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Abstract— Beyond a shadow of a doubt, the studying of context-free grammars with restricted  derivation 
trees known as tree controlled grammars have achieved plentiful remarkable results within formal 
language theory as demonstrated in a number of publications on this subject  for the past forty five years. 
In principle, these grammars generate their languages as an ordinary context-free grammar except their 
derivation trees need to be satisfied by certain prescribed conditions. Our paper is a continuing of studying 
of this kind of grammars, where we introduce a new variant of tree controlled grammar called a tree 
valence controlled grammar, which replaces regular sets with valences where every main production with 
certain integer value will be derived into sub-productions with the value of combination of zero and one or 
zero and minus represented in matrices form with the permutations of each matrix row yield a zero value 
(at every level of tree derivation, the summation of valence value is zero). We also investigate the 
generative capacity and structural properties of these grammars. 
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I. INTRODUCTION 

The idea of imposing restrictions upon the derivation 
trees of context-free grammars was originated by Culik and 
Maurer in 1977, when they introduced a new regulated 
grammar called tree controlled grammars (for short TC 
grammars). They defined TC grammars as a pair (𝐺, 𝑅) with 
𝐺 is a context-free grammar and 𝑅 is a regular language 
that is used as a control mechanism in generating a 
successful derivation in 𝐺. Then, a word, 𝑤 that generated 
by 𝐺, is said to belong to the language designated by 𝐺 and 
𝑅 if there exists a derivation tree 𝑡 in 𝐺 for 𝑤 such that all 
tree levels except the last one are in 𝑅. The authors also 
studied the complexity of parsing of TC grammar where 
they found that it can be parsed in time O(𝑛2) for both 
context free and some non-context free languages. At the 
same time, they proved that classes of languages of regular, 
linear, context free, recursively enumerable, EOL and ETOL 
can be characterized by TC grammars in an innate manner 
[1]. 

Since TC grammars were properly defined, a great 
extent of researches has been done on them in variety 
directions. In 1979, Paun thoroughly examined the 
computational power of TC grammars by not only 
considering the context-free grammars controlled by 
regular languages but also by considering all possible 
variants of the TC grammars with varying the grammars as 

well as their control languages. He studied the 
computational power of TC regular, context-free and 𝜆-free 
context-free grammars controlled by all types of Chomsky 
languages including finite languages. Thus, he came out 
with fifteen types of TC grammars. In general, he proved 
that if erasing rules are prohibited in the productions, the 
TC grammars coincide with context-sensitive grammars 
and if erasing rules are allowed, they coincide with arbitrary 
phrase structure grammars [2]. 

Then, after around twenty years elapsed, there arose an 
issue whether there is a possibility for TC grammars to 
possess the same power if the underlying grammars are 
controlled by subregular languages. This issue was 
investigated by Dassow and Truthe in 2008 where they 
considered several different types of subregular languages 
such as regular suffix-closed languages, regular 
commutative languages, finite languages, circular 
languages, non-counting languages, nilpotent languages, 
ordered languages and combinational. In their study, they 
noticed subregularly TC grammars generate the context-
sensitive, EOL and matrix languages [3]. Further, they 
continued to study on the hierarchy of such grammars 
where they presented several ideas of controlling 
derivation trees levels of context-free grammar by the 
regular languages with restricted complexity, by finite 
union of monoids and by languages accepting deterministic 
finite automaton (DFA) with mostly prescribed number of 
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states. As a result, they proved that at level 2, the 
corresponding hierarchy of TC languages already collapsed 
[4]. 

A specific research on the complexities of TC grammars 
was first conducted by Stiebe in 2008 where he validated 
that every linearly bounded queue automaton has a TC 
grammar. Then, he showed that without erasing 
productions, context-sensitive languages can be generated 
by a TC context-free grammar that has a control language 
accepted by deterministic finite automaton with at most 
five states but if erasing productions are allowed in the 
grammar, it can generate the recursively enumerable 
languages [5]. Subsequently, in 2011, Turaev, Dassow and 
Selamat recommenced to look into the TC grammars in the 
company of bounded nonterminal complexity where then 
they proved that without erasing rules, the nonterminals 
number in TC grammars can lead to an infinite hierarchy of 
TC languages families and with erasing rules, any 
recursively enumerable languages can be generated with 
no more than nine nonterminals [6]. The same authors 
again, Turaev et al. but in another paper [7], demonstrated 
that any recursively enumerable language can be 
generated by a TC grammar with at most seven 
nonterminals only. They also established that a TC grammar 
with three nonterminals is already sufficient to generate 
any regular simple matrix and linear languages. However, 
those two proofs are still undecidable whether they are 
optimal or not [7]. Interestingly, one year later, Turaev et al. 
again came back with another paper that investigated the 
same issue in [7] but this time they completely proved that 
the bound for the mentioned families of languages before 
are optimal.  In addition, they presented that TC grammars 
with at most four nonterminals are sufficient enough to 
generate any context-free languages [8]. 

Later on but still in the same year, by using the same 
technique as done in [8] but with different version of the 
Geffert normal form, Vaszil demonstrated that the 
complexity of nonterminal of TC grammars can be reduced 
from seven to six [9].  

In 2012, Koutny and Meduna came out with a new idea of 
generating TC grammars where instead of placing the 
restrictions on tree levels, they placed them on the tree 
paths and cuts. They restricted the derivation tree cuts by 
an advocated regular language with the notion that in 
every derivation tree in the grammar, there exists a set X of 
tree cuts which specified by regular language and cover all 
the tree. They showed that these grammars can 
characterize the family of languages of recursively 
enumerable. Not only that, they as well introduced a binary 
relation over those grammars together with the proof that 
it also can generate the identical family of languages of 
recursively enumerable [10]. 

This paper is structured as follows. First, we recall some 
basic notations, notions and concepts that will be used 
throughout this paper such formal languages theories, tree 
structure and grammars with regulated rewriting. Then, we 
introduce a new type of tree controlled grammars called 
tree valence controlled grammars. Further, we investigate 
its generative power as well as their closure properties. 
Lastly, we provide a brief summarization of all materials 
discussed in this paper. 

II. PRELIMINARIES 

In this section, we shortly recall the necessary basic 
notations, terminologies and concepts related to the 
formal languages theories, tree structure and regulated 
rewriting grammars that will be used in the following 
sections. Then, for more exhaustive information or 
unexplained notions, the reader can refer to [11] - [15]. 

