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Abstract— Activation functions are crucial in optimising Convolutional Neural Networks (CNNs) for image 
classification. While CNNs excel at capturing spatial hierarchies in images, the activation functions 
substantially impact their effectiveness. Traditional functions, such as ReLU and Sigmoid, have drawbacks, 
including the "dying ReLU" problem and vanishing gradients, which can inhibit learning and efficacy. The 
study seeks to comprehensively analyse various activation functions across different CNN architectures to 
determine their impact on performance. The findings suggest that Swish and Leaky ReLU outperform other 
functions, with Swish particularly promising in complicated networks such as ResNet. This emphasises the 
relevance of activation function selection in improving CNN performance and implies that investigating 
alternative functions can lead to more accurate and efficient models for image classification tasks. 
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I. INTRODUCTION 

Convolutional Neural Networks (CNNs) is a common 
machine learning algorithm used for image classification 
tasks. Image inputs are suitable for CNNs because of their 
ability to capture spatial hierarchies through convolutional 
layers. There are several factors that affect the effectiveness 
of a CNN in learning complex image patterns and features; 
this includes the CNN architecture, optimisation algorithms, 
and hyperparameters such as activation functions [1]. 

Activation functions are an important factor that impact 
the performance of neural networks. This is because they 
introduce non-linearity into the model. As such, they enable 
the model to learn from complex data and performs 
machine learning tasks such as classification. Currently, 
there are various activation functions that have been 
developed and are available to be used. These activation 
functions have their own strengths and limitations over each 
other. The most commonly used activation functions include 
Rectified Linear Unit (ReLU), Sigmoid, Tanh, Leaky ReLU, 
Exponential Linear Unit (ELU), and a recently proposed 
Swish [2][10]. 

The purpose of this study is to provide an extensive 
analysis of these activation functions across different CNN 
architectures on image classification tasks. We intend to 
discover further on how the selection of activation function 
affects the effectiveness of CNNs by systematically 
evaluating the performance of a simple CNN, VGG-like CNN, 
and ResNet-like CNN models using an array of activation 

functions. Our evaluations are done on the CIFAR-10 
image dataset. 

The findings of this study will assist researchers 
in selecting optimal activation functions for their CNN 
models. This will result in a more accurate and efficient 
neural networks for image classification. 

II. RELATED WORK 

This study presents Cone and Parabolic-Cone activation 
functions, which outperform ReLU and Sigmoidal functions 
on CIFAR-10 and Imagenette benchmarks. These new 
functions enable finer input space division, improving 
accuracy and training speed with fewer neurons [1]. This 
suggests a potential shift in neural network design, as they 
provide superior performance and efficiency compared to 
traditional ReLU and Sigmoidal functions, particularly for 
complex, non-linear datasets. 

This study compares past and current functions, noting 
that while ReLU excels in classification, it struggles in 
physics-informed tasks. Alternatives functions like 
hyperbolic tangent, Swish, and sine, especially adaptive 
ones, perform better in complex scenarios [2]. This is 
because they offer smoother gradients and better 
adaptability for complex and physics-informed problems 
compared to ReLU, which can struggle with gradient 
consistency and specific task requirements. 

This study introduces the "seagull" activation function, 
which, when used in layers handling exchangeable variables, 
greatly improves performance and reduces errors, even for 
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high-dimensional data like CIFAR10 [3]. It can notably 
enhance neural network performance and error reduction, 
making it a valuable approach for both low and high-
dimensional data. 

This study surveys activation functions (AFs) in deep 
learning, covering types like Logistic Sigmoid, Tanh, ReLU, 
ELU, Swish, and Mish. It reviews their characteristics and 
compares the performance of 18 AFs across different 
networks and datasets to help researchers and practitioners 
choose the best options [4]. The survey highlights that 
understanding and choosing the right activation function is 
crucial for optimising neural network performance, as 
different functions offer distinct advantages depending on 
the network and dataset. 

This study finds that combining ReLU, tanh, and sin 
activation functions can optimise neural network 
performance. ReLU is dominant, but initial layers favor ReLU 
or LeakyReLU, while deeper layers perform better with 
more convergent functions [5]. This suggests that the 
practice of optimising activation functions by combining 
different types can enhance neural network performance, 
with ReLU being dominant in early layers and more 
convergent functions benefiting deeper layers. 

