
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.487

74

Design and Development of a Requirements
Conformance Tool (RCT)

Siti Syara Aiman Seh Wali, Azlin Nordin
Department of Computer Science (DCS), Kulliyyah of Information and Communication Technology (KICT),

 International Islamic University Malaysia (IIUM), 53100 Gombak Kuala Lumpur, Malaysia

*Corresponding author: azlinnordin@iium.edu.my
(Received: 29th June 2024; Accepted: 25th July 2024; Published on-line: 30th July 2024)

Abstract— To guarantee that a quality requirement is well-defined, it should meet various criteria, including
completeness and unambiguousness. When a requirement statement is manually written, the quality of the
requirements could be affected because the majority of requirements engineers particularly the
inexperienced ones, have not been adequately trained. If they are unable to transfer stakeholders' needs
into the requirements, they may end up with problematic requirements. As a result, they may be unable to
provide high-quality specification requirements as a reference throughout the software development
process. To reduce this problem, standard boilerplates' formats were established as one of the solutions.
Nevertheless, requirement engineers may still require guidance in order to adopt any boilerplates that suit
their needs. In this project, we seek to increase the quality of requirements by assisting requirement
engineers in comprehending boilerplates. The Requirements Conformance Tool, which uses semi-automated
boilerplates, was created to help requirements engineers determine whether the requirement conforms to
the chosen requirements boilerplate or not. To show the use of boilerplates, the project was constructed in
Java using basic Part-of-Speech (POS) tagger.

Keywords— boilerplates, ambiguity, requirements, conformance, software development, semi-automated

I. INTRODUCTION

Before developing a project, it is crucial to write
requirements to specify what should be implemented.
Requirements Engineering (RE) is described as the process
involved in developing the system requirements [1] which
describe how a system should behave, application domain
information, obstacles on the operation of the system or the
specifications of the system attribute. Requirements have
also been described as [2]:

● A situation or functionality needed by a user to
solve a hassle or gain a goal.

● A situation or functionality that needs to be met or
possessed by a system or system component to
satisfy a formally imposed document.

● A documented representation of a condition or
capability as in (1) or (2).

The effect of the RE on successful and customer-
oriented system development cannot be disregarded. It has
turned out to be the usual practice to supply the sources for
RE [2]. Requirement engineers play an important role to
ensure the system requirements specification is being
written correctly. RE is performed to allow communication
between the stakeholders and programmers. To avoid
project failures, it is crucial to handle the requirements of a

system carefully. Requirement of a system is written in a
document called Software Requirement Specifications
(SRS). SRS is an important document which contains a list of
requirements, and it explains what the stakeholders’ wants
which are intended as a basis for developing the software
design [3]. A good SRS has the capability to ensure that the
system developed is successful and meets the real users’
needs while being a cost-effective creation. A full
requirement free from any errors are important for a
successful system development.

The errors in SRS need to be discovered early during the

writing requirement phase, or the cost to pay for the

maintenance will be high. One of the challenging issues in
the current software industry is that requirement engineers
frequently develop incorrect requirements with possibilities
of various requirements errors. Such issues could inherently
lead to reducing the SRS quality.

The most common mistake is that the requirements are
missing and not clearly formulated [3]. One of the ways to
improve the quality of SRS is boilerplate [3]. Boilerplates or
also known as the requirements template is a blueprint for
the syntactic structure of individual requirements. In this
research, we are focusing on two boilerplates which are
IREB’s boilerplates and Easy Approach to Requirements
Syntax (EARS) boilerplates.

https://doi.org/10.31436/ijpcc.v10i2.487
mailto:azlinnordin@iium.edu.my
mailto:azlinnordin@iium.edu.my

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.487

75

Fig. 1 Core requirement for IREB Boilerplate [2]

The International Requirement Engineering Board IREB)
has come up with a step-by-step explanation of the correct
approach of the requirement template. See Figure 1. It is also
called Rupp’s boilerplate. IREB boilerplates have three basic
templates [2]. The first one is for the autonomous system
activity where the users do not interact with the activity. The
template is: THE SYSTEM SHALL/SHOULD/WILL/MAY
<process verb>.