All the way through this paper, we use the following 
basic notations. The symbols ∈ and ∉ represent the set 
membership and negation of set membership of an 
element to a set. The symbol ⊆ signifies the inclusion which 
is not necessarily proper and ⊂   stands for the strict 
inclusion. Alternatively, we can use the symbol ⊊, i.e.,  for a 
two sets 𝐴 and 𝐵, 𝐴 ⊊ 𝐵 if  𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵. Further, we 
have the notation |𝐴| to portray the cardinality of a set 𝐴 
which is the number of elements in the set 𝐴 with 2𝐴 to 
depict the power set of a set 𝐴. The symbol ∅ denotes the 
empty set which implies that there is no element in the set. 
Subsequently, the set of integer, natural, real and rational 
number are denoted by ℤ, ℕ, ℝ and ℚ, respectively. 

Afterwards, we have an alphabet, which is a finite and 
nonempty set of elements known as symbols or letters,  
denoted by Σ and a string (sometimes referred as word) 
over Σ which is a finite sequence of symbols (concatenation 
of symbols) from Σ. The string without symbols is called 
null or empty string and it is denoted by 𝜆. The set of all 
strings (including 𝜆) over the alphabet Σ is represented by 
Σ∗, and Σ+ denotes Σ∗ − {𝜆}. A string 𝑤 is a substring of a 
string 𝜈 if and only if there exist 𝑢1, 𝑢2 such that 𝜈 = 𝑢1𝑤𝑢2,
𝑢1, 𝑢2, 𝑤, 𝜈 ∈ Σ

∗. The length of string is denoted by |𝑤| that 
is the number of symbols in it the string. A language 𝐿  is a 
subset of Σ∗. 𝐿 ⊆ Σ∗ is 𝜆 -free if 𝜆 ∉ 𝐿.  

A context-free grammar is a quadruple 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) 
where 𝑁 and 𝑇 are finite sets of nonterminal and terminal 
symbols, respectively, 𝑆 ∈ 𝑁  is the start symbol and 
𝑃 ∈ 𝑁 × (𝑁 ∪ 𝑇)∗ is the set of (production) rules. Usually, a 
rule (𝐴, 𝑤) is written as 𝐴 → 𝑤. A rule of the form 𝐴 → 𝜆 is 
called an erasing rule. 𝑢 ∈ (𝑁 ∪ 𝑇)+  directly derives 
𝑣 ∈ (𝑁 ∪ 𝑇)∗, written as 𝑥 ⇒ 𝑦, if and only if there is a rule 
𝑟 = 𝐴 → 𝑤 ∈ 𝑃  such that 𝑢 = 𝑢1𝐴𝑢2  and 𝑣 = 𝑣1𝑤𝑣2 . The 
reflexive and transitive closure of ⇒ is denoted by ⇒∗. A 
derivation using the sequence of rules 𝜋 = 𝑟1𝑟2…𝑟𝑛  is 
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denoted by 
𝜋
⇒ or 

𝑟1𝑟2…𝑟𝑛
⇒     . The language generated by 𝐺 is 

defined by 𝐿(𝐺) = {𝑤 ∈ 𝑇∗| 𝑆 ⇒∗ 𝑤}. 
A very practical and typical way to represent a derivation 

in a grammar is a tree. Here, a derivation tree or a parse 
tree is defined as an ordered tree with the tree interior 
nodes as the left hand sides of grammar productions and 
the tree children nodes as the corresponding right hand 
side of that grammar where the tree root is the start 
symbol and the tree leaves are the terminals. 

Formally, we can define a derivation tree as follows. Let 
𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) be a context-free grammar and 𝑆 ⇒∗ 𝑤 be 
a derivation in 𝐺. Then, a derivation tree of 𝑆 ⇒∗ 𝑤 is an 
ordered and directed tree whose nodes are assigned with 
symbols of 𝑁 ∪ 𝑇 ∪ {𝜆} in a manner like 

any nonterminals of 𝑁 are the interior nodes 
the start symbol 𝑆 is the root and 
𝐴 → 𝑥1𝑥2…𝑥𝑛 is a production of 𝑃 if 𝑥1, 𝑥2, … , 𝑥𝑛 are 
the nodes children of nonterminal 𝐴 which ordered 
from left to right. 

Then, a derivation tree yield is the string over 𝑁 ∪ 𝑇 
constructed by reading the leaves nodes starting from left 
to right. 

Further, some regulated grammars that will be used in 
the following sections are defined here. 

A matrix grammar is a quadruple 𝐺 = (𝑁, 𝑇, 𝑆,𝑀) where 
𝑁, 𝑇 and 𝑆 are defined as for a context-free grammar and 𝑀 
is a set of matrices, which are sequences of context-free 
rules over 𝑁 ∪ 𝑇. The language generated by 𝐺 is defined 

by  𝐿(𝐺) = {𝑤 ∈ 𝑇∗| 𝑆
𝜋
⇒𝑤 and 𝜋 ∈ 𝑀∗}. 

A tree controlled grammar is a quintuple 𝐻 =
(𝑁, 𝑇, 𝑃, 𝑆, 𝑅)  where 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆)  is a context-free 
grammar and 𝑅 ⊆ (𝑁 ∪  𝑇)∗ is a regular set. The language 
𝐿(𝐻) consists of all words 𝑤 generated by the underlying 
grammar 𝐺 such that there is a derivation tree 𝑡 of 𝑤 with 
respect to 𝐺, where the words of all levels (except the last 
one) are in 𝑅. 

An additive valence grammar is a quintuple 𝐺 =
(𝑁, 𝑇, 𝑆, 𝑃, 𝑣) where 𝑁, 𝑇, 𝑆, 𝑃  are defined as for context-
free grammars and 𝑣 is a mapping from 𝑃 into the set ℤ of 
integers. The language generated by 𝐺  consists of all 

strings 𝑤 ∈ 𝑇∗  such there is a derivation 𝑆
𝑟1𝑟2…𝑟𝑘
⇒     𝑤  such 

that ∑ 𝑣(𝑟𝑖)
𝑘
𝑖=1 = 0. 

The families of languages generated by matrix, tree 
controlled, additive valence grammars (with erasing rules) 

are denoted by 𝐌𝐀𝐓, 𝐓𝐂, 𝑎𝐕𝐀𝐋 ( 𝐌𝐀𝐓𝜆 , 𝐓𝐂𝜆, 𝑎𝐕𝐀𝐋𝜆  ) 
respectively. 

III. DEFINITIONS AND EXAMPLE 

In this section, we present a conscientious definition of a 
tree valence controlled grammar, then we illustrate its 
features by an example. 

 

Lemma 1: Let, for integers 𝑣1, 𝑣2, … , 𝑣𝑛 ,  ∑ 𝑣𝑖
𝑛
𝑖=1 = 0 . 

