
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 3, Issue 1 (2017)

15

Tree Valence Controlled Grammars

Salbiah Ashaari1, Sherzod Turaev1, Abdurahim Okhunov2
1 Department of Computer Science, Kulliyyah of Information and Communication Technology

International Islamic University Malaysia, Kuala Lumpur, Malaysia
salbiah.ash@gmail.com, sherzod@iium.edu.my

2 Department of Science in Engineering, Kulliyyah of Engineering
International Islamic University Malaysia, Kuala Lumpur, Malaysia

abdurahimokhun@iium.edu.my

Abstract— Beyond a shadow of a doubt, the studying of context-free grammars with restricted derivation
trees known as tree controlled grammars have achieved plentiful remarkable results within formal
language theory as demonstrated in a number of publications on this subject for the past forty five years.
In principle, these grammars generate their languages as an ordinary context-free grammar except their
derivation trees need to be satisfied by certain prescribed conditions. Our paper is a continuing of studying
of this kind of grammars, where we introduce a new variant of tree controlled grammar called a tree
valence controlled grammar, which replaces regular sets with valences where every main production with
certain integer value will be derived into sub-productions with the value of combination of zero and one or
zero and minus represented in matrices form with the permutations of each matrix row yield a zero value
(at every level of tree derivation, the summation of valence value is zero). We also investigate the
generative capacity and structural properties of these grammars.

Keywords— Context-Free Grammars, Tree Controlled Grammars, Generative Powers, Closure Properties.

I. INTRODUCTION

The idea of imposing restrictions upon the derivation
trees of context-free grammars was originated by Culik and
Maurer in 1977, when they introduced a new regulated
grammar called tree controlled grammars (for short TC
grammars). They defined TC grammars as a pair (𝐺, 𝑅) with
𝐺 is a context-free grammar and 𝑅 is a regular language
that is used as a control mechanism in generating a
successful derivation in 𝐺. Then, a word, 𝑤 that generated
by 𝐺, is said to belong to the language designated by 𝐺 and
𝑅 if there exists a derivation tree 𝑡 in 𝐺 for 𝑤 such that all
tree levels except the last one are in 𝑅. The authors also
studied the complexity of parsing of TC grammar where
they found that it can be parsed in time O(𝑛2) for both
context free and some non-context free languages. At the
same time, they proved that classes of languages of regular,
linear, context free, recursively enumerable, EOL and ETOL
can be characterized by TC grammars in an innate manner
[1].

Since TC grammars were properly defined, a great
extent of researches has been done on them in variety
directions. In 1979, Paun thoroughly examined the
computational power of TC grammars by not only
considering the context-free grammars controlled by
regular languages but also by considering all possible
variants of the TC grammars with varying the grammars as

well as their control languages. He studied the
computational power of TC regular, context-free and 𝜆-free
context-free grammars controlled by all types of Chomsky
languages including finite languages. Thus, he came out
with fifteen types of TC grammars. In general, he proved
that if erasing rules are prohibited in the productions, the
TC grammars coincide with context-sensitive grammars
and if erasing rules are allowed, they coincide with arbitrary
phrase structure grammars [2].

Then, after around twenty years elapsed, there arose an
issue whether there is a possibility for TC grammars to
possess the same power if the underlying grammars are
controlled by subregular languages. This issue was
investigated by Dassow and Truthe in 2008 where they
considered several different types of subregular languages
such as regular suffix-closed languages, regular
commutative languages, finite languages, circular
languages, non-counting languages, nilpotent languages,
ordered languages and combinational. In their study, they
noticed subregularly TC grammars generate the context-
sensitive, EOL and matrix languages [3]. Further, they
continued to study on the hierarchy of such grammars
where they presented several ideas of controlling
derivation trees levels of context-free grammar by the
regular languages with restricted complexity, by finite
union of monoids and by languages accepting deterministic
finite automaton (DFA) with mostly prescribed number of

mailto:salbiah.ash@gmail.com

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 3, Issue 1 (2017)

16

states. As a result, they proved that at level 2, the
corresponding hierarchy of TC languages already collapsed
[4].

A specific research on the complexities of TC grammars
was first conducted by Stiebe in 2008 where he validated
that every linearly bounded queue automaton has a TC
grammar. Then, he showed that without erasing
productions, context-sensitive languages can be generated
by a TC context-free grammar that has a control language
accepted by deterministic finite automaton with at most
five states but if erasing productions are allowed in the
grammar, it can generate the recursively enumerable
languages [5]. Subsequently, in 2011, Turaev, Dassow and
Selamat recommenced to look into the TC grammars in the
company of bounded nonterminal complexity where then
they proved that without erasing rules, the nonterminals
number in TC grammars can lead to an infinite hierarchy of
TC languages families and with erasing rules, any
recursively enumerable languages can be generated with
no more than nine nonterminals [6]. The same authors
again, Turaev et al. but in another paper [7], demonstrated
that any recursively enumerable language can be
generated by a TC grammar with at most seven
nonterminals only. They also established that a TC grammar
with three nonterminals is already sufficient to generate
any regular simple matrix and linear languages. However,
those two proofs are still undecidable whether they are
optimal or not [7]. Interestingly, one year later, Turaev et al.
again came back with another paper that investigated the
same issue in [7] but this time they completely proved that
the bound for the mentioned families of languages before
are optimal. In addition, they presented that TC grammars
with at most four nonterminals are sufficient enough to
generate any context-free languages [8].

Later on but still in the same year, by using the same
technique as done in [8] but with different version of the
Geffert normal form, Vaszil demonstrated that the
complexity of nonterminal of TC grammars can be reduced
from seven to six [9].

In 2012, Koutny and Meduna came out with a new idea of
generating TC grammars where instead of placing the
restrictions on tree levels, they placed them on the tree
paths and cuts. They restricted the derivation tree cuts by
an advocated regular language with the notion that in
every derivation tree in the grammar, there exists a set X of
tree cuts which specified by regular language and cover all
the tree. They showed that these grammars can
characterize the family of languages of recursively
enumerable. Not only that, they as well introduced a binary
relation over those grammars together with the proof that
it also can generate the identical family of languages of
recursively enumerable [10].

This paper is structured as follows. First, we recall some
basic notations, notions and concepts that will be used
throughout this paper such formal languages theories, tree
structure and grammars with regulated rewriting. Then, we
introduce a new type of tree controlled grammars called
tree valence controlled grammars. Further, we investigate
its generative power as well as their closure properties.
Lastly, we provide a brief summarization of all materials
discussed in this paper.

II. PRELIMINARIES

In this section, we shortly recall the necessary basic
notations, terminologies and concepts related to the
formal languages theories, tree structure and regulated
rewriting grammars that will be used in the following
sections. Then, for more exhaustive information or
unexplained notions, the reader can refer to [11] - [15].