The second template is for the user interaction where
the system provides a functionality to the user which
requires them to interact with the system. The template is:
THE SYSTEM SHALL/SHOULD/WILL/MAY provide <whom?>
with the ability to <process verb>.

Finally, the third template is meant for interface
requirements where the system is performing an activity,
and it depends on the neighbouring system. The template is:
THE SYSTEM SHALL/SHOULD/WILL/MAY be able to <process
verb>.

Fig. 2 Core requirements for EARS Boilerplate

In this research, there are six phases in this model. The

first phase is to gather the requirements. All the information
needed is collected and analysed through literature review.
There are two tools that have been discovered in the
process of collecting data which is the SRS tool [6] and
Rubric tool [7]. The next phase is building the prototype.
Once the team has finished the research on how to improve
the quality of boilerplates, the prototype will be built.

The prototype is built using Java Eclipse where it focuses
on creating new requirements and improving the existing
requirements. The third phase is evaluating the prototype.
The prototype is evaluated by making sure that it is
functioning before it is shown to the supervisor. The
supervisor will provide the feedback required to further
improve the prototype which marks the fourth phase of this
model. The fifth phase is where the feedback is taken into
account, and improvements will be made to refine the
prototype. The last phase is documentation. If there are no
more alterations to be made, the prototype will be
documented in a report.

II. LITERATURE REVIEW

In this paper, we analyzed two of the study papers
that discussed requirement tools used to improve the
quality of requirements. The papers are:

A. Software Requirements Specification Tools

The SRS tool focuses on requirement management feature.
The tool provides the functionalities such as generating the
requirements based on the boilerplates and modifying the
boilerplate to the desired format where the user will be
given the option to choose.

B. RUBRIC

Rubric Tool is a natural language processing (NLP) tool for
automatic checking of conformance to the requirement
boilerplates. Besides, the tool can also detect the
problematic constructs in natural language requirements
(see Figure 3).

Fig. 3 RUBRIC [7]

https://doi.org/10.31436/ijpcc.v10i2.487

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.487

76

Based on the comparison in Table 1, we analyzed two
existing tools. This is because these tools are in line with our
tool. The chosen tools are Software Requirements
Specification Tool [6] and RUBRIC Tool [7]. However, the
Specification Tool is not published yet. After reviewing the
three tools, we made a simple comparison between them as
well as our proposed tool, Requirement Conformance Tool
(RCT).

TABLE I
COMPARISON BETWEEN EXISTING TOOLS AND PROTOTYPE

Aspect Tools

SRS Tool
[6]

Rubric Tool
[7]

RCT Tool

Requirement
specification
approach

Any
boilerplate

IREB
Boilerplate

IREB
Boilerplate

Import
requirement from
text file

No No Yes

Export
Requirement

Yes No Yes

Guiding in writing
requirement

No No Yes

Support
functional and
non-functional
requirements

Yes Yes Yes

For our tool, we focused on guiding requirement

engineers to generate requirement statements so that they
will not mistakenly use wrong words or structure. From the
above comparison, it is observed that all the required
engineering tools are using boilerplates. Nonetheless, the
features and focuses provided in each of the tools are
different.

In summary, our tool allows requirement engineers to
export the generated requirements and also import the
existing requirements to test whether the requirements are
conformant to the boilerplate or not, which is an added
advantage for our tool. As a future enhancement, the tool
may include various existing templates, such as EARS
boilerplates, to assist in producing requirements. This
method could make the tool more adaptable to its users.

III. TOOL OVERVIEW

Prior to categorizing the requirement according to the IREB
boilerplate, a set of possible rules of POS tag for each
requirement statement have been studied and developed.
Based on existing literature on the boilerplates and its
structures, we derived the respective rules in Table 2. These
rules highly depend on the three categories of the
boilerplates i.e. (1) requirements for system activity, (2)
requirements for user interaction, or (3) requirements for

interface. For each of these categories, it will be used to
detect different patterns for the conformance matching
algorithm.