This study introduces Saturated Gaussian Error Linear 
Units (SGELU), SSiLU, and SMish, new activation functions 
that combine ReLU with non-monotonic functions. 
Experiments on CIFAR-100 show these functions 
outperform existing activation functions in various deep 
learning models [6]. This can significantly enhance 
performance in deep learning models, as demonstrated by 
their superior results on CIFAR-100. 

This study offers an updated overview of popular 
activation functions, addressing their properties and 
evolution from traditional ones like logistic and ReLU to 
newer functions. It serves as a useful resource for 
understanding and applying activation functions in neural 
networks [7]. This indicates that understanding the 
properties and evolution of both traditional and new 
activation functions is crucial for effectively applying them 
in neural networks and deep learning. 

This study introduces four new oscillatory activation 
functions that allow neurons to learn functions like XOR and 
outperform popular functions in classification tasks. These 
functions also address the vanishing gradient problem, 
which occurs when gradients become too small during 
backpropagation, preventing proper weight updates and 
training. The paper also discusses various activation 
functions, including the widely used sigmoid function, 
known for its nonlinearity and computational efficiency [8]. 
This enhances learning and performance in neural networks 
by overcoming the vanishing gradient problem, offering 
improvements over traditional functions like sigmoid. 

This study examines how ReLU activation functions 
contribute to vulnerabilities in deep learning models to 
adversarial examples. It proposes a modified ReLU function 
that enhances robustness against such attacks and shows 
through experiments that this modification, combined with 
adversarial training, improves model resilience [9]. This 
suggests that by modifying ReLU activation functions, it can 
improve deep learning models' resilience to adversarial 
attacks, and combining this with adversarial training further 
enhances robustness. 

This study compares a CNN using Swish activation (76% 
accuracy) with one using Adaptive Piecewise Linear 
activation (74.4%) for skin cancer detection, showing that 
Swish as a separate layer improves accuracy and reduces 
loss [10].  This indicates that using Swish activation as a 
separate layer in a CNN for skin cancer detection improves 
accuracy and reduces loss compared to using Adaptive 
Piecewise Linear (APL) activation, demonstrating the 
effectiveness of Swish in enhancing model performance. 

Fig. 1 shows a comparison between six different 
activation functions used in neural networks: ReLU, Sigmoid, 
Tanh, Leaky ReLU, ELU, and Swish. These functions are 
critical for defining how neurons in a neural network 
activate, which affects the model's learning ability and 
performance. It depicts how each function converts input 
values (x-axis) to output values (y-axis). ReLU (blue line) 
activates only positive inputs and outputs them directly, 
whereas Sigmoid (green dashed line) and Tanh (red dashed 
line) squish inputs to a range of (0, 1) and (-1, 1), respectively, 
yielding smooth gradients but potentially vanishing 
gradients. Leaky ReLU (purple dotted line) introduces a 
slight slope for negative inputs, which alleviates the dying 
ReLU problem.  

 

Fig. 1 Activation functions graphs comparison 

III. METHODOLOGY 
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A. Dataset 

The image dataset used in this experiment is CIFAR-10. This 
dataset consists of 60,000 colour images with an image size 
of 32 px x 32 px. It has 10 classes, with 6,000 images per class. 
It is a common dataset used for image classification 
algorithms benchmark due to the diversity of its classes and 
a relatively small image size. 

B. Data Preprocessing 

The image dataset was transformed to tensors and 
normalised with a mean and standard deviation of 0.5 for 
each colour channels. 

C. Model Architectures 

 Simple CNN: This architecture includes two 
convolutional layers with the following parameters: 
filters of [32, 64], kernel size of 3, stride and padding 
of 1. Then, activation functions are applied to the 
convolutional layers, followed by a max pooling layer 
with a kernel size and stride of 2.  Finally, a fully 
connected layer with filters of 512 for classification. It 
serves as a baseline model to assess basic 
performance of activations functions. 

 VGG-like CNN: This architecture is based on the VGG 
architecture, it incorporates several convolutional 
layers with the following parameters: filters of [64, 128, 
256], kernel size of 3, and padding of 1. Then, each 
convolutional blocks are followed by activation 
functions and max pooling layers with a kernel size of 
2 and stride of 2. It ends with three fully connected 
layers with filter of 512, followed by activation 
functions for the first two layers. This architecture 
aims to capture more complex features and evaluate 
the impact of activation functions in deeper networks. 