All the way through this paper, we use the following
basic notations. The symbols ∈ and ∉ represent the set
membership and negation of set membership of an
element to a set. The symbol ⊆ signifies the inclusion which
is not necessarily proper and ⊂ stands for the strict
inclusion. Alternatively, we can use the symbol ⊊, i.e., for a
two sets 𝐴 and 𝐵, 𝐴 ⊊ 𝐵 if 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵. Further, we
have the notation |𝐴| to portray the cardinality of a set 𝐴
which is the number of elements in the set 𝐴 with 2𝐴 to
depict the power set of a set 𝐴. The symbol ∅ denotes the
empty set which implies that there is no element in the set.
Subsequently, the set of integer, natural, real and rational
number are denoted by ℤ, ℕ, ℝ and ℚ, respectively.

Afterwards, we have an alphabet, which is a finite and
nonempty set of elements known as symbols or letters,
denoted by Σ and a string (sometimes referred as word)
over Σ which is a finite sequence of symbols (concatenation
of symbols) from Σ. The string without symbols is called
null or empty string and it is denoted by 𝜆. The set of all
strings (including 𝜆) over the alphabet Σ is represented by
Σ∗, and Σ+ denotes Σ∗ − {𝜆}. A string 𝑤 is a substring of a
string 𝜈 if and only if there exist 𝑢1, 𝑢2 such that 𝜈 = 𝑢1𝑤𝑢2,
𝑢1, 𝑢2, 𝑤, 𝜈 ∈ Σ

∗. The length of string is denoted by |𝑤| that
is the number of symbols in it the string. A language 𝐿 is a
subset of Σ∗. 𝐿 ⊆ Σ∗ is 𝜆 -free if 𝜆 ∉ 𝐿.

A context-free grammar is a quadruple 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃)
where 𝑁 and 𝑇 are finite sets of nonterminal and terminal
symbols, respectively, 𝑆 ∈ 𝑁 is the start symbol and
𝑃 ∈ 𝑁 × (𝑁 ∪ 𝑇)∗ is the set of (production) rules. Usually, a
rule (𝐴, 𝑤) is written as 𝐴 → 𝑤. A rule of the form 𝐴 → 𝜆 is
called an erasing rule. 𝑢 ∈ (𝑁 ∪ 𝑇)+ directly derives
𝑣 ∈ (𝑁 ∪ 𝑇)∗, written as 𝑥 ⇒ 𝑦, if and only if there is a rule
𝑟 = 𝐴 → 𝑤 ∈ 𝑃 such that 𝑢 = 𝑢1𝐴𝑢2 and 𝑣 = 𝑣1𝑤𝑣2 . The
reflexive and transitive closure of ⇒ is denoted by ⇒∗. A
derivation using the sequence of rules 𝜋 = 𝑟1𝑟2…𝑟𝑛 is

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 3, Issue 1 (2017)

17

denoted by
𝜋
⇒ or

𝑟1𝑟2…𝑟𝑛
⇒ . The language generated by 𝐺 is

defined by 𝐿(𝐺) = {𝑤 ∈ 𝑇∗| 𝑆 ⇒∗ 𝑤}.
A very practical and typical way to represent a derivation

in a grammar is a tree. Here, a derivation tree or a parse
tree is defined as an ordered tree with the tree interior
nodes as the left hand sides of grammar productions and
the tree children nodes as the corresponding right hand
side of that grammar where the tree root is the start
symbol and the tree leaves are the terminals.

Formally, we can define a derivation tree as follows. Let
𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) be a context-free grammar and 𝑆 ⇒∗ 𝑤 be
a derivation in 𝐺. Then, a derivation tree of 𝑆 ⇒∗ 𝑤 is an
ordered and directed tree whose nodes are assigned with
symbols of 𝑁 ∪ 𝑇 ∪ {𝜆} in a manner like

any nonterminals of 𝑁 are the interior nodes
the start symbol 𝑆 is the root and
𝐴 → 𝑥1𝑥2…𝑥𝑛 is a production of 𝑃 if 𝑥1, 𝑥2, … , 𝑥𝑛 are
the nodes children of nonterminal 𝐴 which ordered
from left to right.

Then, a derivation tree yield is the string over 𝑁 ∪ 𝑇
constructed by reading the leaves nodes starting from left
to right.

Further, some regulated grammars that will be used in
the following sections are defined here.

A matrix grammar is a quadruple 𝐺 = (𝑁, 𝑇, 𝑆,𝑀) where
𝑁, 𝑇 and 𝑆 are defined as for a context-free grammar and 𝑀
is a set of matrices, which are sequences of context-free
rules over 𝑁 ∪ 𝑇. The language generated by 𝐺 is defined

by 𝐿(𝐺) = {𝑤 ∈ 𝑇∗| 𝑆
𝜋
⇒𝑤 and 𝜋 ∈ 𝑀∗}.

A tree controlled grammar is a quintuple 𝐻 =
(𝑁, 𝑇, 𝑃, 𝑆, 𝑅) where 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) is a context-free
grammar and 𝑅 ⊆ (𝑁 ∪ 𝑇)∗ is a regular set. The language
𝐿(𝐻) consists of all words 𝑤 generated by the underlying
grammar 𝐺 such that there is a derivation tree 𝑡 of 𝑤 with
respect to 𝐺, where the words of all levels (except the last
one) are in 𝑅.

An additive valence grammar is a quintuple 𝐺 =
(𝑁, 𝑇, 𝑆, 𝑃, 𝑣) where 𝑁, 𝑇, 𝑆, 𝑃 are defined as for context-
free grammars and 𝑣 is a mapping from 𝑃 into the set ℤ of
integers. The language generated by 𝐺 consists of all

strings 𝑤 ∈ 𝑇∗ such there is a derivation 𝑆
𝑟1𝑟2…𝑟𝑘
⇒ 𝑤 such

that ∑ 𝑣(𝑟𝑖)
𝑘
𝑖=1 = 0.

The families of languages generated by matrix, tree
controlled, additive valence grammars (with erasing rules)

are denoted by 𝐌𝐀𝐓, 𝐓𝐂, 𝑎𝐕𝐀𝐋 (𝐌𝐀𝐓𝜆 , 𝐓𝐂𝜆, 𝑎𝐕𝐀𝐋𝜆)
respectively.

III. DEFINITIONS AND EXAMPLE

In this section, we present a conscientious definition of a
tree valence controlled grammar, then we illustrate its
features by an example.

Lemma 1: Let, for integers 𝑣1, 𝑣2, … , 𝑣𝑛 , ∑ 𝑣𝑖
𝑛
𝑖=1 = 0 .

Then, there are decompositions of 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛,
𝑣𝑖 = ∑ 𝑣𝑖𝑗

𝑚
𝑗=1 such that 𝑣𝑖𝑗 ∈ { −1, 0, 1 } for all 1 ≤ 𝑖 ≤ 𝑛 ,

and 1 ≤ 𝑗 ≤ 𝑚, and ∑ 𝑣𝑖𝑗
𝑛
𝑖=1 = 0 for all 1 ≤ 𝑗 ≤ 𝑛.

