
International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

40 
 

Multi-Agent System in Web Services 
 

Najhan Muhamad Ibrahim1*, Mohd Fadzil Hassan2, Muhammad Amrullah BIN DRS Nasrul3 
1Department of Information Systems, Kulliyyah of Information and Communication Technology, 

2Department of Computer and Information Sciences Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia. 
 3Ahmad Ibrahim Kuliyyah of Laws, International Islamic University Malaysia, Gombak, Selangor, Malaysia. 

 
*Corresponding author: najhan_ibrahim@iium.edu.my 

(Received: 27th September 2023; Accepted: 1st December 2023; Published on-line: 28th January 2024) 

 
Abstract— The term "service-oriented architecture" (SOA) refers to a software paradigm for creating 
systems made up of a variety of services that interact with one another to accomplish a certain task. The 
communications involve more than just transmitting data back and forth; they also connect two or more 
services to coordinate the required operations. Cross-platform communication is necessary for the 
coordinating process when services are spread across several platforms. Several web service standards and 
specifications are used in the present SOA implementation. Based on the prototype's implementation and 
simulation, this proposed research study has been validated and evaluated.  The suggested cross-platform 
communications architecture is implemented using NetBeans, JADE, WSIG, and OWL-S. An integrated 
development environment for Java is offered by Oracle in the form of NetBeans. Telecom Italia's Java Agent 
DEvelopment Framework (JADE) is an agent software framework that is entirely built in the Java language. 
Web Service Integration Gateway (WSIG), which helps to facilitate JADE agent services being called by Web 
service clients. The core fundamental engine of the suggested framework is OWL-S. It is a web ontology 
language used to describe Semantic Web Services in the Semantic Web's OWL-based framework. A 
quantitative approach is used in this study's performance analysis and comparative investigation for 
evaluation and validation. The prototype's major element is the Java agent development framework (JADE), 
which was used to create a multi-agent system for the agent-based MOM framework that has been 
presented.  The creation of the multi-agent systems was facilitated by the JADE platform. JADE 3.7 was the 
version that was employed. Two key features of JADE are a FIPA-compliant agent platform and a package 
for creating Java agents. The implementation results show that the proposed agent-based MOM framework 
was successful communicate between multiple types of SOA application with a better performance of the 
average of round-trip time where the proposed framework was successful in responding to all the requests. 

 
Keywords— Service Oriented Architecture (SOA), Web services, Java Agent Development Framework 
(JADE), Web Service Integration Gateway (WSIG), Multi-agent system (MAS). 

 

I. INTRODUCTION 

The Java runtime environment, version 1.5, is the typical 
system requirement for Java Agent Development 
Framework (JADE), and it is available for free download 
from Sun Corporation [1]. Java Agent Development 
Framework (JADE) is entirely implemented in the Java 
language. In accordance with the agents' specification, each 
agent performs a variety of actions. An agent platform that 
complies with FIPA and a package for creating Java agents 
are JADE's two key features. It is made up of several Java 
packages that offer application programmers ready-built 
functionalities as well as abstract interfaces for creating 
original apps [2]. A JADE agent can be invoked with the help 
of the add-on component known as Web Service Integration 
Gateway, which also gives the web service and the agent 
software a place to integrate. Through the usage of WSIG, 
services offered by agents and made available in the JADE 

DF library can easily be exposed as web services and vice 
versa. In order to address certain requirements, it gives 
developers flexibility and liberty. The servlet and agent that 
make up WSIG are its two key components. The web service 
message is served by the WSIG servlet, which also extracts 
it, prepares the associated agent action, and passes it to the 
WSIG agent. The WSIG servlet is the front-end to the 
internet world. WSIG agent is the gateway between the 
application and agent world and is responsible for 
forwarding agent actions from the WSIG servlet to serve 
them and getting back respond [3] 

Moreover, the web service and agent software are 
supported in their integration and communication by WSIG. 
According to Figure 1, WSIG is depicted as a web component 
with the two primary attributes WSIG Servlet and WSIG 
agent. Incoming web service requests are handled by the 
WSIG Servlet, which also extracts the message and serves as 
an interface to other programmes. In order to prepare the 

https://doi.org/10.31436/ijpcc.v10i1.429
mailto:najhan_ibrahim@iium.edu.my


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

41 
 

client response, it prepares the necessary agent action and 
sends it to the WSIG agent. However, the WSIG agent can be 
thought of as the intermediary between the web and agent 
software. In addition to subscribing to the JADE DF to 
receive notifications, it is in charge of relaying agent actions 

that are received from the WSIG Servlet. The WSDL for each 
agent service registered with DF was produced for the 
purpose of agent registration and deregistration, and the 
service was then made available in a UDDI registry [4,5]. 

