considerably
decreased train loss, indicating effective gradient flow and
better convergence. This performance highlights the
potential of novel activation functions such as Swish in
deeper networks. However, Sigmoid underperformed
significantly, with a test accuracy of 10.00%, showing that it
failed to train successfully in this more complex design, most
likely due to issues such as vanishing gradients and
ineffective convergence.

Table IV shows that ReLU and Swish had the highest test
accuracies of 84.03% and 84.43%, respectively for the
ResNet-like CNN. Swish outperforming ReLU marginally in
terms of train and test losses. The residual connections of
ResNet-like architectures take advantage of Swish's
characteristics, resulting in greater performance. ELU also
produced competitive results, with an accuracy of 83.14%
and minimal train and test losses. Sigmoid continues to
underperform, supporting the argument that it may not be
appropriate for such architectures.

Across all three CNN architectures, the consistent
performance of ReLU and its variations (Leaky ReLU and
ELU) demonstrates their dependability in different
situations. Swish emerged as a formidable competitor,
especially in complex architectures such as ResNet, where it
achieved the best overall performance. The significant
underperformance of Sigmoid in the VGG-like CNN, with a

test accuracy of only 10.00%, implies that its fundamental
constraints, such as gradient saturation and slower
convergence, are not properly compensated by the
constant hyperparameters employed.

TABLE II
PERFORMANCE EVALUATION RESULTS FOR SIMPLE CNN

 Test accuracy Train loss Test loss

ReLU 70.96% 0.0536 1.9209

Sigmoid 66.88% 0.2307 1.0959

Tanh 71.30% 0.0017 1.4290

Leaky ReLU 72.57% 0.0333 1.9569

ELU 70.03% 0.0665 2.3822

Swish 71.58% 0.0401 2.2202

TABLE III
PERFORMANCE EVALUATION RESULTS FOR VGG-LIKE CNN

 Test accuracy Train loss Test loss

ReLU 78.22% 0.1344 1.0914

Sigmoid 10.00% 2.3027 2.3026

Tanh 67.33% 0.8008 0.9240

Leaky ReLU 78.67 0.1109 1.0210

ELU 76.50% 0.1799 1.4022

Swish 75.84 0.1334 1.2459

TABLE IV
PERFORMANCE EVALUATION RESULTS FOR RESNET-LIKE CNN

 Test accuracy Train loss Test loss

ReLU 84.03% 0.0491 0.7939

Sigmoid 52.41% 0,3399 1.9650

Tanh 76.72% 0.0794 1.1109

Leaky ReLU 84.24% 0.0453 0.8017

ELU 83.48% 0.0756 0.6840

Swish 84.43% 0.0445 0.7374

The choice of activation function is crucial for optimising

CNN performance on the CIFAR-10 dataset. Fig. 2, Fig. 3 and
Fig.4 shows that while traditional functions like ReLU and its
derivatives continue to be useful, emerging functions such
as Swish shows promise, particularly in more complex
architectures. This study emphasises the significance of
experimenting with different activation functions to obtain
optimal performance in specific CNN designs.

Fig. 2 Simple CNN varied activation functions training losses

https://doi.org/10.31436/ijpcc.v10i2.490

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.490

122

Fig. 3 VGG-like CNN varied activation functions training losses

Fig. 4 ResNet-like CNN varied activation functions training losses

V. CONCLUSION

In conclusion, this comparative analysis of activation
functions on Simple CNN, VGG-like CNN, and ResNet-like
CNN architectures using the CIFAR-10 dataset demonstrates
the importance of activation function selection for model
performance. Despite constant hyperparameters (Adam
optimiser, cross-entropy loss, batch size of 64, 15 epochs,
and learning rate of 0.001), activation functions such as
Leaky ReLU and Swish performed better than others. Swish
outperformed Sigmoid overall, particularly in complex
architectures such as ResNet. This study emphasises the
need of experimenting with various activation functions to
improve CNN performance for specific tasks.

ACKNOWLEDGMENT

The authors hereby acknowledge the review support
offered by the IJPCC reviewers who took their time to study
the manuscript and find it acceptable for publishing.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

[1] M. Mathew, M. Noel, and Y. Oswal, "A significantly better class of
activation functions than ReLU like activation functions," arXiv, 2024.
[Online]. Available: https://doi.org/10.48550/arxiv.2405.04459.

[2] A. D. Jagtap and G. E. Karniadakis, "How important are activation
functions in regression and classification? A survey, performance
comparison, and future directions," Journal of Machine Learning for
Modelling and Computing, vol. 4, no. 1, pp. 21-75, 2023.

[3] F. Gao and B. Zhang, "Data-aware customisation of activation
functions reduces neural network error," arXiv, 2023. [Online].
Available: https://doi.org/10.48550/arxiv.2301.06635.

[4] D. Sukau, "Activation functions in deep learning: A comprehensive
survey and benchmark," Neurocomputing, vol. 503, pp. 92-108, 2022.

[5] V. Bansal, "Activation Functions: Dive into an optimal activation
function," arXiv, 2022. [Online].
Available: https://doi.org/10.48550/arxiv.2202.12065.

[6] J. Chen and Z. Pan, "Saturated Non-Monotonic Activation
Functions," arXiv, 2023. [Online].
Available: https://doi.org/10.48550/arxiv.2305.07537.

[7] J. Lederer, "Activation Functions in Artificial Neural Networks: A
Systematic Overview," arXiv, 2021. [Online].
Available: https://arxiv.org/abs/2101.09957.

[8] P. Liu, "A survey on recently proposed activation functions for Deep
Learning," arXiv, 2022. [Online].
Available: https://doi.org/10.48550/arxiv.2204.02921.

[9] S. Korn, G. Hamerly, and P. Rivas, "Is ReLU Adversarially Robust?,"
arXiv, 2024. [Online].
Available: https://doi.org/10.48550/arxiv.2405.03777.

[10] M. F. R. Mariam, M. F. Farheen, M. M. Manjushree, and M. K. Pandit,
"Skin Cancer Detection using CNN with Swish Activation Function,"
International Journal of Engineering Research and Technology, vol. 8,
no. 14, 2020.

https://doi.org/10.31436/ijpcc.v10i2.490
https://doi.org/10.48550/arxiv.2405.04459
https://doi.org/10.48550/arxiv.2301.06635
https://doi.org/10.48550/arxiv.2202.12065
https://doi.org/10.48550/arxiv.2305.07537
https://arxiv.org/abs/2101.09957
https://doi.org/10.48550/arxiv.2204.02921
https://doi.org/10.48550/arxiv.2405.03777