Proof : Let 𝑣1, 𝑣2, … , 𝑣𝑛 be integers where

𝑣1 + 𝑣2+. . . …+ 𝑣𝑛 = 0.
Then, every 𝑣𝑖,1 ≤ 𝑖 ≤ 𝑛 can be decomposed into a chain

of valences 𝑣𝑖𝑗 consisting of either 0 and 1’s for 𝑣𝑖 > 0 or -1

and 0s for 𝑣𝑖 < 0 in form [

𝑣𝑖1
𝑣𝑖2
⋮
𝑣𝑖𝑚

] where ∑ 𝑣𝑖𝑗
𝑚
𝑗=1 = 𝑣𝑖.

In general, 𝑣1 + 𝑣2 + … + 𝑣𝑛 = 0 can be
decomposed into

𝑣11
𝑣12
⋮
𝑣1𝑚

+
+
⋮
+

𝑣21
𝑣22
⋮
𝑣2𝑚

+
+
⋮
+

…
…
⋮
…

+
+
⋮
+

𝑣𝑛1
𝑣𝑛2
⋮
𝑣𝑛𝑚

Furthermore, without considering the valence zero (0),

the position of each valence 𝑣𝑖𝑗 that have the same sign

(either -1 or 1) are placed in such a way that each of them
are always at different level of height to each other. The
size of height level is depending on the total number of one
of the valence 1 or -1. For instance, if we have 𝑣1 = 3 and
𝑣2 = 2, then the size of height level will be 5 and their
compositions will be

𝑣1 =

[

1
1
1
0
0]

 and 𝑣2 =

[

0
0
0
1
1]

It means, at every level, there will only have one valence

1 and one valence -1 with unbothered 0 (can have as many
as we want). Then, the summation of all valences in each
level is zero, i.e., ∑ ∑ 𝑣𝑖𝑗

𝑛
𝑖=1

𝑚
𝑗=1 = 0.

Generally, for any
 𝑣1 + 𝑣2 + … + 𝑣𝑛 = 0

We can have
𝑣11
𝑣12
⋮
𝑣1𝑚

+
+
⋮
+

𝑣21
𝑣22
⋮
𝑣2𝑚

+
+
⋮
+

…
…
⋮
…

+
+
⋮
+

𝑣𝑛1
𝑣𝑛2
⋮
𝑣𝑛𝑚

=
=
⋮
=

0
0
⋮
0

For example,
−3 + 2 + 1 + 2 + −2

−1
−1
−1
0
0

+
+
+
+
+

1
1
0
0
0

+
+
+
+
+

0
0
1
0
0

+
+
+
+
+

0
0
0
1
1

+
+
+
+
+

0
0
0
−1
−1

=
=
=
=
=

0
0
0
0
0

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 3, Issue 1 (2017)

18

Definition 1 A tree valence controlled grammar is a
quintuple 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃, 𝑉) where 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) is a
context-free grammar and 𝑉 is a mapping from 𝑃 into the
set ℤ of integers.

Definition 2 The language 𝐿(𝐺) consists of all strings 𝑤

generated by the underlying grammar 𝐺 such that there is a
derivation tree 𝑡 of 𝑤 with respect to 𝐺 where the string 𝑤𝑖
at every level 𝑖 ≥ 1 is obtained by production rules with
zero total valence, i.e, if productions 𝑟𝑖,1, 𝑟𝑖,2, … , 𝑟𝑖,𝑘𝑖 ∈

𝑃, 𝑘𝑖 ≥ 1, produces 𝑤𝑖 , then ∑ 𝑉(𝑟𝑖,𝑗)
𝑘𝑖
𝑗=1 = 0.

The family of languages generated by tree valence

controlled grammar (with erasing rules) is denoted by

𝐓𝐕 (𝐓𝐕𝜆).

Example 1 Let 𝐺1 = ({𝐴, 𝐵, 𝐶, 𝑆}, {𝑎, 𝑏, 𝑐}, 𝑆, 𝑃, 𝑉) be a

tree valence controlled grammar where 𝑃 consists of the
following productions (for the sake of the simplicity, we
assign the valence of a production in the brackets to the
right of the production or over the arrow in the production)

𝑟0 : 𝑆 → 𝐴𝐵𝐶[0],

(𝑆
0
→𝑆1, 𝑆1

0
→𝐴𝐵𝐶),

𝑟1 : 𝐴 → 𝑎𝐴[2],

(𝐴
1
→𝐴1, 𝐴1

1
→𝑎𝐴),

𝑟2 : 𝐵 → 𝑏𝐵[−1],

(𝐵
−1
→ 𝐵1, 𝐵1

0
→𝑏𝐵),

𝑟3 : 𝐶 → 𝑐𝐶[−1],

(𝐶
0
→𝐶1, 𝐶1

−1
→ 𝑐𝐶),

𝑟4 : 𝐴 → 𝑎[0],

(𝐴
0
→𝐴1, 𝐴1

0
→𝑎),

𝑟5 : 𝐵 → 𝑏[0],

(𝐵
0
→𝐵1, 𝐵1

0
→𝑏),

𝑟6 : 𝐶 → 𝑐[0],

(𝐶
0
→𝐶1, 𝐶1

0
→𝑐).

We start with the only applicable production rule 𝑟0

which yields 𝐴𝐵𝐶. Then we can either
terminate the derivation by applying productions
𝑟4𝑟5𝑟6 to obtain 𝑎, 𝑏 and 𝑐 or
rewrite 𝐴𝐵𝐶 to 𝑎𝐴𝑏𝐵𝑐𝐶 by applying productions
𝑟1𝑟2𝑟3.

Then, the derivation can be continued from 𝐴 to
𝐶 applying productions 𝑟1𝑟2𝑟3 to produce 𝑎, 𝑏 and 𝑐 any
number of times. To terminate the derivation, productions
𝑟4𝑟5𝑟6 can be applied.

Then, we have the following derivation
Start:

𝑆
𝑟0
⇒ 𝑆1⟹ 𝐴𝐵𝐶.

Iteratively generate:

𝑟1
⇒ 𝐴1𝐵𝐶 ⟹ 𝑎𝐴𝐵𝐶

𝑟2
⇒𝑎𝐴𝐵1𝐶 ⟹ 𝑎𝐴𝑏𝐵𝐶

𝑟3
⇒𝑎𝐴𝑏𝐵𝐶1⟹ 𝑎𝐴𝑏𝐵𝑐𝐶
 (𝑟1𝑟2𝑟3)
⇒

∗

𝑎𝑛𝐴𝑏𝑛𝐵𝑐𝑛𝐶.

Terminate:
𝑟4
⇒𝑎𝑛𝐴1𝑏

𝑛𝐵𝑐𝑛𝐶 ⟹ 𝑎𝑛+1𝑏𝑛𝐵𝑐𝑛𝐶
 𝑟5
⇒𝑎𝑛+1𝑏𝑛𝐵1𝑐

𝑛⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛𝐶
𝑟6
⇒𝑎𝑛+1𝑏𝑛+1𝑐𝑛𝐶1⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1.