Then, there are decompositions of 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 
𝑣𝑖 = ∑ 𝑣𝑖𝑗

𝑚
𝑗=1  such that 𝑣𝑖𝑗 ∈ { −1, 0, 1 }  for all 1 ≤ 𝑖 ≤ 𝑛 , 

and 1 ≤ 𝑗 ≤ 𝑚, and ∑ 𝑣𝑖𝑗
𝑛
𝑖=1 = 0 for all 1 ≤ 𝑗 ≤ 𝑛. 

 
Proof : Let 𝑣1, 𝑣2, … , 𝑣𝑛 be integers where   

𝑣1 + 𝑣2+. . . …+ 𝑣𝑛 = 0. 
Then, every 𝑣𝑖,1 ≤ 𝑖 ≤ 𝑛 can be decomposed into a chain 

of valences 𝑣𝑖𝑗  consisting of either 0 and 1’s for 𝑣𝑖  > 0  or -1 

and 0s for 𝑣𝑖  < 0 in form [

𝑣𝑖1
𝑣𝑖2
⋮
𝑣𝑖𝑚

] where ∑ 𝑣𝑖𝑗
𝑚
𝑗=1 = 𝑣𝑖.  

In general,  𝑣1   + 𝑣2    + … + 𝑣𝑛 = 0  can be 
decomposed into 

𝑣11
𝑣12
⋮
𝑣1𝑚

+
+
⋮
+

𝑣21
𝑣22
⋮
𝑣2𝑚

+
+
⋮
+

…
…
⋮
…

+
+
⋮
+

𝑣𝑛1
𝑣𝑛2
⋮
𝑣𝑛𝑚

 

 
Furthermore, without considering the valence zero (0), 

the position of each valence 𝑣𝑖𝑗  that have the same sign 

(either -1 or 1) are placed in such a way that each of them 
are always at different level of height to each other. The 
size of height level is depending on the total number of one 
of the valence 1 or -1. For instance, if we have 𝑣1 = 3 and 
𝑣2 = 2, then the size of height level will be 5 and their 
compositions will be 

𝑣1 =

[
 
 
 
 
1
1
1
0
0]
 
 
 
 

  and  𝑣2 =

[
 
 
 
 
0
0
0
1
1]
 
 
 
 

   

 
It means, at every level, there will only have one valence 

1 and one valence -1 with unbothered 0 (can have as many 
as we want). Then, the summation of all valences in each 
level is zero, i.e., ∑ ∑ 𝑣𝑖𝑗

𝑛
𝑖=1

𝑚
𝑗=1 = 0.  

Generally, for any  
  𝑣1 + 𝑣2 + … + 𝑣𝑛 = 0   

 
We can have  
𝑣11
𝑣12
⋮
𝑣1𝑚

+
+
⋮
+

𝑣21
𝑣22
⋮
𝑣2𝑚

+
+
⋮
+

…
…
⋮
…

+
+
⋮
+

𝑣𝑛1
𝑣𝑛2
⋮
𝑣𝑛𝑚

  

=
=
⋮
=

0
0
⋮
0

 

 
For example, 
−3 + 2 + 1 + 2 + −2 

 
−1
−1
−1
0
0

+
+
+
+
+

1
1
0
0
0

+
+
+
+
+

0
0
1
0
0

+
+
+
+
+

0
0
0
1
1

+
+
+
+
+

0
0
0
−1
−1

 

=
=
=
=
=

0
0
0
0
0
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Definition 1 A tree valence controlled grammar is a 
quintuple 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃, 𝑉)  where 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃)  is a 
context-free grammar and 𝑉 is a mapping from 𝑃 into the 
set ℤ of integers. 

 
Definition 2 The language 𝐿(𝐺) consists of all strings 𝑤 

generated by the underlying grammar 𝐺 such that there is a 
derivation tree 𝑡 of 𝑤 with respect to 𝐺 where the string 𝑤𝑖  
at every level 𝑖 ≥ 1 is obtained by production rules with 
zero total valence, i.e, if productions 𝑟𝑖,1, 𝑟𝑖,2, … , 𝑟𝑖,𝑘𝑖 ∈

𝑃, 𝑘𝑖 ≥ 1, produces 𝑤𝑖 , then ∑ 𝑉(𝑟𝑖,𝑗)
𝑘𝑖
𝑗=1 = 0. 

 
The family of languages generated by tree valence 

controlled grammar (with erasing rules) is denoted by 

𝐓𝐕 (𝐓𝐕𝜆). 
 
Example 1 Let 𝐺1 = ({𝐴, 𝐵, 𝐶, 𝑆}, {𝑎, 𝑏, 𝑐}, 𝑆,   𝑃, 𝑉) be a 

tree valence controlled grammar where 𝑃 consists of the 
following productions (for the sake of the simplicity, we 
assign the valence of a production in the brackets to the 
right of the production or over the arrow in the production) 

𝑟0 : 𝑆 → 𝐴𝐵𝐶[0], 

(𝑆
0
→𝑆1,  𝑆1

0
→𝐴𝐵𝐶), 

𝑟1 : 𝐴 → 𝑎𝐴[2], 

(𝐴
1
→𝐴1,  𝐴1

1
→𝑎𝐴), 

𝑟2 : 𝐵 → 𝑏𝐵[−1], 

(𝐵
−1
→ 𝐵1,  𝐵1

0
→𝑏𝐵), 

𝑟3 : 𝐶 → 𝑐𝐶[−1], 

(𝐶
0
→𝐶1,  𝐶1

−1
→ 𝑐𝐶), 

𝑟4 : 𝐴 → 𝑎[0], 

(𝐴
0
→𝐴1,  𝐴1

0
→𝑎), 

𝑟5 : 𝐵 → 𝑏[0], 

(𝐵
0
→𝐵1,  𝐵1

0
→𝑏), 

𝑟6 : 𝐶 → 𝑐[0], 

(𝐶
0
→𝐶1,  𝐶1

0
→𝑐).  

 
We start with the only applicable production rule 𝑟0 

which yields 𝐴𝐵𝐶. Then we can either 
terminate the derivation by applying productions 
𝑟4𝑟5𝑟6 to obtain  𝑎, 𝑏 and 𝑐 or  
rewrite 𝐴𝐵𝐶  to 𝑎𝐴𝑏𝐵𝑐𝐶  by applying productions 
𝑟1𝑟2𝑟3.  

Then, the derivation can be continued from 𝐴  to 
𝐶 applying productions  𝑟1𝑟2𝑟3  to produce  𝑎, 𝑏  and 𝑐  any 
number of times. To terminate the derivation, productions 
𝑟4𝑟5𝑟6 can be applied.  

Then, we have the following derivation 
Start: 

𝑆
𝑟0 
⇒ 𝑆1⟹ 𝐴𝐵𝐶. 