 ResNet-like CNN: This architecture is based on the 
ResNet architecture, it includes residual blocks that 
allow for deep networks by addressing the vanishing 
gradient problem through skip connections. The 
convolutional layers in the model have filters of [64, 
128, 256, 512] with a kernel size of 3, stride and padding 
of 1. Then, followed by batch normalisation layers and 
activation functions. Before passing into the final fully 
connected layer, the output wen through an average 
pooling layer. This architecture is used to investigate 
the performance of activation functions in very deep 
networks. 

D. Activation Functions 

 ReLU: It outputs the input directly if it is positive; 
otherwise, it outputs zero. While it is effective in many 
situations, it can suffer from the "dying ReLU" issue, 
where neurons can become inactive and stop learning 
if they consistently receive negative inputs. 

 Sigmoid: It outputs values between 0 and 1, making it 
useful for binary classification tasks as it can be 
interpreted as a probability. However, in deep 
networks, it often encounters vanishing gradients due 
to its tendency to saturate at the extremes, which can 
slow down the learning process. 

 Tanh: It outputs values between -1 and 1, providing 
stronger gradients compared to sigmoid. This helps 
with learning in deeper networks, but it still suffers 
from gradient saturation at its extreme values, which 
can hinder training speed and effectiveness. 

 Leaky ReLU: It addresses the "dying ReLU" issue by 
allowing a small, non-zero gradient when the input is 
negative. This adjustment helps prevent neurons from 
becoming inactive, maintaining learning efficiency 
while preserving the simplicity and speed of ReLU. 

 ELU: It offers a smooth gradient for negative inputs, 
which helps mitigate the vanishing gradient issue. It 
allows for a more gradual learning curve by providing 
a small gradient when the input is negative, which can 
lead to faster and more stable training. 

 Swish: It combines the input with a sigmoid function 
applied to that input, creating a smooth and non-
monotonic activation function. This characteristic 
often results in better performance and training 
efficiency compared to tradition functions like ReLU, 
especially in deeper networks. 

E. Experimental Setup 

Each CNN architecture was trained using each activation 
function on CIFAR-10 dataset. All models were trained using 
the same set of hyperparameters as shown in Table I. This is 
done to keep the differences in results solely dependent to 
the changes of activation function used in the training; 
hence, ensuring a fair comparison. 

TABLE I 
CONSTANT HYPERPARAMETERS VALUES FOR EXPERIMENT 

 Hyperparameter 

Optimizer Adam 

Criterion Cross-Entropy 

Learning rate 0.001 

Batch size 64 

Epochs 15 

F. Performance Evaluation Metrics 

Results from this experiment is evaluated using a test set 
consisting of 10,000 images from CIFAR-10 with the 
following metrics: accuracy and loss. Accuracy would 
indicate the overall effectiveness of the model in predicting 
correct labels, while the loss value computed using the 
cross-entropy loss function providing insights how well the 
predictions of the model align with the true labels. 
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IV. RESULTS AND DISCUSSION 

The results obtained from the experiment provide an 
extensive evaluation of the impact of different activation 
functions on three distinct CNN architectures: Simple CNN, 
VGG-like CNN, and ResNet-like CNN, with the CIFAR-10 
dataset. The Adam optimiser, cross-entropy loss, a batch 
size of 64, 15 epochs, and a learning rate of 0.001 are the 
constant hyperparameters used throughout every 
experiment. These constant settings enable a fair 
comparison of the activation functions' performance. 

Table II shows that ReLU, Tanh, and Leaky ReLU achieved 
reasonably high test accuracies of 70.96%, 71.30%, and 72.57%, 
respectively with the simple CNN. Despite the constant 
hyperparameters, all activation functions demonstrated 
varying levels of success, most likely due to their unique 
mathematical features. Leaky ReLU slightly beat the others 
in terms of test accuracy, whereas Tanh had the smallest 
train loss of 0.0017, indicating efficient training. However, 
Sigmoid and ELU performed poorly, with Sigmoid getting 
the lowest accuracy of 66.88% and ELU having the largest 
test loss of 2.382. Swish performed moderately, with a test 
accuracy of 71.58%, suggesting a modest improvement over 
ReLU but a greater test loss. 