Thus, 𝐺1 generates the language
𝐿(𝐺1) = {𝑎

𝑛 𝑏𝑛𝑐𝑛: 𝑛 ≥ 1} ∈ 𝐂𝐒 − 𝐂𝐅.

For instance, the string 𝑎3𝑏3𝑐3 is obtained by the

following derivation :

𝑆
𝑟0
⇒ 𝑆1⟹ 𝐴𝐵𝐶 ∈ 𝑉

𝑟1
⇒𝐴1𝐵𝐶

⟹ 𝑎𝐴𝐵𝐶
𝑟2
⇒ 𝑎𝐴𝐵1𝐶 ⟹ 𝑎𝐴𝑏𝐵𝐶

𝑟3
⇒ 𝑎𝐴𝑏𝐵𝐶1

⟹ 𝑎𝐴𝑏𝐵𝑐𝐶 ∈ 𝑉
𝑟1
⇒ 𝑎𝐴1𝑏𝐵𝑐𝐶

⟹ 𝑎𝑎𝐴𝑏𝐵𝑐𝐶
𝑟2
⇒ 𝑎𝑎𝐴𝑏𝐵1𝑐𝐶 ⟹ 𝑎𝑎𝐴𝑏𝑏𝐵𝑐𝐶

𝑟3
⇒ 𝑎𝑎𝐴𝑏𝑏𝐵𝑐𝐶1 ⟹ 𝑎𝑎𝐴𝑏𝑏𝐵𝑐𝑐𝐶 ∈ 𝑉
𝑟4
⇒𝑎𝑎𝐴1𝑏𝑏𝐵𝑐𝑐𝐶 ⟹ 𝑎𝑎𝑎𝑏𝑏𝐵𝑐𝑐𝐶
 𝑟5
⇒𝑎𝑎𝑎𝑏𝑏𝐵1𝑐𝑐𝐶 ⟹ 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝐶

𝑟6
⇒𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝐶1

⟹ 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝐶 ∈ 𝑉 = 𝑎3𝑏3𝑐3.

For more apparent, we present the derivations using

tree diagram

Figure 1 : Example of Tree Derivation for the String a3b3c3.

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 3, Issue 1 (2017)

19

IV. GENERATIVE POWERS

In this section, we manifest the results concerning the
lower and upper bounds of tree valence controlled
grammar defined above.

From the definitions, the next lemma follows
immediately.

Lemma 2 𝐂𝐅[𝜆] ⊆ 𝐓𝐕[𝜆].

Proof : Let 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) be a context-free grammar

where 𝑇 = {𝑥1, 𝑥2, … 𝑥𝑛}. We construct the tree valence
counter part of 𝐺 as 𝐺′ = (𝑁, 𝑇, 𝑆, 𝑃′, 𝑉) where each 𝐴 →
𝑤 ∈ 𝑃 is replaced with 𝐴 → 𝑤[𝜔], 𝜔 ∈ ℤ where 𝜔 then (by
Lemma 1) is decomposed into (𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛), 𝑛 ≥ 1 such
𝑎𝑖 ∶ 𝐴𝑖 → 𝑤𝑖[𝑎𝑖], 𝑎𝑖 ∈ {0, 1, −1}, 1 ≤ 𝑖 ≤ 𝑛 in 𝑃′ and
valence 𝑉 is taken as 𝑉(𝑥1, 𝑥2, … 𝑥𝑛) = ∑ ∑ 𝑎𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1 = 0 .

Thus, it is easy to see that 𝐿(𝐺) = 𝐿(𝐺′).

Example 2 Let 𝐺2 = ({𝐴, 𝐵, 𝐶, 𝐷, 𝑆}, {𝑎, 𝑏, 𝑐, 𝑑}, 𝑆, 𝑃,

𝑉) be a tree valence controlled context-free grammar
where 𝑃 consists of the following productions

𝑟0 ∶ 𝑆 → 𝐴𝐵𝐶𝐷[0],

(𝑆
0
→ 𝑆1, 𝑆1

0
→ 𝐴𝐵𝐶𝐷),

𝑟1 ∶ 𝐴 → 𝑎𝐴[1],

(𝐴
1
→ 𝐴1, 𝐴1

0
→ 𝑎𝐴),

𝑟2 ∶ 𝐵 → 𝑏𝐵[1],

(𝐵
0
→ 𝐵1, 𝐵1

1
→ 𝑏𝐵),

𝑟3 ∶ 𝐶 → 𝑐𝐶[−1],

(𝐶
−1
→ 𝐶1, 𝐶1

0
→ 𝑐𝐶),

𝑟4 ∶ 𝐷 → 𝑑𝐷[−1],

(𝐷
0
→𝐷1, 𝐷1

−1
→ 𝑑𝐷),

𝑟5 ∶ 𝐴 → 𝐴[0],

(𝐴
0
→ 𝐴1, 𝐴1

0
→ 𝐴),

𝑟6 ∶ 𝐵 → 𝐵[0],

(𝐵
0
→ 𝐵1, 𝐵1

0
→𝐵),

𝑟7 ∶ 𝐶 → 𝐶[0],

(𝐶
0
→ 𝐶1, 𝐶1

0
→ 𝐶),

𝑟8 ∶ 𝐷 → 𝐷[0],

(𝐷
0
→𝐷1, 𝐷1

0
→𝐷),

𝑟9 ∶ 𝐴 → 𝑎[0],

(𝐴
0
→ 𝐴1, 𝐴1

0
→ 𝑎),

𝑟10 ∶ 𝐵 → 𝑏[0],

(𝐵
0
→ 𝐵1, 𝐵1

0
→ 𝑏),

𝑟11 ∶ 𝐶 → 𝑐[0],

(𝐶
0
→ 𝐶1, 𝐶1

0
→ 𝑐),

𝑟12 ∶ 𝐷 → 𝑑[0],

(𝐷
0
→𝐷1, 𝐷1

0
→ 𝑑),

In general, we can have the derivation as follow :

Start:

𝑆
𝑟0
⇒ 𝑆1⟹ 𝐴𝐵𝐶𝐷

Generate:
 𝑟1
⇒ 𝐴1𝐵𝐶𝐷 ⟹ 𝑎𝐴𝐵𝐶𝐷

 𝑟6
⇒ 𝑎𝐴𝐵1𝐶𝐷 ⟹ 𝑎𝐴𝐵𝐶𝐷

𝑟3
⇒𝑎𝐴𝐵𝐶1𝐷 ⟹ 𝑎𝐴𝐵𝑐𝐶𝐷

𝑟8
⇒𝑎𝐴𝐵𝑐𝐶𝐷1⟹ 𝑎𝐴𝐵𝑐𝐶𝐷 ∈ 𝑉

(𝑟1𝑟6𝑟3𝑟8)
⇒

∗

𝑎𝑛𝐴𝐵𝑐𝑛𝐶𝐷 ∈ 𝑉
 𝑟5
⇒ 𝑎𝑛𝐴1𝐵𝑐

𝑛𝐶𝐷 ⟹ 𝑎𝑛𝐴𝐵𝑐𝑛𝐶𝐷
 𝑟2
⇒ 𝑎𝑛𝐴𝐵1𝑐

𝑛𝐶𝐷

⟹ 𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶𝐷
𝑟7
⇒𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶1𝐷 ⟹ 𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶𝐷

 𝑟4
⇒ 𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶𝐷1 ⟹ 𝑎𝑛𝐴𝑏𝐵𝑐𝑛𝐶𝑑𝐷 ∈ 𝑉
(𝑟5𝑟2𝑟7𝑟4)
⇒

∗

𝑎𝑛𝐴𝑏𝑚𝐵𝑐𝑛𝐶𝑑𝑚𝐷

Terminate:
 𝑟9
⇒ 𝑎𝑛𝐴1𝑏

𝑚𝐵𝑐𝑛𝐶𝑑𝑚𝐷 ⟹ 𝑎𝑛+1𝑏𝑚𝐵𝑐𝑛𝐶𝑑𝑚𝐷
𝑟11
⇒ 𝑎𝑛+1𝑏𝑚𝐵𝑐𝑛𝐶1𝑑

𝑚𝐷 ⟹ 𝑎𝑛+1𝑏𝑚𝐵𝑐𝑛+1𝑑𝑚𝐷
𝑟10
⇒ 𝑎𝑛+1𝑏𝑚𝐵1𝑐

𝑛+1𝑑𝑚𝐷 ⟹ 𝑎𝑛+1𝑏𝑚+1𝑐𝑛+1𝑑𝑚𝐷
𝑟12
⇒ 𝑎𝑛+1𝑏𝑚+1𝑐𝑛+1𝑑𝑚𝐷1 ⟹ 𝑎𝑛+1𝑏𝑚+1𝑐𝑛+1𝑑𝑚+1.

Plainly, this grammar generates a non-context free

language : 𝐿(𝐺1) = {𝑎
𝑛 𝑏𝑚𝑐𝑛𝑑𝑚: 𝑛,𝑚 ≥ 1} ∈ 𝐂𝐒 − 𝐂𝐅.

From Lemmas 1 and 2 with Example 2, we obtain

Theorem 1 𝐂𝐅[𝜆] ⊊ 𝐓𝐕[𝜆].

Next we show that tree valence controlled grammars

can be simulated by tree controlled languages, i.e.,

Theorem 2 𝐓𝐕[𝜆] ⊆ 𝐓𝐂[𝜆].

Proof: Let 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃, 𝑉) be a tree valence controlled

grammar. We construct an equivalent tree controlled
grammar 𝐺′ = (𝑁′, 𝑇, 𝑆′, 𝑃′, 𝑅) where 𝑁′ = 𝑁 ∪ {𝑆′, 𝑋, 𝑌, 𝑍}
with 𝑆′, 𝑋, 𝑌, 𝑍 are new non-terminals and 𝑅 ⊆ 𝑁∗ is a
regular set. We introduce the start TC

𝑟0 ∶ 𝑆

′ → 𝑆[𝑍] (1)

and define each production 𝑃𝑟 of 𝐺′. For 𝑟 = 𝐴 → 𝑤[𝜔] ∈ 𝑃,

𝑃𝑟 ∶ (𝐴 → 𝑤, [𝑍 → 𝑋
∑ 𝑣𝑖𝑗, 𝑣𝑖𝑗>0
𝑚
𝑗=1 𝑍]) if 𝜔 = 1 (2)

and

𝑃𝑟 ∶ (𝐴 → 𝑤, [𝑍 → 𝑌
∑ 𝑣𝑖𝑗, 𝑣𝑖𝑗<0
𝑚
𝑗=1 𝑍 if 𝜔 = −1 (3)

We control the use of a production at every level by

𝑅 = {𝑍, 𝑋∑ 𝑣𝑖𝑗
𝑚
𝑗=1 𝑌∑ 𝑣𝑖𝑗

𝑚
𝑗=1 𝑍} (4)

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 3, Issue 1 (2017)

20

We also consider the erasing production

𝑟𝜆,𝑍 ∶ (𝑍 → 𝜆) (5)

and

𝑟𝜆 ∶ (𝑋 → 𝜆) 𝑎𝑛𝑑 (𝑌 → 𝜆) (6)

The TC grammar consists of the productions defined in
(1) – (4) above. Further, we show that 𝐿(𝐺) = 𝐿(𝐺′).

First, we show 𝐿(𝐺) ⊆ 𝐿(𝐺′). Let

𝐷: 𝑆
𝑟0
⇒𝑤1[𝜔1]

𝑟1
⇒𝑤2[𝜔2] ⇒. . …

 𝑟𝑡
⇒𝑤𝑡[𝜔𝑡], 𝑤𝑡 ∈ 𝑇

∗
be a successful derivation, where the sum ∑ 𝜔𝑖

𝑡
𝑖=1 is

represented in the following form according to Lemma 1:

∑∑𝑣𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

= 0.

We construct a derivation 𝐷′ in 𝐺′ simulating 𝐷 . The
derivation 𝐷′ starts with (1) and for each 𝑟𝑖 in 𝐷, we choose
𝑃𝑟𝑖 in 𝐷′ with a derivation of tree TC of 𝑤 with respect to 𝐺′

where the words of all levels except the last one are
belonging to 𝑅 (meet condition (4)). i.e.,

𝑆′
𝑟0
⇒ 𝑆𝑍

𝑟1
⇒𝑤1𝑋

∑ 𝑣𝑖𝑗, 𝑣𝑖𝑗>0
𝑚
𝑗=1 𝑌∑ 𝑣𝑖𝑗, 𝑣𝑖𝑗<0

𝑚
𝑗=1 𝑍

𝑟2
⇒𝑤2𝑋

∑ ∑ 𝑣𝑖𝑗, 𝑣𝑖𝑗>0
𝑚
𝑗=1

2
𝑖=1 𝑌∑ ∑ 𝑣𝑖𝑗, 𝑣𝑖𝑗<0

𝑚
𝑗=1

2
𝑖=1 𝑍

 𝑟𝑛
⇒ 𝑤𝑛𝑋

∑ ∑ 𝑣𝑖𝑗, 𝑣𝑖𝑗>0
𝑚
𝑗=1

𝑛
𝑖=1 𝑌∑ ∑ 𝑣𝑖𝑗, 𝑣𝑖𝑗<0

𝑚
𝑗=1

𝑛
𝑖=1 𝑍 ∈ 𝑅

⇒. . . …
𝑟𝑡
⇒𝑤𝑡𝑋

𝐴𝑌𝐵𝑍 where
𝐴 = ∑ (∑ 𝑣𝑖𝑗 , 𝑣𝑖𝑗 > 0

𝑚
𝑗=1)𝑡

𝑆=1 ,

𝐵 = ∑ (∑ 𝑣𝑖𝑗 , 𝑣𝑖𝑗 < 0
𝑚
𝑗=1)𝑡

𝑆=1 .