 
Iteratively generate: 

𝑟1
⇒ 𝐴1𝐵𝐶 ⟹ 𝑎𝐴𝐵𝐶

𝑟2
⇒𝑎𝐴𝐵1𝐶 ⟹ 𝑎𝐴𝑏𝐵𝐶 

𝑟3
⇒𝑎𝐴𝑏𝐵𝐶1⟹ 𝑎𝐴𝑏𝐵𝑐𝐶 
 (𝑟1𝑟2𝑟3)
⇒     

∗

𝑎𝑛𝐴𝑏𝑛𝐵𝑐𝑛𝐶. 
 

Terminate: 
𝑟4
⇒𝑎𝑛𝐴1𝑏

𝑛𝐵𝑐𝑛𝐶 ⟹ 𝑎𝑛+1𝑏𝑛𝐵𝑐𝑛𝐶 
 𝑟5
⇒𝑎𝑛+1𝑏𝑛𝐵1𝑐

𝑛⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛𝐶 
𝑟6
⇒𝑎𝑛+1𝑏𝑛+1𝑐𝑛𝐶1⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1. 
 

Thus, 𝐺1  generates the language  
𝐿(𝐺1) = {𝑎

𝑛 𝑏𝑛𝑐𝑛: 𝑛 ≥ 1} ∈ 𝐂𝐒 − 𝐂𝐅. 
 
For instance, the string 𝑎3𝑏3𝑐3  is obtained by the 

following derivation :  

𝑆
𝑟0 
⇒ 𝑆1⟹ 𝐴𝐵𝐶 ∈ 𝑉

𝑟1 
⇒𝐴1𝐵𝐶  

⟹ 𝑎𝐴𝐵𝐶
𝑟2 
⇒ 𝑎𝐴𝐵1𝐶 ⟹ 𝑎𝐴𝑏𝐵𝐶

𝑟3 
⇒ 𝑎𝐴𝑏𝐵𝐶1 

⟹ 𝑎𝐴𝑏𝐵𝑐𝐶 ∈ 𝑉
𝑟1 
⇒ 𝑎𝐴1𝑏𝐵𝑐𝐶 

⟹ 𝑎𝑎𝐴𝑏𝐵𝑐𝐶
𝑟2 
⇒ 𝑎𝑎𝐴𝑏𝐵1𝑐𝐶 ⟹ 𝑎𝑎𝐴𝑏𝑏𝐵𝑐𝐶  

𝑟3 
⇒ 𝑎𝑎𝐴𝑏𝑏𝐵𝑐𝐶1 ⟹ 𝑎𝑎𝐴𝑏𝑏𝐵𝑐𝑐𝐶 ∈ 𝑉 
𝑟4
⇒𝑎𝑎𝐴1𝑏𝑏𝐵𝑐𝑐𝐶 ⟹ 𝑎𝑎𝑎𝑏𝑏𝐵𝑐𝑐𝐶 
 𝑟5
⇒𝑎𝑎𝑎𝑏𝑏𝐵1𝑐𝑐𝐶 ⟹ 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝐶

𝑟6
⇒𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝐶1 

⟹ 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝐶 ∈ 𝑉 = 𝑎3𝑏3𝑐3. 
 
For more apparent, we present the derivations using 

tree diagram 
 

 
Figure 1 : Example of Tree Derivation for the String a3b3c3. 
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IV. GENERATIVE POWERS 

In this section, we manifest the results concerning the 
lower and upper bounds of tree valence controlled 
grammar defined above.  

From the definitions, the next lemma follows 
immediately. 

 

Lemma 2  𝐂𝐅[𝜆] ⊆ 𝐓𝐕[𝜆]. 
 
Proof : Let 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) be a context-free grammar 

where 𝑇 = {𝑥1, 𝑥2, … 𝑥𝑛}. We construct the tree valence 
counter part of 𝐺  as 𝐺′ = (𝑁, 𝑇, 𝑆, 𝑃′, 𝑉) where each  𝐴 →
𝑤 ∈ 𝑃 is replaced with 𝐴 → 𝑤[𝜔], 𝜔 ∈ ℤ where 𝜔 then (by 
Lemma 1) is decomposed into (𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛), 𝑛 ≥ 1 such 
𝑎𝑖 ∶  𝐴𝑖 → 𝑤𝑖[𝑎𝑖], 𝑎𝑖 ∈ {0, 1, −1}, 1 ≤ 𝑖 ≤ 𝑛  in 𝑃′ and 
valence 𝑉  is taken as 𝑉(𝑥1, 𝑥2, … 𝑥𝑛) = ∑ ∑ 𝑎𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1 = 0 . 

Thus, it is easy to see that 𝐿(𝐺) = 𝐿(𝐺′). 
 
Example 2 Let 𝐺2 = ({𝐴, 𝐵, 𝐶, 𝐷, 𝑆},   {𝑎, 𝑏, 𝑐, 𝑑}, 𝑆,    𝑃,

𝑉)  be a tree valence controlled context-free grammar 
where 𝑃 consists of the following productions  

𝑟0 ∶  𝑆 → 𝐴𝐵𝐶𝐷[0], 

(𝑆
0
→ 𝑆1,    𝑆1

0
→ 𝐴𝐵𝐶𝐷), 

𝑟1 ∶  𝐴 → 𝑎𝐴[1], 

(𝐴
1
→ 𝐴1,   𝐴1

0
→ 𝑎𝐴), 

𝑟2 ∶  𝐵 → 𝑏𝐵[1], 

(𝐵
0
→ 𝐵1,   𝐵1

1
→ 𝑏𝐵), 

𝑟3 ∶  𝐶 → 𝑐𝐶[−1], 

(𝐶
−1
→ 𝐶1,    𝐶1

0
→ 𝑐𝐶), 

𝑟4 ∶  𝐷 → 𝑑𝐷[−1], 

(𝐷
0
→𝐷1,   𝐷1

−1
→ 𝑑𝐷), 

𝑟5 ∶  𝐴 → 𝐴[0], 

(𝐴
0
→ 𝐴1,   𝐴1

0
→ 𝐴), 

𝑟6 ∶  𝐵 → 𝐵[0], 

(𝐵
0
→ 𝐵1,   𝐵1

0
→𝐵), 

𝑟7 ∶  𝐶 → 𝐶[0], 

(𝐶
0
→ 𝐶1,    𝐶1

0
→ 𝐶), 

𝑟8 ∶  𝐷 → 𝐷[0], 

(𝐷
0
→𝐷1,   𝐷1

0
→𝐷), 

𝑟9 ∶  𝐴 → 𝑎[0], 

(𝐴
0
→ 𝐴1,   𝐴1

0
→ 𝑎), 

𝑟10 ∶  𝐵 → 𝑏[0], 

(𝐵
0
→ 𝐵1,   𝐵1

0
→ 𝑏), 

𝑟11 ∶  𝐶 → 𝑐[0], 

(𝐶
0
→ 𝐶1,    𝐶1

0
→ 𝑐), 

𝑟12 ∶  𝐷 → 𝑑[0], 

(𝐷
0
→𝐷1,   𝐷1

0
→ 𝑑), 

 
In general, we can have the derivation as follow : 
 