Table III indicates that Swish and Leaky ReLU 
outperformed other VGG-like CNNs, with test accuracies of 
75.84% and 78.67%, respectively. Swish's smooth and non-
monotonic characteristics resulted in a considerably 
decreased train loss, indicating effective gradient flow and 
better convergence. This performance highlights the 
potential of novel activation functions such as Swish in 
deeper networks. However, Sigmoid underperformed 
significantly, with a test accuracy of 10.00%, showing that it 
failed to train successfully in this more complex design, most 
likely due to issues such as vanishing gradients and 
ineffective convergence. 

Table IV shows that ReLU and Swish had the highest test 
accuracies of 84.03% and 84.43%, respectively for the 
ResNet-like CNN. Swish outperforming ReLU marginally in 
terms of train and test losses. The residual connections of 
ResNet-like architectures take advantage of Swish's 
characteristics, resulting in greater performance. ELU also 
produced competitive results, with an accuracy of 83.14% 
and minimal train and test losses. Sigmoid continues to 
underperform, supporting the argument that it may not be 
appropriate for such architectures. 

Across all three CNN architectures, the consistent 
performance of ReLU and its variations (Leaky ReLU and 
ELU) demonstrates their dependability in different 
situations. Swish emerged as a formidable competitor, 
especially in complex architectures such as ResNet, where it 
achieved the best overall performance. The significant 
underperformance of Sigmoid in the VGG-like CNN, with a 

test accuracy of only 10.00%, implies that its fundamental 
constraints, such as gradient saturation and slower 
convergence, are not properly compensated by the 
constant hyperparameters employed.  

TABLE II 
PERFORMANCE EVALUATION RESULTS FOR SIMPLE CNN 

 Test accuracy Train loss Test loss 

ReLU 70.96% 0.0536 1.9209 

Sigmoid 66.88% 0.2307 1.0959 

Tanh 71.30% 0.0017 1.4290 

Leaky ReLU 72.57% 0.0333 1.9569 

ELU 70.03% 0.0665 2.3822 

Swish 71.58% 0.0401 2.2202 

TABLE III 
PERFORMANCE EVALUATION RESULTS FOR VGG-LIKE CNN 

 Test accuracy Train loss Test loss 

ReLU 78.22% 0.1344 1.0914 

Sigmoid 10.00% 2.3027 2.3026 

Tanh 67.33% 0.8008 0.9240 

Leaky ReLU 78.67 0.1109 1.0210 

ELU 76.50% 0.1799 1.4022 

Swish 75.84 0.1334 1.2459 

TABLE IV 
PERFORMANCE EVALUATION RESULTS FOR RESNET-LIKE CNN 

 Test accuracy Train loss Test loss 

ReLU 84.03% 0.0491 0.7939 

Sigmoid 52.41% 0,3399 1.9650 

Tanh 76.72% 0.0794 1.1109 

Leaky ReLU 84.24% 0.0453 0.8017 

ELU 83.48% 0.0756 0.6840 

Swish 84.43% 0.0445 0.7374 

 
The choice of activation function is crucial for optimising 

CNN performance on the CIFAR-10 dataset. Fig. 2, Fig. 3 and 
Fig.4 shows that while traditional functions like ReLU and its 
derivatives continue to be useful, emerging functions such 
as Swish shows promise, particularly in more complex 
architectures. This study emphasises the significance of 
experimenting with different activation functions to obtain 
optimal performance in specific CNN designs. 

 
 
 
 
 
 
 
 
 

 

Fig. 2  Simple CNN varied activation functions training losses 
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Fig. 3  VGG-like CNN varied activation functions training losses 

 

Fig. 4  ResNet-like CNN varied activation functions training losses 

V. CONCLUSION 

In conclusion, this comparative analysis of activation 
functions on Simple CNN, VGG-like CNN, and ResNet-like 
CNN architectures using the CIFAR-10 dataset demonstrates 
the importance of activation function selection for model 
performance. Despite constant hyperparameters (Adam 
optimiser, cross-entropy loss, batch size of 64, 15 epochs, 
and learning rate of 0.001), activation functions such as 
Leaky ReLU and Swish performed better than others. Swish 
outperformed Sigmoid overall, particularly in complex 
architectures such as ResNet. This study emphasises the 
need of experimenting with various activation functions to 
improve CNN performance for specific tasks. 
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