Afterwards, we apply the erasing matrices (5) and (6)

until 𝑍, 𝑋𝑠 and 𝑌𝑠 are completely removed where

𝐷′ ∶ 𝑆′
∗
⇒𝑤𝑡𝑋

𝐴𝑌𝐵𝑍
∗
⇒𝑤𝑡 . (7)

Derivation (7) with 𝐴 − 𝐵 = 0 is possible since at every

level of tree, the derivation of tree are already in 𝑅.
From the other hand, we show that 𝐿(𝐺′) ⊆ 𝐿(𝐺, 𝑉, =).
We consider a successful derivation 𝐷′ in 𝐺′ . Any

derivation in 𝐺′ starts with applying 𝑙0 ∶ 𝑟0 , then any
production from (2) – (3) can be applied with satisfying the
production (4). Yet, as soon as production (5) is applied,
matrices (2) further cannot be applied. Without loss of
generality, we can assume that

𝐷′ ∶ 𝑆′
𝑟0
⇒ 𝑆𝑍

𝑟1𝑟2… 𝑟𝑡
⇒ 𝑤𝑡𝑋

𝐴𝑌𝐵𝑍
𝑟𝜆,𝑍
⇒ 𝑤𝑋𝐴𝑌𝐵

𝑟𝜆
⇒𝑤𝑡

where
𝐴 = ∑ (∑ 𝑣𝑖𝑗 , 𝑣𝑖𝑗 > 0

𝑚
𝑗=1)𝑡

𝑆=1 and

𝐵 = ∑ (∑ 𝑣𝑖𝑗 , 𝑣𝑖𝑗 < 0
𝑚
𝑗=1)𝑡

𝑆=1 .

Since a derivation of tree belong to 𝑅 at every level

except the last one, 𝑟𝜆 production erases all 𝑋𝑠 and 𝑌𝑠 with
𝐴 − 𝐵 = 0.

From the other hand,

𝐴 − 𝐵 = ∑ (∑ 𝑣𝑖𝑗 , 𝑣𝑖𝑗 > 0
𝑚
𝑗=1)𝑡

𝑆=1 −

 ∑ (∑ 𝑣𝑖𝑗 , 𝑣𝑖𝑗 < 0
𝑚
𝑗=1)𝑡

𝑆=1

= 0.

Then, the corresponding derivation in 𝐺 is 𝐷 ∶ 𝑆
𝑟0𝑟1…𝑟𝑡
⇒ 𝑤.

Next theorem establishes a better upper-bound for the
family of tree valence languages.

Theorem 3 𝐓𝐕[𝜆] ⊆ 𝐌𝐀𝐓[𝜆].

Proof: Let 𝐺 be a tree valence controlled grammar where

𝐺 = (𝑁, 𝑇, 𝑆, 𝑃, 𝑉) and 𝐿′ = 𝐿(𝐺). We construct an
equivalent matrix grammar 𝐺′ = (𝑁′, 𝑇, 𝑆′, 𝑀′) where
𝑁′ = 𝑁 ∪ {𝑆′, 𝑅, 𝑍} where 𝑆′, 𝑅, 𝑍 are new non-terminals.
We introduce the start matrix

𝑚0 ∶ (𝑆

′ → 𝑆𝑍) (1)

and define the matrix 𝑚𝑟 for each production
𝑟 = 𝐴 → 𝑤[𝜔] ∈ 𝑃, the matrix

𝑚𝑟 ∶ (𝐴 → 𝑤, [𝑍 → 𝑅
∑𝜔(𝑎𝑖)𝑍]) for 𝑎𝑖𝑗 = 1 (2)

We also consider the erasing matrices

𝑚𝜆 ∶ (𝑅 → 𝜆) for 𝑎𝑖𝑗 = −1, (3)

𝑚𝜆,𝑍 ∶ (𝑍 → 𝜆), (4)

The matrix set 𝑀′ consists of the matrices (1) – (4)

defined above. Further, we show that 𝐿(𝐺) = 𝐿(𝐺′). First
we present 𝐿(𝐺) ⊆ 𝐿(𝐺′).

Let 𝐷: 𝑆
 𝑟0
⇒𝑤1[𝜔1]

𝑟1
⇒𝑤2[𝜔2] ⇒. . …

 𝑟𝑡
⇒𝑤𝑡[𝜔𝑡], 𝑤𝑡 ∈ 𝑇

∗ be
a successful derivation, i.e., ∑ 𝑎𝑖𝑗

𝑛
𝑖=1 = 0 for all 1 ≤ 𝑗 ≤ 𝑚.

We construct a derivation 𝐷′ in 𝐺′ simulating 𝐷. 𝐷′ starts
with matrix (1) and for each 𝑟𝑖 in 𝐷, we choose 𝑚𝑟𝑖 in 𝐷′, i.e.,

𝑆′
𝑚0
⇒ 𝑆𝑍

𝑚𝑟1
⇒ 𝑤1𝑅

∑𝜔1(𝑎𝑖)𝑍
𝑚𝑟2
⇒ 𝑤2𝑅

∑(𝜔1(𝑎𝑖)+𝜔2(𝑎𝑖))𝑍

⇒. . . …
𝑚𝑟𝑡
⇒ 𝑤𝑡𝑅

𝐴𝑍 where 𝐴 = ∑ (∑𝜔𝑆(𝑎𝑖))
𝑡
𝑆=1 .

Afterwards, we apply the erasing matrices (3) and (4)

until 𝑍 and 𝑅𝑠 are completely removed where

 𝐷′ ∶ 𝑆′
∗
⇒𝑤𝑡𝑅

𝐴𝑍
∗
⇒𝑤𝑡.

Derivation (5) is possible since
𝐴 = ∑ 𝑎𝑖𝑗

𝑛
𝑖=1 = 0 for all 1 ≤ 𝑗 ≤ 𝑚.

From the other hand, we show that 𝐿(𝐺′) ⊆ 𝐿(𝐺).

We consider a successful derivation 𝐷′ in 𝐺′ . Any

derivation in 𝐺′ starts with applying 𝑚0, then any matrix

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 3, Issue 1 (2017)

21

from (2) – (4) can be applied. Yet, as soon as matrix (4) is
applied, matrices (2) further cannot be applied. Without
loss of generality, we can assume that

𝐷′ ∶ 𝑆′
𝑚0
⇒ 𝑆𝑍

𝑚𝑟1𝑚𝑟2…𝑚𝑟𝑡
⇒ 𝑤𝑡𝑅

𝐴𝑍
𝑚𝜆,𝑍
⇒ 𝑤𝑡𝑅

𝐴
𝑚𝜆
⇒ 𝑤𝑡

where 𝐴 = ∑ (∑𝜔𝑆(𝑎𝑖))
𝑡
𝑆=1 .