Start: 

𝑆
𝑟0 
⇒ 𝑆1⟹ 𝐴𝐵𝐶𝐷 

 
Generate: 
 𝑟1 
⇒ 𝐴1𝐵𝐶𝐷 ⟹ 𝑎𝐴𝐵𝐶𝐷

 𝑟6 
⇒ 𝑎𝐴𝐵1𝐶𝐷 ⟹ 𝑎𝐴𝐵𝐶𝐷 

𝑟3 
⇒𝑎𝐴𝐵𝐶1𝐷 ⟹ 𝑎𝐴𝐵𝑐𝐶𝐷

𝑟8 
⇒𝑎𝐴𝐵𝑐𝐶𝐷1⟹ 𝑎𝐴𝐵𝑐𝐶𝐷 ∈ 𝑉 

(𝑟1𝑟6𝑟3𝑟8)
⇒      

∗

𝑎𝑛𝐴𝐵𝑐𝑛𝐶𝐷 ∈ 𝑉 
 𝑟5 
⇒ 𝑎𝑛𝐴1𝐵𝑐

𝑛𝐶𝐷 ⟹ 𝑎𝑛𝐴𝐵𝑐𝑛𝐶𝐷
 𝑟2 
⇒  𝑎𝑛𝐴𝐵1𝑐

𝑛𝐶𝐷 

⟹ 𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶𝐷
𝑟7 
⇒𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶1𝐷 ⟹ 𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶𝐷 

 𝑟4 
⇒ 𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶𝐷1 ⟹ 𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶𝑑𝐷 ∈ 𝑉  
(𝑟5𝑟2𝑟7𝑟4)
⇒      

∗

𝑎𝑛𝐴𝑏𝑚𝐵𝑐𝑛𝐶𝑑𝑚𝐷  
 
Terminate: 
 𝑟9 
⇒ 𝑎𝑛𝐴1𝑏

𝑚𝐵𝑐𝑛𝐶𝑑𝑚𝐷 ⟹ 𝑎𝑛+1𝑏𝑚𝐵𝑐𝑛𝐶𝑑𝑚𝐷 
𝑟11 
⇒ 𝑎𝑛+1𝑏𝑚𝐵𝑐𝑛𝐶1𝑑

𝑚𝐷 ⟹ 𝑎𝑛+1𝑏𝑚𝐵𝑐𝑛+1𝑑𝑚𝐷 
𝑟10 
⇒ 𝑎𝑛+1𝑏𝑚𝐵1𝑐

𝑛+1𝑑𝑚𝐷 ⟹ 𝑎𝑛+1𝑏𝑚+1𝑐𝑛+1𝑑𝑚𝐷 
𝑟12 
⇒ 𝑎𝑛+1𝑏𝑚+1𝑐𝑛+1𝑑𝑚𝐷1 ⟹ 𝑎𝑛+1𝑏𝑚+1𝑐𝑛+1𝑑𝑚+1.  

 
Plainly, this grammar generates a non-context free 

language : 𝐿(𝐺1) = {𝑎
𝑛 𝑏𝑚𝑐𝑛𝑑𝑚: 𝑛,𝑚 ≥ 1} ∈ 𝐂𝐒 − 𝐂𝐅. 

 
From Lemmas 1 and 2 with Example 2, we obtain 
 

Theorem 1 𝐂𝐅[𝜆] ⊊ 𝐓𝐕[𝜆]. 
 
Next we show that tree valence controlled grammars 

can be simulated by tree controlled languages, i.e.,  
 

Theorem 2  𝐓𝐕[𝜆] ⊆ 𝐓𝐂[𝜆]. 
 
Proof: Let 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃, 𝑉) be a tree valence controlled 

grammar. We construct an equivalent tree controlled 
grammar 𝐺′ = (𝑁′, 𝑇, 𝑆′, 𝑃′, 𝑅)  where 𝑁′ = 𝑁 ∪ {𝑆′, 𝑋, 𝑌, 𝑍} 
with 𝑆′, 𝑋, 𝑌, 𝑍  are new non-terminals and 𝑅 ⊆ 𝑁∗  is a 
regular set. We introduce the start TC 

 
𝑟0 ∶ 𝑆

′ → 𝑆[𝑍]                (1) 
 
and define each production 𝑃𝑟  of 𝐺′. For 𝑟 = 𝐴 → 𝑤[𝜔] ∈ 𝑃,  

 

𝑃𝑟 ∶ (𝐴 → 𝑤, [ 𝑍 → 𝑋
∑ 𝑣𝑖𝑗,   𝑣𝑖𝑗>0
𝑚
𝑗=1 𝑍 ])   if  𝜔 = 1         (2) 

 
and 

𝑃𝑟 ∶ (𝐴 → 𝑤, [ 𝑍 → 𝑌
∑ 𝑣𝑖𝑗,   𝑣𝑖𝑗<0
𝑚
𝑗=1 𝑍   if  𝜔 = −1          (3) 

 
We control the use of a production at every level by 
 

𝑅 = {𝑍, 𝑋∑ 𝑣𝑖𝑗
𝑚
𝑗=1 𝑌∑ 𝑣𝑖𝑗

𝑚
𝑗=1 𝑍}                     (4) 
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We also consider the erasing production 
 
𝑟𝜆,𝑍 ∶ (𝑍 → 𝜆)              (5) 

 
and 

𝑟𝜆 ∶ (𝑋 → 𝜆) 𝑎𝑛𝑑 (𝑌 → 𝜆)                               (6) 
 

The TC grammar consists of the productions defined in  
(1) – (4) above. Further, we show that 𝐿(𝐺) = 𝐿(𝐺′). 

 
First, we show 𝐿(𝐺) ⊆ 𝐿(𝐺′). Let  

𝐷: 𝑆
𝑟0
⇒𝑤1[𝜔1]

𝑟1
⇒𝑤2[𝜔2] ⇒. . …

 𝑟𝑡
⇒𝑤𝑡[𝜔𝑡], 𝑤𝑡 ∈ 𝑇

∗ 
be a successful derivation, where the sum ∑ 𝜔𝑖

𝑡
𝑖=1  is 

represented in the following form according to Lemma 1: 

∑∑𝑣𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

= 0. 