 

 

Fig.1. WSIG Environment (Board, 2008) 

An ontology for web services called OWL-S adds a core set 
of markup language structures for describing the features 
and capabilities of their web services in a clear and 
understandable way for computers. The OWL-S markup of 
web services will make it easier to automate operations 
including the discovery, execution, composition, and 
interoperation of web services.  The WSDL is now expanding 
quickly to serve as a foundation for web service 
interoperability. OWL-S is therefore being developed to 
offer integration between them and the agent technology. 
It is the adaptable automation of the supply of services and 
it provides important techniques [6]. Also, For describing 
semantic web services, OWL-S is the ontology of the OWL-
based framework in the Semantic Web. It will make it 
possible for users and software agents to automatically 
translate, discover, invoke, compose, and monitor online 
pages that deliver services within certain parameters. 

II. EXPERIMENTAL SETUP 

The core element of the prototype is the Java agent 
development framework (JADE), which was utilised to 
create a multi-agent system for the agent-based MOM 

framework that has been suggested. The suggested multi-
agent system's roles are described. In the suggested 
prototype, there are two key plugin elements. The web 
service ontology, or OWL-S, is the first. It is used to describe 
semantic web services and is the ontology of the Semantic 
Web's OWL-based framework. Adaptive web service 
discovery, execution, composition, and interoperation are 
just a few of the chores that can be automated thanks to this. 
To describe web services in a uniform manner, WSIG also 
includes WSDL. For publishing web services using tModels, 
it supports UDDI repositories and SOAP/HTTP messages for 
transmission. In the Universal Description, Discovery, and 
Integration (UDDI) registry, a service type is represented by 
a data structure called a tModel, which is a general 
representation of a registered service. Additionally, WSIG 
supports the web service description process. The 
procedure, which is registered with the DF, entails creating 
appropriate WSDL for each web service description. The 
exposed service is then optionally published in a UDDI 
register. Additionally, it makes it possible to map the Agent 
Communication Language (ACL) into WSDL and the other 
way around [2, 7]. 

https://doi.org/10.31436/ijpcc.v10i1.429


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

41 
 

One of significant research works that focuses on 
interoperability communications framework, which models 
and discusses the requirement attributes for the 
collaboration between different application systems. Refer 
to [8] strongly argued that the development of 
interoperability communications framework to support 
communications among diverse and geographically 
distributed system are significantly important. They have 
proposed six main requirement attribute with twenty-seven 
sub-attributes, which is a general requirement for 
distributed and collaboration application. In the sub-
requirements, several significant requirements for 
interoperability communications have been highlighted. 
Nevertheless, the main proposed requirements for 
interoperability communications in this research work are 
too general to be incorporated in the concrete 
interoperability communications framework. This research 
work is most likely focus on non-functional requirement 
attributes. Therefore, the comprehensive literature study 
need to be conducted to evaluate and consolidate others 
requirement attribute to be included in the proposed 
interoperability communications [9]. 

A topology with three different SOA-based applications 
was constructed, as shown in Figure 2, in order to test the 
prototype of the suggested agent-based MOM framework. 
The prototype's simulation is built up in two distinct 
scenarios: one to test the multiplicity of cross-platform 
communications and the other to validate cross-platform 
communications across several platforms. Regarding the 
validation method, the simulation configuration for each 
scenario differs. First, the proposed agent-based MOM 
framework was simulated in terms of its cross-platform 
communications capacity, and two separate SOA-based 
applications were simulated. This simulation was done to 
validate the cross-platform communications. The simulation 
of three various types of SOA-based applications that are 
attached to an agent-based MOM framework serves as the 
second step in validating the diversity of cross-platform 
communications. Measurement of the round-trip time for 
each of the created requests was one of the evaluation 
metrics. These requests were put to the test at two different 
runtime levels, namely the low level and the high level [10]. 