Since 𝑚𝜆 matrix erases all 𝑅𝑠, 𝐴 = 0.

Then, the corresponding derivation in 𝐺 is 𝐷 ∶ 𝑆
𝑟1𝑟2…𝑟𝑡
⇒ 𝑤.

Next, we give an example to illustrate the idea of
construction the matrix grammar for a tree valence
controlled grammar.

Example 4 Consider the language
𝐿(𝐺4) = {𝑎

𝑛𝑏𝑛𝑐𝑛𝑑𝑛𝑒𝑛𝑓𝑛 ∶ 𝑛 ≥ 0} ∈ 𝐂𝐒 ∩ 𝐓𝐕 − 𝐂𝐅
generated by tree valence controlled
grammar 𝐺4 = ({𝐴, 𝐵, 𝐶 𝑆}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓},
𝑆, 𝑃, 𝑉) with production

𝑟0 ∶ 𝑆 → 𝐴𝐵𝐶[0],

(𝑆
0
→𝑆1, 𝑆1

0
→𝐴𝐵𝐶),

𝑟1 ∶ 𝐴 → 𝑎𝐴𝑏[2],

(𝐴
1
→ 𝐴1, 𝐴1

1
→ 𝑎𝐴𝑏),

𝑟2 ∶ 𝐵 → 𝑐𝐵𝑑[−1],

(𝐵
−1
→ 𝐵1, 𝐵1

0
→𝑐𝐵𝑑),

𝑟3 ∶ 𝐶 → 𝑒𝐶𝑓[−1],

(𝐶
0
→𝐶1, 𝐶1

−1
→ 𝑒𝐶𝑓),

𝑟4 ∶ 𝐴 → 𝜆[0],

(𝐴
0
→ 𝐴1, 𝐴1

0
→ 𝜆),

𝑟5 ∶ 𝐵 → 𝜆[0],

(𝐵
0
→𝐵1, 𝐵1

0
→ 𝜆),

𝑟6 ∶ 𝐶 → 𝜆[0],

(𝐶
0
→𝐶1, 𝐶1

0
→𝜆).

We construct the matrix grammar 𝐺4

′ = ({𝐴, 𝐵, 𝐶, 𝑆}, {𝑎,
𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, 𝑆, 𝑃, 𝑀) simulating 𝐺4 with production such

𝑚0 ∶ (𝑆
′ → 𝑆𝑍),

𝑚1 ∶ (𝑆 → 𝐴𝐵𝐶[𝑍 → 𝑍]),
𝑚2 : (𝐴 → 𝑎𝐴𝑏[𝑍 → 𝑅2𝑅3𝑍]),
𝑚3 : (𝐵 → 𝑐𝐵𝑑[𝑅2 → 𝜆]),
𝑚4 : (𝐶 → 𝑒𝐶𝑓[𝑅3 → 𝜆]),
𝑚5 ∶ (𝐴 → 𝜆),
𝑚6 ∶ (𝐵 → 𝜆),
𝑚7 ∶ (𝐶 → 𝜆),
𝑚8 ∶ (𝑍 → 𝜆).

Now, we demonstrate the derivation of those two

grammars using a string 𝑎2𝑏2𝑐2𝑑2𝑒2𝑓2.
By tree valence controlled grammar

𝑆
𝑟0
⇒ 𝑆1⟹ 𝐴𝐵𝐶 ∈ 𝑉

𝑟1
⇒ 𝐴1𝐵𝐶 ⟹ 𝑎𝐴𝑏𝐵𝐶

𝑟2
⇒ 𝑎𝐴𝑏𝐵1𝐶

⟹ 𝑎𝐴𝑏𝑐𝐵𝑑𝐶
𝑟3
⇒ 𝑎𝐴𝑏𝑐𝐵𝑑𝐶1

⟹ 𝑎𝐴𝑏𝑐𝐵𝑑𝑒𝐶𝑓 ∈ 𝑉

𝑟1
⇒ 𝑎𝐴1𝑏𝑐𝐵𝑑𝑒𝐶𝑓 ⟹ 𝑎𝑎𝐴𝑏𝑏𝑐𝐵𝑑𝑒𝐶𝑓
𝑟2
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝐵1𝑑𝑒𝐶𝑓 ⟹ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝐶𝑓
𝑟3
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝐶1𝑓
⟹ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝑒𝐶𝑓𝑓 ∈ 𝑉
𝑟4
⇒ 𝑎𝐴1𝑏𝑐𝐵𝑑𝑒𝐶𝑓 ⟹ 𝑎𝑎𝑏𝑏𝑐𝐵𝑑𝑒𝐶𝑓
𝑟5
⇒ 𝑎𝑎𝑏𝑏𝑐𝐵1𝑑𝑒𝐶𝑓 ⟹ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑒𝐶𝑓𝑓
𝑟6
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝐶1𝑓 ⟹ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑒𝑓𝑓 ∈ 𝑉
= 𝑎2𝑏2𝑐2𝑑2𝑒2𝑓2.

By matrix grammar

𝑆′
𝑚0
⇒ 𝑆𝑍

𝑚1
⇒ 𝐴𝐵𝐶𝑍

𝑚2
⇒ 𝑎𝐴𝑏𝐵𝐶𝑅2𝑅3𝑍

𝑚3
⇒ 𝑎𝐴𝑏𝑐𝐵𝑑𝐶𝑅3𝑍

𝑚4
⇒ 𝑎𝐴𝑏𝑐𝐵𝑑𝑒𝐶𝑓𝑍

𝑚2
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝐵𝑑𝑒𝐶𝑓𝑅2𝑅3𝑍
𝑚3
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝐶𝑓𝑅3𝑍
𝑚4
⇒ 𝑎𝑎𝐴𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝑒𝐶𝑓𝑓𝑍
𝑚5
⇒ 𝑎𝑎𝑏𝑏𝑐𝑐𝐵𝑑𝑑𝑒𝑒𝐶𝑓𝑓𝑍
𝑚6
⇒ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑒𝐶𝑓𝑓𝑍
𝑚7
⇒ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑒𝑓𝑓𝑍

𝑚8
⇒ 𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑𝑒𝑓𝑓

= 𝑎2𝑏2𝑐2𝑑2𝑒2𝑓2.

The language 𝐿(𝐺) = { 𝑎𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 ≥ 1 }2 has been
proven cannot be generated by an additive valence
grammar by Dassow and Paun (1989) in example 2.1.7.
Nevertheless, this language can be generated by tree
valence controlled grammar as in Example 5.