We construct a derivation 𝐷′  in 𝐺′  simulating 𝐷 . The 
derivation 𝐷′ starts with  (1) and for each 𝑟𝑖  in 𝐷, we choose 
𝑃𝑟𝑖  in 𝐷′ with a derivation of tree TC of 𝑤 with respect to 𝐺′ 

where the words of all levels except the last one are 
belonging to 𝑅 (meet condition (4)). i.e., 

𝑆′
𝑟0
⇒ 𝑆𝑍

𝑟1
⇒𝑤1𝑋

∑ 𝑣𝑖𝑗,   𝑣𝑖𝑗>0 
𝑚
𝑗=1 𝑌∑ 𝑣𝑖𝑗,   𝑣𝑖𝑗<0

𝑚
𝑗=1 𝑍 

𝑟2
⇒𝑤2𝑋

∑ ∑ 𝑣𝑖𝑗,   𝑣𝑖𝑗>0
𝑚
𝑗=1

2
𝑖=1 𝑌∑ ∑ 𝑣𝑖𝑗,   𝑣𝑖𝑗<0

𝑚
𝑗=1

2
𝑖=1 𝑍 

 𝑟𝑛
⇒ 𝑤𝑛𝑋

∑ ∑ 𝑣𝑖𝑗,   𝑣𝑖𝑗>0
𝑚
𝑗=1

𝑛
𝑖=1 𝑌∑ ∑ 𝑣𝑖𝑗,   𝑣𝑖𝑗<0

𝑚
𝑗=1

𝑛
𝑖=1 𝑍 ∈ 𝑅 

⇒. . . …
𝑟𝑡
⇒𝑤𝑡𝑋

𝐴𝑌𝐵𝑍  where  
𝐴 = ∑ (∑ 𝑣𝑖𝑗 ,   𝑣𝑖𝑗 > 0 

𝑚
𝑗=1 )𝑡

𝑆=1 ,   

𝐵 = ∑ (∑ 𝑣𝑖𝑗 ,   𝑣𝑖𝑗 < 0 
𝑚
𝑗=1 )𝑡

𝑆=1 .    

 
Afterwards, we apply the erasing matrices (5) and (6) 

until 𝑍, 𝑋𝑠 and 𝑌𝑠 are completely removed where  

𝐷′ ∶  𝑆′
∗
⇒𝑤𝑡𝑋

𝐴𝑌𝐵𝑍
∗
⇒𝑤𝑡 .                             (7) 

 
Derivation (7) with 𝐴 − 𝐵 = 0 is possible since at every 

level of tree, the derivation of tree are already in 𝑅.  
From the other hand, we show that  𝐿(𝐺′) ⊆ 𝐿(𝐺, 𝑉, =). 
We consider a successful derivation 𝐷′  in 𝐺′ . Any 

derivation in 𝐺′  starts with applying 𝑙0 ∶  𝑟0 , then any 
production from (2) – (3) can be applied with satisfying the 
production (4). Yet, as soon as production (5) is applied, 
matrices (2) further cannot be applied. Without loss of 
generality, we can assume that 

𝐷′ ∶  𝑆′
𝑟0
⇒ 𝑆𝑍

𝑟1𝑟2… 𝑟𝑡
⇒     𝑤𝑡𝑋

𝐴𝑌𝐵𝑍
𝑟𝜆,𝑍
⇒  𝑤𝑋𝐴𝑌𝐵

𝑟𝜆
⇒𝑤𝑡   

where  
𝐴 = ∑ (∑ 𝑣𝑖𝑗 ,   𝑣𝑖𝑗 > 0 

𝑚
𝑗=1 )𝑡

𝑆=1  and   

𝐵 = ∑ (∑ 𝑣𝑖𝑗 ,   𝑣𝑖𝑗 < 0 
𝑚
𝑗=1 )𝑡

𝑆=1 . 

 
Since a derivation of tree belong to 𝑅 at every level 

except the last one,  𝑟𝜆 production erases all 𝑋𝑠 and 𝑌𝑠 with 
𝐴 − 𝐵 = 0.  

From the other hand, 

 

𝐴 − 𝐵 = ∑ (∑ 𝑣𝑖𝑗 ,   𝑣𝑖𝑗 > 0 
𝑚
𝑗=1 )𝑡

𝑆=1 −  

                 ∑ (∑ 𝑣𝑖𝑗 ,   𝑣𝑖𝑗 < 0 
𝑚
𝑗=1 )𝑡

𝑆=1   

= 0. 
 

Then, the corresponding derivation in 𝐺 is 𝐷 ∶ 𝑆
𝑟0𝑟1…𝑟𝑡
⇒    𝑤. 

Next theorem establishes a better upper-bound for the 
family of tree valence languages. 
 

Theorem 3  𝐓𝐕[𝜆] ⊆ 𝐌𝐀𝐓[𝜆]. 
 
Proof: Let 𝐺 be a tree valence controlled grammar where 

𝐺 = (𝑁, 𝑇, 𝑆, 𝑃, 𝑉)  and 𝐿′ = 𝐿(𝐺). We construct an 
equivalent matrix grammar 𝐺′ = (𝑁′, 𝑇, 𝑆′, 𝑀′)  where 
𝑁′ = 𝑁 ∪ {𝑆′, 𝑅, 𝑍}  where 𝑆′, 𝑅, 𝑍  are new non-terminals. 
We introduce the start matrix  

 
𝑚0 ∶ (𝑆

′ → 𝑆𝑍)                                (1) 
 

and define the matrix 𝑚𝑟 for each production 
𝑟 = 𝐴 → 𝑤[𝜔] ∈ 𝑃, the matrix 
 

𝑚𝑟 ∶ (𝐴 → 𝑤, [ 𝑍 → 𝑅
∑𝜔(𝑎𝑖)𝑍 ]) for 𝑎𝑖𝑗 = 1               (2) 

 
We also consider the erasing matrices 
 
𝑚𝜆 ∶ (𝑅 → 𝜆) for 𝑎𝑖𝑗 = −1,                               (3) 

𝑚𝜆,𝑍 ∶ (𝑍 → 𝜆),                                 (4) 

 
The matrix set 𝑀′ consists of the matrices (1) – (4) 

defined above. Further, we show that 𝐿(𝐺) = 𝐿(𝐺′). First 
we present 𝐿(𝐺) ⊆ 𝐿(𝐺′). 
 

Let 𝐷: 𝑆
 𝑟0
⇒𝑤1[𝜔1]

𝑟1
⇒𝑤2[𝜔2] ⇒. . …

 𝑟𝑡
⇒𝑤𝑡[𝜔𝑡], 𝑤𝑡 ∈ 𝑇

∗ be 
a successful derivation, i.e., ∑ 𝑎𝑖𝑗

𝑛
𝑖=1 = 0 for all 1 ≤ 𝑗 ≤ 𝑚. 