TABLE 2
RULES DEVELOPED TO CATEGORIZED REQUIREMENTS

User

DT(.*)MDVBDT(.*)INDTNNTOVB(.*)

Interface

DT(.*)MDVBJJTOVB(.*)

System

DT(.*)MDVB(.*)

In this table, (.*) (.*) can be NN, NNP, NNS, NNNNP,

NNPNN and (.*) can be any part-of-speech tags based on
what the requirement engineer chooses to write. The list of
part-of-speech tags used are summarized as below.

TABLE 3
ABBREVIATIONS USED IN RULES

POSTAGGER CATEGORY

DT Determiner

NN Noun, singular or mass

NNP Proper noun, singular

NNS Noun, plural

MD Modal

VB Verb, base form

IN Preposition or subordinating
conjunction

TO To

JJ Adjective

Figure 4 provides an overview of the process

implemented in RCT. The process consists of three main
steps: (1) Text Splitting, (2) POS Tagger to identify the tag
meaning of each word, (3) Structure checking, and (4)
Boilerplate Conformance Checking. In the first step,
requirement statements are read in line and segmented into

https://doi.org/10.31436/ijpcc.v10i2.487

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.487

77

constituent parts (noun phrases, verb phrases, etc.) and
annotated with appropriate tags by using POS Tagger.

Fig. 4 Process in RCT

The annotated requirements, along with the IREB

boilerplates’ syntax grammar rules and structure checking
are used in the next step to produce requirements that are
conformant to the boilerplates results based on the position
of the part-of-speech tags in the array.

IV. ANALYSIS AND DESIGN ALGORITHM FOR RCT

This section describes the algorithm used in identifying the
conformance of the requirements to the chosen boilerplate
template. In this approach (as can be seen in Figure 5), an
abbreviated requirement array signifies that each statement
is pushed into a three-dimensional array and placed in the
first array. The location of the abbreviation indicates that
each word of the sentence will be pushed into the second
array. The third array will be populated with the position of
the string modal verb array, with each word segmented
using POS tagger. If the requirements satisfy the rules, they
will be described as conforming to the boilerplates;
otherwise, they will be stated as a faulty or non-compliance
requirement, with an indication of which segment of the
requirement source.

Fig. 5 Algorithm for Matching Requirements

V. RCT PROTOTYPE

This section elaborates a few of the snapshots of the RCT
prototype. The screen shot in Figure 6 shows the RCT’s main
page where requirement engineers can choose to generate
new requirements or to import existing requirements from
the text files. Additionally, the requirement engineer should
enter the project name before they want to write the
requirements.

Fig. 6 Boilerplates Option

https://doi.org/10.31436/ijpcc.v10i2.487

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.487

78

The screen in Figure 7 shows the boilerplates option that
requirement engineers can choose before writing the
requirements. When they choose this feature, they will be
able to pick any of these options i.e. (1) requirements for
system activity, (2) requirements for user interaction, or (3)
requirements for interface. Each of these options will lead
into different requirements boilerplates.

Fig. 7 Generate Requirements

The subsequent Figure 8 demonstrates the fields that
the requirement engineer should enter in order to generate
the requirement based on the chosen boilerplate. This
include the option for system name, auxiliary verb and the
process verb. The typical process for defining project
requirements is for project managers to decide ahead of
time what kind of auxiliary verbs will be used and what they
will signify. For example, in this Software Requirements
Specification (SRS) sample in [9], the authors define the
following auxiliary terms:

1. ‘Must’- indicates requirements strictly to be
followed to conform to the document and no
deviation is allowed. Must is synonymous with
“shall.”

2. ‘Should’- indicates that a possibility among a set of
possibilities is recommended as particularly suitable

3. ‘May’ - indicates a course of action permissible
within the limits of the document.

Fig. 8 Adding Requirements

Figure 9 shows the requirement is added to the table.
The requirement engineers are able to add more
requirements, edit, and delete the requirements by
interacting with the respective buttons.

Fig.9 Upload Existing Requirement from Text File

Figure 9 depicts when the requirement engineers choose
to import an existing requirement file. The requirements
engineer could browse and import the text file to the tool.
Based on the tool’s process as depicted in Fig. 4, the result
will display if the requirements conform to the boilerplates
or not.