Example 5
𝐿(𝐺5) = { 𝑎

𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 ≥ 1 }2 ∈ 𝐓𝐕 − 𝑎𝐕𝐀𝐋 .
The grammar 𝐺5 for 𝐿(𝐺5) :
𝑟0 ∶ 𝑆 → 𝐴𝐵𝐶𝐷[0],

(𝑆
0
→𝑆1, 𝑆1

0
→𝐴𝐵𝐶𝐷),

𝑟1 ∶ 𝐴 → 𝑎𝐴𝑏[1],

(𝐴
1
→𝐴1, 𝐴1

0
→𝑎𝐴𝑏),

𝑟2 ∶ 𝐵 → 𝑐𝐵[−1],

(𝐵
−1
→ 𝐵1, 𝐵1

0
→𝑐𝐵),

𝑟3 ∶ 𝐶 → 𝑎𝐶𝑏[1],

(𝐶
0
→𝐶1, 𝐶1

1
→𝑎𝐶𝑏),

𝑟4 ∶ 𝐷 → 𝑐𝐷[−1],

(𝐷
0
→𝐷1, 𝐷1

−1
→ 𝑐𝐷),

𝑟5 ∶ 𝐴 → 𝑎𝑏[0],

(𝐴
0
→𝐴1, 𝐴1

0
→𝑎𝑏),

𝑟6 ∶ 𝐵 → 𝑐[0],

(𝐵
0
→𝐵1, 𝐵1

0
→𝑐),

𝑟7 ∶ 𝐶 → 𝑎𝑏[0],

(𝐶
0
→𝐶1, 𝐶1

0
→𝑎𝑏),

𝑟8 ∶ 𝐷 → 𝑐[0],

(𝐷
0
→𝐷1, 𝐷1

0
→𝑐).

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 3, Issue 1 (2017)

22

Here, obviously we can have the derivation such
Start:

𝑆
𝑟0
⇒ 𝑆1⟹ 𝐴𝐵𝐶𝐷

Generate:
 𝑟1
⇒ 𝐴1𝐵𝐶𝐷 ⟹ 𝑎𝐴𝑏𝐵𝐶𝐷

𝑟2
⇒ 𝑎𝐴𝑏𝐵1𝐶𝐷 ⟹ 𝑎𝐴𝑏𝑐𝐵𝐶𝐷 ∈ 𝑉

(𝑟1𝑟2)
⇒

∗

𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝐶𝐷
𝑟3
⇒ 𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵1𝐶𝐷 ⟹ 𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝑎𝐶𝑏𝐷
𝑟4
⇒𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝑎𝐶𝑏𝐷1⟹ 𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝑎𝐶𝑏𝑐𝐷 ∈ 𝑉
(𝑟3𝑟4)
⇒

∗

𝑎𝑛𝐴𝑏𝑛𝑐𝑛𝐵𝑎𝑚𝐶𝑏𝑚𝑐𝑚𝐷
Terminate:

𝑟5
⇒ 𝑎𝑛𝐴1𝑏

𝑛𝑐𝑛𝐵𝑎𝑚𝐶𝑏𝑚𝑐𝑚
⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛𝐵𝑎𝑚𝐶𝑏𝑚𝑐𝑚𝐷
𝑟6
⇒𝑎𝑛+1𝑏𝑛+1𝑐𝑛𝐵1𝑎

𝑚𝐶𝑏𝑚𝑐𝑚𝐷
⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚𝐶𝑏𝑚𝑐𝑚𝐷
𝑟7
⇒𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚𝐶1𝑏

𝑚𝑐𝑚𝐷
⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚+1𝑏𝑚+1𝑐𝑚𝐷
𝑟8
⇒𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚+1𝑏𝑚+1𝑐𝑚𝐷1
⟹ 𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1𝑎𝑚+1𝑏𝑚+1𝑐𝑚+1.

Thus, 𝐺5 generates the language
𝐿(𝐺5,) = { 𝑎

𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 ≥ 1 }2.

From Example 5, it follows that
Theorem 4 𝐓𝐕 − 𝑎𝐕𝐀𝐋 ≠ ∅ .

V. CONCLUSION

In a nut shell, we have introduced a new variant of
controlled grammars called tree valence controlled
grammar in which its basic notion is based on the existing
of well-known and well-developed controlled grammar
named tree controlled grammar. Here, we have found that
tree valence controlled grammars are more powerful than
context free grammars as well as than additive valence
grammar. Moreover, they also generate matrix languages.

ACKNOWLEDGMENT

This research has been supported by the grants RIGS16-
368-0532 and FRGS13-074-0315 of Ministry of Education,
Malaysia through International Islamic University Malaysia.

REFERENCES

[1] K. Culik II and H.A. Maurer. “Tree controlled grammars,” Computing,
vol. 19, pp.129–39, 1977.

[2] G. Paun. “On the generative capacity of tree controlled grammars,”
Computing, vol. 22, pp. 213-220, 1979.

[3] J. Dassow and B. Truthe, “Subregularly tree controlled grammars
and languages,” in Proc E. Csuhaj-Varju, Z.Esik (Eds): Automata and
Formal Languages (AFL’08), 2008, pp. 158-169.

[4] J. Dassow and B. Truthe, “On two hierarchies of subregularly tree
controlled languages,” in Proc C. Campeanu, G. Pighizzini (eds):
Descriptional Complexity of Formal Systems, 2008, pp. 145–56.

[5] R. Stiebe. “On the complexity of the control language in tree
controlled grammars,” in Proc J. Dassow, B. Truthe (Eds): Colloquium
on the Occasion of the 50th Birthday of Victor Mitrana, 2008, pp. 29–
36.

[6] S. Turaev, J. Dassow and M.H. Selamat , “Nonterminal complexity of
tree controlled grammars,” Theoritical Computer Science, vol. 412,
pp. 5789–5795, 2011.

[7] S. Turaev, J. Dassow and M.H. Selamat, “Language classes
generated by tree controlled grammars with bounded nonterminal
complexity,” Descriptional Complexity of Formal System, vol. 6808,
pp. 289–300, 2011.

[8] S. Turaev, J. Dassow , F. Manea and M.H. Selamat, “Language
classes generated by tree controlled grammars with bounded
nonterminal complexity,” Theoritical Computer Science, vol. 449,
pp. 134–44, 2012.

[9] G. Vaszil, “ On the nonterminal complexity of tree controlled
grammars,” in Bordihn H., Kutrib M., Truthe B. (eds) Language Live,
ser. Lecture Notes in Computer Science. Springer Verlag:New York,
vol. 7300, pp. 265–272. 2012.

[10] J. Koutny and A. Meduna, “Tree controlled grammars with
restrictions placed upon cuts and paths,” Kybernetika, 48(1), pp.
165–75, 2012.

[11] A. Meduna and P. Zemek, Regulated Grammars and Automata, New
York: Springer-Verlag Heidelberg, 2014.

[12] J. Dassow and G. Paun. Regulated Rewriting in Formal Language
Theory, New York: Springer-Verlag Berlin Heidelberg, 1989.

[13] A. Salomaa, Formal Languages, New York: New York Academic
Press, 1973.

[14] G. Bel-Enguix, M. Jimenez-Lopez and C. Martin-Vide, New
Developments in Formal Languages and Applications, New York:
Springer Berlin Heidelberg, 2008.

[15] M. Sipser, Introduction to the Theory of Computation, 3rd Ed., United
States of America: Cengage Learning, 2013.

