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Abstract—This study analyses the effect of electroencephalogram (EEG) channel selection on the 
classification accuracy of sleep deprivation using four distinct classifiers: Random Forest (RF), k-Nearest 
Neighbours (k-NN), Support Vector Machine (SVM), and Artificial Neural Network (ANN). In this study, the 
EEG data from ten male individuals in good health were collected. Two distinct sets of EEG channels—a 
limited frontal channel set (Fp1, Fp2) and a thorough 19-channel set—were used to compare the 
performance of the classifiers. According to our findings, the k-NN classifier produced the greatest 
classification accuracy of 99.7% when applied to the 19-channel EEG signals. In contrast, both SVM and ANN 
classifiers were able to obtain the greatest accuracy of 94% with the frontal channels. Though there are not 
many gaps, these results imply that employing a larger range of EEG channels greatly improves the 
classification accuracy of sleep deprivation. The present study emphasizes the significance of channel 
selection in EEG-based sleep deprivation investigations by showcasing the significant advantages of full EEG 
signal capture over minimum channel configurations.     
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I. INTRODUCTION 

Sleep deprivation is a growing public health concern with 
significant consequences for cognitive function, physical 
activity, and overall well-being. Lo et al. [1] emphasizes 
successive nights of sleep restriction cumulatively impair 
diverse cognitive functions, including memory, attention, 
and executive control. Early detection of sleep deprivation 
is crucial for promoting healthy sleep habits and mitigating 
its negative effects.  

Electroencephalograpy (EEG) offers a non-invasive 
method for measuring brain activity and has shown promise 
in classifying sleep states, including identifying sleep 
deprivation. Khoo et. al. in their research research showed 
that there are notable changes in EEG microstates for 
subjects with even mild sleep deprivation [2].  

In previous research in automatic sleep staging and 
classification using EEG signals, Jeon et al. [3] demonstrated 
the effectiveness of machine learning for sleep stage 
classification using multiple EEG channels. Their study 
highlighted the potential for accurate sleep state 
identification even with a reduced number of channels.  

Our research extends this work by specifically focusing on 
sleep deprivation classification and investigating the trade-
off between using a comprehensive set of channels and a 
minimal frontal channel configuration. Several studies 
explored channel selection algorithms for EEG signal 

processing, achieving high classification accuracy with a 
subset of channels compared to using all available channels 
[4-6]. This suggests that specific channels may hold more 
valuable information for sleep deprivation classification. 
Furthermore, Sen et al. [7] compared the performance of 
various classifiers for sleep stage classification using feature 
selection techniques. Their findings emphasize the 
importance of selecting informative features, which can be 
linked to choosing informative channels in our context.  

In regards to the analysis methods, there are various  
techniques to analyse EEG data for classification, such as 
Support Vector Machine (SVM), Artificial Neural Network 
(ANN), Random Forest (RF), and so on. SVM was 
incorporated by Sase et. al. in their proposed adaptive 
feature extraction approach based on EEG theta/beta ratio 
[8], while Upadhyay et. al. studied the effect of heat stress 
on sleep stages using wavelet-based analysis of SVM and 
radial basis function neural network [9]. Other than that, an 
algorithm to automatically classify sleep stages from EEG 
data was proposed by Liu et. al. based on RF and hidden 
Markov model [10].  

This research focuses on studying suitable EEG-based 
sleep deprivation classification by evaluating the 
performance of four common machine learning classifiers 
(SVM, ANN, k-NN, and RF) with varying channel 
configurations, using resting state EEG. The finding might be 
valuable for researchers and developers working on 
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portable and user-friendly EEG devices for sleep monitoring 
and sleep deprivation detection. 

Moreover, in this paper we investigate the effectiveness 
of channel selection in EEG-based sleep deprivation 
classification using machine learning algorithms. We analyse 
the impact of channel number on classifier accuracy by 
comparing performance between using all 19 available 
channels and a limited selection of frontal channels (Fp1 and 
Fp2). 

II. METHODOLOGY 

The methodological approach used to categorize sleep 
deprivation using EEG signals is described in this chapter. 
Using a large dataset of EEG recordings from ten healthy 
male students, the study focuses on the phases of 
preprocessing, feature extraction, and classification. In 
addition to a comprehensive 19-channel set, special 
attention is paid to the examination of frontal EEG channels 
because of their increased susceptibility to alterations 
associated with sleep. 