VI. IMPLEMENTATION

The Requirement Conformance Tool (RCT) was created
using the Java programming language and includes a part-
of-speech (POS) tagger for analyzing language components.
However, the prototype has a few drawbacks. It is currently
limited to IREB boilerplates and only considers the syntactic
structure of requirements, not their semantic content.
Furthermore, the tool requires conformance to a specified
template for requirement creation prior to importing text
files, and it runs as a standalone application rather than a
web-based platform. This indicates that the tool is a
standalone solution that cannot benefit from the web-based
implementation's features, such as accessibility and
collaboration.

VII. CONCLUSION

This tool provided guidance for the users to assist them in
producing quality requirements using requirements
boilerplates. Nonetheless, the current implementation
supports only IREB boilerplate but in the future, this project
is expected to generalize the tool to include other types of
boilerplates as well. RCT aims to distinguish which existing
requirement that has been written is conformed to the IREB
boilerplate.

The challenge with the prototype is that the team lacks
NLP skills, which has made it difficult to code the tool by
utilizing the text chunking pipeline. The text chunking
pipeline includes a tokenizer, a sentence splitter, a POS
tagger, Named Entity Recognition, and an NP chunker.

https://doi.org/10.31436/ijpcc.v10i2.487

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 10, Issue 2 (2024)
https://doi.org/10.31436/ijpcc.v10i2.487

79

This coding was completed in a restricted amount of
time, thus the team devised an alternative method that uses
only available JAVA libraries and imports only POS tagger
libraries. This research effort has been a learning process,
with many new discoveries. In addition, another limitation
of this work is that the tool has not been validated for its
usefulness, and its applicability. We plan to further evaluate
this tool to the relevant potential users and get their
feedback for future improvement.

ACKNOWLEDGMENT

The authors would like to extend our appreciation to the
Kulliyyah of Information and Communication Technology
(KICT), International Islamic University Malaysia (IIUM) as
well as the Computer Science Department for the
opportunity to work for this project.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

[1] G. Kotonya., & I. Sommerville, Requirements engineering: processes
and techniques. Wiley Publishing. 1998.

[2] K. Pohl. Requirements engineering: fundamentals, principles, and
techniques. Springer Publishing Company, Incorporated. 2010.

[3] U. Anuar, S. Ahmad, & N.A. Emran. A simplified systematic literature
review: Improving Software Requirements Specification quality with
boilerplates. In Software Engineering Conference (MySEC), 2015 9th
Malaysian (pp. 99-105). IEEE.

[4] C. Arora, Sabetzadeh, M., Briand, L. C., & Zimmer, F.. Requirement
boilerplates: Transition from manually-enforced to automatically-
verifiable natural language patterns. In Requirements Patterns
(RePa), 2014 IEEE 4th International Workshop on (pp. 1-8). IEEE.

[5] R.S. Weinberg. Prototyping and the systems development life cycle.
Information System Management, 8(2), 1991, 47-53.

[6] K. Meng Y. Yeow “Software Requirement Specification Tool." in Final
Year Project report, pp. 29-30, 2016

[7] C. Arora, Sabetzadeh, M., Briand, L., Zimmer, F., & Gnaga, R. (2013,
August). RUBRIC: A flexible tool for automated checking of
conformance to requirement boilerplates. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering (pp. 599-
602). ACM.

[8] R.A. Carter, A.I. Antón, A. Dagnino, & L. Williams,. Evolving beyond
requirements creep: a risk-based evolutionary prototyping model. In
Requirements Engineering, 2001. Proceedings. Fifth IEEE International
Symposium on (pp. 94-101). IEEE.

[9] T. Hedberg Jr., M. Helu, and M. Newrock. (2017). ‘Software
requirements specification to distribute manufacturing data’,
National Institute of Standards and Technology, Gaithersburg, MD,
NIST AMS 300-2, Dec. 2017. doi: 10.6028/NIST.AMS.300-2.

https://doi.org/10.31436/ijpcc.v10i2.487