We construct a derivation 𝐷′ in 𝐺′ simulating 𝐷. 𝐷′ starts 
with matrix (1) and for each 𝑟𝑖  in 𝐷, we choose 𝑚𝑟𝑖 in 𝐷′, i.e., 

𝑆′
𝑚0
⇒ 𝑆𝑍

𝑚𝑟1
⇒  𝑤1𝑅

∑𝜔1(𝑎𝑖)𝑍
𝑚𝑟2
⇒  𝑤2𝑅

∑(𝜔1(𝑎𝑖)+𝜔2(𝑎𝑖))𝑍 

⇒. . . …
𝑚𝑟𝑡
⇒  𝑤𝑡𝑅

𝐴𝑍  where 𝐴 = ∑ (∑𝜔𝑆(𝑎𝑖))
𝑡
𝑆=1 .  

 
Afterwards, we apply the erasing matrices (3) and (4) 

until 𝑍 and 𝑅𝑠 are completely removed where  

 𝐷′ ∶  𝑆′
∗
⇒𝑤𝑡𝑅

𝐴𝑍
∗
⇒𝑤𝑡.  

 
Derivation (5) is possible since  
𝐴 = ∑ 𝑎𝑖𝑗

𝑛
𝑖=1 = 0 for all 1 ≤ 𝑗 ≤ 𝑚. 

        
From the other hand, we show that 𝐿(𝐺′) ⊆ 𝐿(𝐺). 

 
We consider a successful derivation 𝐷′  in 𝐺′ . Any 

derivation in 𝐺′ starts with applying 𝑚0, then any matrix 
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from (2) – (4) can be applied. Yet, as soon as matrix (4) is 
applied, matrices (2) further cannot be applied. Without 
loss of generality, we can assume that 

𝐷′ ∶  𝑆′
𝑚0
⇒ 𝑆𝑍

𝑚𝑟1𝑚𝑟2…𝑚𝑟𝑡
⇒         𝑤𝑡𝑅

𝐴𝑍
𝑚𝜆,𝑍
⇒  𝑤𝑡𝑅

𝐴
𝑚𝜆
⇒ 𝑤𝑡  

where 𝐴 = ∑ (∑𝜔𝑆(𝑎𝑖))
𝑡
𝑆=1 . 

 
Since 𝑚𝜆 matrix erases all 𝑅𝑠, 𝐴 = 0.  

Then, the corresponding derivation in 𝐺 is 𝐷 ∶ 𝑆
𝑟1𝑟2…𝑟𝑡
⇒    𝑤. 

Next, we give an example to illustrate the idea of 
construction the matrix grammar for a tree valence 
controlled grammar. 
 

Example 4 Consider the language 
𝐿(𝐺4) = {𝑎

𝑛𝑏𝑛𝑐𝑛𝑑𝑛𝑒𝑛𝑓𝑛 ∶ 𝑛 ≥ 0} ∈ 𝐂𝐒 ∩ 𝐓𝐕 − 𝐂𝐅  
generated by tree valence controlled 
grammar  𝐺4 = ( {𝐴, 𝐵, 𝐶 𝑆}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓},
𝑆,   𝑃, 𝑉  ) with production  

𝑟0 ∶ 𝑆 → 𝐴𝐵𝐶[0],        

(𝑆
0
→𝑆1,  𝑆1

0
→𝐴𝐵𝐶),     

𝑟1 ∶ 𝐴 → 𝑎𝐴𝑏[2],    

(𝐴
1
→ 𝐴1, 𝐴1

1
→ 𝑎𝐴𝑏),        

𝑟2 ∶ 𝐵 → 𝑐𝐵𝑑[−1],                

(𝐵
−1
→ 𝐵1,  𝐵1

0
→𝑐𝐵𝑑),                        

𝑟3 ∶ 𝐶 → 𝑒𝐶𝑓[−1],    

(𝐶
0
→𝐶1,  𝐶1

−1
→ 𝑒𝐶𝑓),    

𝑟4 ∶ 𝐴 → 𝜆[0],    

(𝐴
0
→ 𝐴1, 𝐴1

0
→ 𝜆), 

𝑟5 ∶ 𝐵 → 𝜆[0], 

(𝐵
0
→𝐵1, 𝐵1

0
→ 𝜆), 

𝑟6 ∶ 𝐶 → 𝜆[0], 

(𝐶
0
→𝐶1,  𝐶1

0
→𝜆). 

 
We construct the matrix grammar  𝐺4

′ = ( {𝐴, 𝐵, 𝐶, 𝑆}, {𝑎, 
𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, 𝑆, 𝑃, 𝑀 ) simulating   𝐺4  with production such  

𝑚0 ∶ (𝑆
′ → 𝑆𝑍), 

𝑚1 ∶ (𝑆 → 𝐴𝐵𝐶[𝑍 → 𝑍]),  
𝑚2 :  (𝐴 → 𝑎𝐴𝑏[𝑍 → 𝑅2𝑅3𝑍]), 
𝑚3 :  (𝐵 → 𝑐𝐵𝑑[𝑅2 → 𝜆]),  
𝑚4 :  (𝐶 → 𝑒𝐶𝑓[𝑅3 → 𝜆]), 
𝑚5 ∶ (𝐴 → 𝜆), 
𝑚6 ∶ (𝐵 → 𝜆), 
𝑚7 ∶ (𝐶 → 𝜆), 
𝑚8 ∶ (𝑍 → 𝜆). 

 
Now, we demonstrate the derivation of those two 

grammars using a string 𝑎2𝑏2𝑐2𝑑2𝑒2𝑓2. 
By tree valence controlled grammar 

𝑆
𝑟0
⇒ 𝑆1⟹ 𝐴𝐵𝐶 ∈ 𝑉 

𝑟1
⇒ 𝐴1𝐵𝐶 ⟹ 𝑎𝐴𝑏𝐵𝐶

𝑟2
⇒ 𝑎𝐴𝑏𝐵1𝐶 

⟹ 𝑎𝐴𝑏𝑐𝐵𝑑𝐶
𝑟3
⇒ 𝑎𝐴𝑏𝑐𝐵𝑑𝐶1 

⟹ 𝑎𝐴𝑏𝑐𝐵𝑑𝑒𝐶𝑓 ∈ 𝑉 

𝑟1
⇒ 𝑎𝐴1𝑏𝑐𝐵𝑑𝑒𝐶𝑓 ⟹ 𝑎𝑎𝐴𝑏𝑏𝑐𝐵𝑑𝑒𝐶𝑓 
𝑟2
⇒  𝑎𝑎𝐴𝑏𝑏𝑐𝐵1𝑑𝑒𝐶𝑓 ⟹ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝐶𝑓 
𝑟3
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝐶1𝑓 
⟹ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝑒𝐶𝑓𝑓 ∈ 𝑉 
𝑟4
⇒ 𝑎𝐴1𝑏𝑐𝐵𝑑𝑒𝐶𝑓 ⟹ 𝑎𝑎𝑏𝑏𝑐𝐵𝑑𝑒𝐶𝑓 
𝑟5
⇒  𝑎𝑎𝑏𝑏𝑐𝐵1𝑑𝑒𝐶𝑓 ⟹ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑒𝐶𝑓𝑓 
𝑟6
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝐶1𝑓 ⟹ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑒𝑓𝑓 ∈ 𝑉 
= 𝑎2𝑏2𝑐2𝑑2𝑒2𝑓2. 