 

A. Participants 

Ten healthy male students’ resting-state EEG recordings 
from an existing dataset were used in the investigation. This 
dataset is based on the experiment by Kamaruzzaman et. al. 
who studied the effect of sleep deprivation on driver’s 
mental fatigue [11]. To guarantee a homogeneous and 
controlled sample and to make it easier to assess the effects 
of sleep deprivation on EEG signals, these people were 
chosen. Two sleep conditions were used to gather the EEG 
recordings: regular sleep and sleep deprivation. The dataset 
offered a wide range of EEG signals from several channels. 
This dataset is  

B. Methodology Flow 

Four main steps make up the methodological framework for 
this study as shown in Fig. 1 below: data acquisition, data 
preprocessing, feature extraction, and classification.  

 Fig. 1  The methodology flow for the EEG analysis 

 

C. Data Acquisition 

The existing EEG data was recorded using a DABO machine 
following the international 10-20 system for electrode 

placement. A total of 19 channels (Set 1) were used, and for 
this study, two EEG channels of interest (Set 2) were 
selected which is Fp1-Cz and Fp2-Cz, representing the 
voltage difference between the frontal. This selection was 
based on the suggestion by Fu et al. that the effectiveness 
of sleep scoring is influenced by the choice of EEG channel, 
with derivations from the frontal region being the optimal 
choice due to the voltage difference between the frontal 
areas [12]. The positions of the channels are shown in Fig. 2. 

 

Fig. 2 The selected sets of EEG channels 

D. Data preprocessing 

EEG signal preprocessing is essential to eliminate artifacts 
and noise, guaranteeing that the analysis that follows is 
founded on accurate and clean data.  

Detrending the EEG signals to eliminate slow drifts was 
the first stage in the preprocessing pipeline. By removing 
low-frequency trends that can mask the real-signal, this 
procedure improves the EEG data’s clarity for additional 
analysis. Removing these trends makes the underlying brain 
activity more visible, which makes feature extraction more 
precise. 

Next, a Butterworth low-pass filter with a 30Hz cutoff 
frequency was used to filter out high-frequency noise. 30Hz 
was selected because it is good at keeping the key EEG 
components that are important for sleep research while 
removing higher-frequency noise that could deteriorate 
signal quality. Because of its smooth frequency response, 
which prevents the signal from becoming distorted, the 
Butterworth filter is very well-liked. The transfer function of 
the filter can be expressed as follows: 

 

|𝐻(𝑗𝑤)| =
1

√1 + (
𝑤
𝑤𝑐

)
2𝑛

 

         
where 𝑤𝑐  symbolizes the frequency cutoff, and the filter’s 
order is denoted by 𝑛 . The substantial attenuation of 
frequencies above 30Hz is guaranteed by this mathematical 
representation. 
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Muscles artifacts were eliminated using Independent 
Component Analysis (ICA) after the filtering procedure. A 
computational technique called ICA divides a multivariate 
signal into additive parts. Klug et al. [13] emphasizes that ICA 
can still effectively clean sensor data from eye and muscle 
activity artifacts, and they also recommend using higher 
high-pass filter cut-offs than traditionally applied. When it 
comes to separating and eliminating non-neural aberrations 
like muscular movements that could taint the EEG data, this 
method works especially well. The EEG data are cleaned up 
by using ICA, leaving only the neuronal activity that is 
relevant to the research.  

The EEG signals were then analyzed, cleaned, and stored 
in a new file. By ensuring that the dataset is prepared for 
further feature extraction and analysis, this stage protects 
the preprocessed data’s quality and integrity. The study’s 
subsequent phases are based on the saved dataset, which 
makes it easier to classify sleep conditions accurately and 
consistently. 

E. Feature Extraction 

The preprocessed EEG signals are transformed into a format 
appropriate for machine learning through feature 
extraction. Welch’s method was used in this study to 
calculate Power Spectral Density (PSD), which was the main 
technique for feature extraction. PSD provides information 
about the frequency content of the signal by estimating the 
power distribution of the EEG signal across various 
frequencies. Using Welch’s approach, the signal is divided 
into overlapping windows, each segment is subjected to a 
Fourier transform, and the outcomes are averaged. When 
compared to single-segment approaches, this methodology 
minimizes variance and provides a robust estimation of the 
power spectral density of the signal. Each segment’s PSD is 
provided by: 

𝑃𝑥𝑥(𝑓) =
1

𝑁
∑|𝑋𝑛(𝑓)|2

𝑁−1

𝑛=0

 

where 𝑃𝑥𝑥(𝑓) is the power spectral density, 𝑁 is the number 
of data segments, and 𝑋𝑛(𝑓)is the Fourier transform of the 
𝑛-th segment. 

In addition, the power within each frequency band—beta, 
gamma, alpha, theta, and delta—was calculated to examine 
the signal dispersion among all channels. Since different 
frequency bands are linked to different cognitive and 
physiological processes, this band-specific examination is 
essential. The goal of the study is to identify the distinctive 
alterations in brain activity brought on by sleep deprivation 
by measuring the power in these bands. The building of an 
accurate classification model is facilitated by the 
comprehensive picture of the EEG signal characteristics 
under various sleep situations provided by this detailed 
frequency analysis. 

F. Classification 

To create and assess a model that could differentiate 
between sleep deprivation and normal sleep based on the 
variables that were retrieved, the classification process 
required several crucial phases. Originally, the dataset was 
structured for machine learning using the features 𝑋  and 
labels 𝑦 . The collected PSD values were represented by 
features, and the labels were binary, designating either 
regular sleep (0) or sleep deprivation (1). To train the 
classifier to identify patterns linked to each condition, this 
configuration was necessary. 

The dataset was then divided, usually in an 80-20 or 70-30 
ratio, into training and testing sets. We have allocated 80% 
of the data for training and 20% for testing is used to 
computed accuracy. This section made sure there was 
enough data available for the model to be trained and for 
assessing its performance, which helped to avoid overfitting 
and guaranteed the model’s applicability to fresh data. 

Various classification techniques with its algorithms were 
examined, such as SVM, ANN, k-NN, and RF. SVM for its 
efficacy in high-dimensional spaces, ANN for its capability to 
model complex nonlinear relationships and its flexibility in 
learning from large amounts of data, k-NN for its simplicity 
and ease of implementation, and RF for its resilience and 
capacity to handle noisy data were the specific advantages 
that led to the selection of each algorithm.  

The equations for SVM, ANN, k-NN, and RF are shown in 
equations (1) until (4), respectively. The equation of SVM is 
provided by: 

           (1) 

where  is some function called the kernel,   are 

the inner products between all pairs of training observations, 
and  is the positive degree of polynomial kernel.  

Next, NN is depicted by:  

                                   (2) 

where input 𝑥  is therefore assigned to category 𝑦, and 
according to the feed forward model,  .  

The equation of k-NN is shown by: 

   

(3)  

where is an indicator variable that equals 1 if  

 and zero if . 

Lastly, Random Forest is calculated as the following: 

(4) 

https://doi.org/10.31436/ijpcc.v10i2.486


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 2 (2024) 
https://doi.org/10.31436/ijpcc.v10i2.486   

 

70 

 

where  is for knowing how impure or pure the 
splitting will be when selecting a feature to split further. A 
pure sub-split means either we should be getting ‘yes’ or ‘no’. 

 represents the probability of a class whereby is the 

probability of a positive class and is the probability of a 
negative class. 

Using the collected features, the selected classification 
model was trained on the training set to identify patterns 
related to different sleep states. The model’s parameters 
were fine-tuned during training to maximize classification 
accuracy. 

SVM-with a radial basis function (RBF) kernel is selected 
for classification tasks.  ANN-comprises, including two 
hidden layers with 64 and 32 neurons, respectively, and an 
output layer with a single neuron using a sigmoid activation 
function for binary classification and the training process 
iterates over multiple epochs (10 in this case) with a batch 
size of 32, KNN-with the number of neighbors set to 5 
(n_neighbors=5), RF-with 100 decision trees 
(n_estimators=100) and a fixed random state for 
reproducibility (random_state=42). 

Following training, several metrics were used to assess 
the model’s performance, including precision, recall, F1-
score, and accuracy. These metrics offered a thorough 
evaluation of the model’s accuracy in classifying sleep 
environments. These metrics’ formulas are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹1 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

 
where 𝑇𝑃  represents true positives, 𝑇𝑁  represents true 
negatives, 𝐹𝑃 represents false positives, and 𝐹𝑁 represents 
false negatives. With the help of these measurements, the 
model’s performance was thoroughly assessed, enabling 
modifications and enhancements to reach the maximum 
level of accuracy in categorizing sleep deficiency. 

III. RESULTS 

The results of the EEG-based sleep deprivation 
categorization study are presented in this section, with an 
emphasis on the examination of EEG signals obtained from 
subjects who were sleep deprived as well as those who were 
not. Using various EEG channel configurations, the study 
assessed the effectiveness of numerous machines learning 
classifiers, including SVM, ANN, k-NN, and RF. Several figures 

and tables that give a thorough and objective depiction of 
the data gathered, and the accuracy attained by each 
classifier under different circumstances are used to illustrate 
the results. 