 
By matrix grammar 

𝑆′
𝑚0
⇒ 𝑆𝑍

𝑚1
⇒ 𝐴𝐵𝐶𝑍

𝑚2
⇒ 𝑎𝐴𝑏𝐵𝐶𝑅2𝑅3𝑍 

𝑚3
⇒ 𝑎𝐴𝑏𝑐𝐵𝑑𝐶𝑅3𝑍

𝑚4
⇒ 𝑎𝐴𝑏𝑐𝐵𝑑𝑒𝐶𝑓𝑍 

𝑚2
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝐵𝑑𝑒𝐶𝑓𝑅2𝑅3𝑍 
𝑚3
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝐶𝑓𝑅3𝑍 
𝑚4
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝑒𝐶𝑓𝑓𝑍 
𝑚5
⇒ 𝑎𝑎𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝑒𝐶𝑓𝑓𝑍 
𝑚6
⇒ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑒𝐶𝑓𝑓𝑍 
𝑚7
⇒ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑒𝑓𝑓𝑍

𝑚8
⇒ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑓𝑓 

= 𝑎2𝑏2𝑐2𝑑2𝑒2𝑓2. 
 

The language 𝐿(𝐺) = { 𝑎𝑛𝑏𝑛𝑐𝑛 ∣  𝑛 ≥ 1 }2  has been 
proven cannot be generated by an additive valence 
grammar by Dassow and Paun (1989) in example 2.1.7. 
Nevertheless, this language can be generated by tree 
valence controlled grammar as in Example 5. 

 
Example 5   
𝐿(𝐺5) = { 𝑎

𝑛𝑏𝑛𝑐𝑛 ∣  𝑛 ≥ 1 }2  ∈ 𝐓𝐕 − 𝑎𝐕𝐀𝐋 . 
The grammar 𝐺5 for 𝐿(𝐺5)  : 
𝑟0 ∶ 𝑆 → 𝐴𝐵𝐶𝐷[0], 

(𝑆
0
→𝑆1,  𝑆1

0
→𝐴𝐵𝐶𝐷), 

𝑟1 ∶ 𝐴 → 𝑎𝐴𝑏[1], 

(𝐴
1
→𝐴1,  𝐴1

0
→𝑎𝐴𝑏), 

𝑟2 ∶ 𝐵 → 𝑐𝐵[−1], 

(𝐵
−1
→ 𝐵1,  𝐵1

0
→𝑐𝐵), 

𝑟3 ∶ 𝐶 → 𝑎𝐶𝑏[1], 

(𝐶
0
→𝐶1,  𝐶1

1
→𝑎𝐶𝑏), 

𝑟4 ∶ 𝐷 → 𝑐𝐷[−1], 

(𝐷
0
→𝐷1,  𝐷1

−1
→ 𝑐𝐷), 

𝑟5 ∶ 𝐴 → 𝑎𝑏[0], 

(𝐴
0
→𝐴1,  𝐴1

0
→𝑎𝑏), 

𝑟6 ∶ 𝐵 → 𝑐[0], 

(𝐵
0
→𝐵1,  𝐵1

0
→𝑐), 

𝑟7 ∶ 𝐶 → 𝑎𝑏[0], 

(𝐶
0
→𝐶1,  𝐶1

0
→𝑎𝑏), 

𝑟8 ∶ 𝐷 → 𝑐[0], 

(𝐷
0
→𝐷1,  𝐷1

0
→𝑐). 
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Here, obviously we can have the derivation such 
Start: 

𝑆
𝑟0
⇒ 𝑆1⟹ 𝐴𝐵𝐶𝐷 

Generate: 
 𝑟1
⇒ 𝐴1𝐵𝐶𝐷 ⟹ 𝑎𝐴𝑏𝐵𝐶𝐷

𝑟2
⇒ 𝑎𝐴𝑏𝐵1𝐶𝐷 ⟹ 𝑎𝐴𝑏𝑐𝐵𝐶𝐷 ∈ 𝑉 

( 𝑟1𝑟2)
⇒   

∗

𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝐶𝐷 
𝑟3
⇒ 𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵1𝐶𝐷 ⟹ 𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝑎𝐶𝑏𝐷 
𝑟4
⇒𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝑎𝐶𝑏𝐷1⟹ 𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝑎𝐶𝑏𝑐𝐷 ∈ 𝑉 
(𝑟3𝑟4)
⇒   

∗

𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝑎𝑚𝐶𝑏𝑚𝑐𝑚𝐷 
Terminate: 

𝑟5
⇒ 𝑎𝑛𝐴1𝑏

𝑛𝑐𝑛𝐵𝑎𝑚𝐶𝑏𝑚𝑐𝑚 
⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛𝐵𝑎𝑚𝐶𝑏𝑚𝑐𝑚𝐷 
𝑟6
⇒𝑎𝑛+1𝑏𝑛+1𝑐𝑛𝐵1𝑎

𝑚𝐶𝑏𝑚𝑐𝑚𝐷 
⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚𝐶𝑏𝑚𝑐𝑚𝐷 
𝑟7
⇒𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚𝐶1𝑏

𝑚𝑐𝑚𝐷 
⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚+1𝑏𝑚+1𝑐𝑚𝐷 
𝑟8
⇒𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚+1𝑏𝑚+1𝑐𝑚𝐷1 
⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚+1𝑏𝑚+1𝑐𝑚+1. 

 
Thus, 𝐺5 generates the language  
𝐿(𝐺5, ) = { 𝑎

𝑛𝑏𝑛𝑐𝑛 ∣  𝑛 ≥ 1 }2. 
 

From Example 5, it follows that 
Theorem 4 𝐓𝐕 − 𝑎𝐕𝐀𝐋 ≠ ∅ .  

V. CONCLUSION 

In a nut shell, we have introduced a new variant of 
controlled grammars called tree valence controlled 
grammar in which its basic notion is based on the existing 
of well-known and well-developed controlled grammar 
named tree controlled grammar. Here, we have found that 
tree valence controlled grammars are more powerful than 
context free grammars as well as than additive valence 
grammar. Moreover, they also generate matrix languages. 
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