A. Varying EEG Signals 

Brain activity is dramatically affected by sleep deprivation, 
as EEG measurements show. The raw EEG signals of 
participants who were sleep deprived are shown in Fig. 4. 
The graphic shows a time-series graph that illustrates the 
EEG signal amplitudes recorded from various channels over 
a predetermined amount of time. A distinct EEG channel is 
shown by each subplot, which depicts the electrical activity 
of the brain during sleep deprivation. The amplitude 
variations show how the brain reacts to sleep loss; there are 
discernible patterns and fluctuations that may be connected 
to the subject’s sleep deprivation. Before any preprocessing 
or feature extraction, the raw data is shown graphically in 
this figure. 
 

 

Fig. 3 Sleep deprived raw signals 

EEG signals are crucial for comprehending brain activity in 
a variety of situations, such as diagnosing neurological 
disorders, monitoring cognitive states, and studying the 
effects of sleep deprivation on brain function. The raw EEG 
signals of participants who did not have sleep deprivation 
are displayed in Fig. 5. This image, like image 2, has several 
subplots that show various EEG channels over time. These 
signals’ amplitude changes indicate typical brain activity 
when people are not sleep deprived. We can visually identify 
the changes in brain activity between sleep-deprived and 
non-sleep-deprived states by comparing Figures 1 and 2, 
which highlight potential features that could be used for 
classification. 

 

 

Fig. 4 Non-sleep deprived raw signals 
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In this study, we use MATLAB’s “smoothdata” function 
with the “movmean” method and a smoothing factor of 
0.65. It was observed that sleep-deprived subjects exhibit 
slow wave activity, whereas non-sleep deprived subjects 
display active wave patterns. 

B. Classifiers Average Accuracy 

The average accuracy rates of SVM, ANN, k-NN, and RF 
classifiers under various situations are summarized in Table 
1. The table has distinct columns for each classifier’s 
accuracy when utilizing all 19 EEG channels and when 
restricted to frontal channels. For instance, when employing 
19-channel set, k-NN demonstrates the greatest accuracy of 
99.7%. However, when limited to frontal channels, all 
classifiers show decreased accuracy, highlighting the 
significance of complete EEG data for precise classification. 

TABLE 1 
THE AVERAGE ACCURACY TABLE OF SLEEP DEPRIVATION CLASSIFICATION 

 
For the average performance of classifiers on non-sleep 
deprived data—19 channel, KNN achieved the highest 
accuracy at 99.8%, and for the frontal channel set, the 
highest accuracy for non-sleep deprived data was achieved 
by SVM and ANN at 94%. 
 

TABLE 2 
THE AVERAGE ACCURACY TABLE OF NON-SLEEP DEPRIVATION CLASSIFICATION 

 
 
C. Average Accuracy Plots 

The classification accuracy of the four methods (SVM, ANN, 
k-NN, and RF) is shown in Fig. 6. The graph contrasts each 

classifier’s performance while employing 19 EEG channels 
against just frontal channels. To differentiate between 
sleep-deprived and non-sleep-deprived settings, the bars are 
color-coded and categorized according to the classifier. The 
data in Table 1 and Table 2 is graphically supported by this 
figure, which also demonstrates that k-NN obtains the 
maximum overall accuracy, and that the accuracy decreases 
dramatically when utilizing only frontal channels for all 
classifiers. 
 

 

Fig. 5  The overall classification accuracies between four classification 
algorithms of sleep-deprived and non-sleep-deprived data for 19-channel 

and frontal-channel sets 

IV. DISCUSSIONS 

A. Impact of EEG Signal Consistency 

Normal cognitive function and attentiveness are reflected in 
the consistent EEG signal patterns seen in persons who are 
not sleep deprived. Because it stands in stark contrast to the 
increased variability observed in sleep-deprived people, the 
brain’s attempt to make up for the lack of sleep is shown in 
the more irregular and less smooth theta and delta wave 
patterns. This contrast emphasizes how fundamentally 
different sleep deprivation induces different states of brain 
activity, underscoring the significance of regular sleep in 
maintaining normal brain function. 
 
B. Importance of Channel Selection 

Classifying sleep deprivation data is more accurately 
achieved when a full set of 19 EEG channels is used. On the 
other hand, while still useful, employing exclusively frontal 
channels results in marginally less accuracy. This result 
highlights the benefit of using a wider range of channels to 
achieve a more precise classification. Multiple channels are 
anticipated to record a larger range of brain activity, which 
gives the classifiers a more robust dataset to work with and 
ultimately improves their performance. In contrast, it also 
can be said that 2 frontal channels are enough to detect 
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sleep deprivation in normal subjects in this study, although 
with lesser accuracy but still higher than 90% accuracy. 
 
C. Classifier Accuracy 

The k-NN classifier’s better performance when using all 19 
channels of EEG signals indicates that this algorithm is 
especially good at processing the high-dimensional data that 
comes with extensive EEG recordings. The efficacy of the k-
NN classifier in differentiating between sleep-deprived and 
non-sleep-deprived states is demonstrated by its 99.7% 
accuracy rate. In contrast, the SVM and ANN classifiers’ 
performance, which achieved a 94% accuracy rate employing 
frontal channels, shows their durability and dependability, 
even though their accuracy was marginally lower than that 
of the k-NN classifier. These findings imply that although 
ANN and SVM are good competitors for classification tasks, 
k-NN is especially well-suited for this case due to its ability to 
use the entire spectrum of EEG data. 
 
D. Proposed Protocol 

In this section, we propose a protocol to detect sleep 
deprivation, for future work. This suggested procedure in 
Fig. 7 below uses EEG readings in a step-by-step manner to 
methodically investigate sensory and cognitive functioning. 
Initially, subjects would rest for four minutes, two of which 
would be spent with their eyes open and two with them 
closed, to establish baseline EEG activity both with and 
without visual input. Subsequently, auditory situations 
involving both noise and no noise scenarios would be 
presented to the subjects to evaluate the brain’s reaction to 
auditory stimuli. After that, tests of visual conditions with 
and without lighting would be conducted to assess how well 
the brain processes visual data. Lastly, participants would 
engage in a Go/No-go task that tests reaction inhibition and 
cognitive control. For ‘Go’ trial (yellow square), they would 
click a button; for ‘no-go’ trials (blue square), they would 
restrain their answer. 

With the use of this extensive methodology, it would be 
possible to analyze EEG data from a variety of sensory and 
cognitive states, offering new perspectives on the brain 
processes that underlie response inhibition and sensory 
processing. However, in our current study, we used pre-
existing data from earlier research subjects for our current 
investigation. Our method enabled us to concentrate on 
examining the impact of channel selection performance on 
classifier accuracy within the framework of EEG-based sleep 
deprivation categorization. The suggested approach 
considers how various sensory and cognitive states affect 
EEG recordings, emphasizing how crucial it is to choose the 
right EEG channels to improve classifier performance for 
identifying hypoxia. Khan et al. [14] summarized the 
negative effects of SD on behavior as a whole and cognitive 

function as the neural pathways slow down, resulting in a 
lower mental state and reaction time. 

Fig. 6 The proposed protocol for the EEG experiment to detect sleep 
deprivation 

E. Suggestion for Classification Algorithms 

Based on the classification accuracy from the bar plots, the 
k-NN is the optimal option for 19-channel, demonstrating the 
maximum accuracy for both non-sleep-deprived (99.8%) and 
sleep deprived (99.7%) stages. The SVM, which obtains the 
maximum accuracy for both non-sleep-deprived and sleep 
deprived (94.0%), is advised for frontal channel data. These 
findings show that SVM is more successful with frontal-
channel data while k-NN performs better with 19-channel 
data, indicating that k-NN and SVM are the recommended 
classifiers for these specific configurations. 

V. CONCLUSION 

This study shows that choosing the right EEG channel is 
essential for correctly categorizing sleep deprivation. 
Significant changes in brain activity are observed when EEG 
signals from sleep-deprived persons are analysed. The non-
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sleep-deprived state shows more stable and consistent 
patterns than the erratic and fluctuating signals observed in 
sleep-deprived subjects in certain signals when observed. 
The results indicate that the k-Nearest Neighbours (k-NN) 
algorithms is robust when handling high-dimensional data, 
as evidenced by its maximum classification accuracy among 
the investigated classifiers, especially when using a 
comprehensive set of 19 EEG channels. Although they had 
somewhat less accuracy than k-NN, support vector machine 
(SVM) and artificial neural network (ANN) classifiers also 
fared well, particularly when used with frontal channels (Fp1 
and Fp2). 

These results highlight the value of using a wide variety of 
EEG channels to improve classification accuracy and imply 
that obtaining complete EEG data is necessary to create 
dependable and efficient sleep deprivation monitoring 
systems. To further enhance classification performance and 
resilience, future studies should investigate the application 
of sophisticated machine learning algorithms and the 
integration of new physiological information. 

In addition, we also have proposed a procedure to 
methodically examine sensory and cognitive performance 
for sleep deprivation for future work. This technique 
emphasizes the significance of good EEG channel selection. 
It also intends to provide extensive insights into brain 
activities across a range of sensory and cognitive states. 
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