 

 

Fig. 2. Simulation Setup

 

42 

https://doi.org/10.31436/ijpcc.v10i1.429


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

41 
 

    Furthermore, the variation of the simulations measured by 
the communications between multi-agents system that 
analyzed at the source code level of the agent. Several 
directions of the cross-platform communications were 
classified that were used for evaluation and validation 
purposes in this research work. The java method was used 
(long System.currentTimeSeconds()) to measure the time 
intervals that returned the number of seconds as a standard 
agent-based measurement [5]. The simulation data of the 
proposed agent-based MOM framework in comparison to 
existing MOM and JMS to validate the performance of the 
cross-platform communications and multiplicity cross-
platform communications. 
 

Table I  
Simulation Parameters 

 

Framework 

 

Traffic 

 

Total Number 

of Requests 

(at run time) 

 

Agent-based MOM 

Framework 

(SOAP - REST) 

 

Low  

Level 

 

{10, 20, 30, 40, 50} 

 

Agent-based MOM 

Framework 

(SOAP – REST) 

 

High  

Level 

 

{60, 70, 80, 90, 100} 

 
The simulation's primary goal is to determine whether the 

suggested framework achieves its desired goals. The 
experiments are designed to assess the effectiveness of the 
suggested agent-based MOM framework by measuring the 
communications round-trip (request/respond) time in 
seconds in comparison to traffic as represented by the 
volume of requests initiated during the run time. The 
common metric for assessing the effectiveness of 
communications in MOM and multi-agent systems is round-
trip time. The number of requests is constrained by the JADE 
platform's limited capability for devices other than personal 
computers.   The low level of the request is 10, 20, 30, 40 and 
50 requests allocated and the high level of the request is 60, 
70, 80, 90 and 100 requests allocated at run time as 
presented in Table 1. Similarly, Table 2 represented the 
simulation parameters to validate the multiplicity of cross-
platform communications. To validate the multiplicity of 
cross-platform communications, three different types of 
SOA application were simulated as presented in Figure 2. 

The communications round-trip time (request/ respond) 
against the request at the low level and the high level of 
traffic will also be evaluated. The simulation metrics are 
chosen in such a way that they are sufficient enough to 
execute the request in cross-platform environments. These 
simulation metrics were not altered for both validations 
performed in this research because the objectives of the 
research are to validate the cross-platform communications 
and the multiplicity of the cross-platform communications. 

 
Table II 

Simulation Parameters for Multiplicity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

     As shown in Figure 2, agent-based MOM framework 
resides in the SOAP-based application, CORBA-based 
application, and REST-based application. All applications run 
in JADE environment. Three essential elements are 
presented in the FIPA compliant platform, which is Agent 
management service (AMS), Directory facility (DF) and 
Agent communication channel (ACC). AMS controls the 
access of the platform and DF. DF provides a library service 
and ACC that facilitates the message transport service for 
FIPA ACL message delivery among agents living in different 
agent platforms [1]. The communications between SOAP-
based and REST-based application were simulated to 
validate the cross-platform communications. SOAP-based 
represented the SOA application that using SOAP web 
service message and REST-based represented the SOA 
application that using REST web services message. On the 
other hand, the communications between SOAP-based 
application, REST-based application and CORBA-based 
application were simulated to validate and evaluate the 
performance of multiplicity cross-platform communications. 

III. SIMULATION APPROACH 

     As shown in Figure 3, the same topology was used for 
both validate of cross-platform communications and 
validation of multiplicity cross-platform communications. 
For the validation of the cross-platform communications, 
SOAP-based and REST-based application were simulated. 

 
Framework 

 
Traffic 

 
Total Number 
of Requests 
(at run time) 

 
    Agent-based MOM 

Framework 
(SOAP – REST –CORBA) 

 
Low level 

 
{10, 20, 30, 40, 50} 

 
Agent-based MOM 

Framework 
(SOAP – REST –CORBA) 

 
High Level 

 
{60, 70, 80, 90, 100} 

 

43 

https://doi.org/10.31436/ijpcc.v10i1.429


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

42 
 

Invalidations of the multiplicity of cross-platform 
communications, all three SOA-based applications were 
simulated. Several requests from SOAP-based to REST-
based application were sent to simulate the proposed cross-
platform communications and also to CORBA-based 
application to simulate the multiplicity of cross-platform 
communications. The round trip time of the request to the 
response was used to analyze the performance and 
comparative studies. The simulation to validate the cross-
platform communications was compared with existing 
MOM. In this simulation, the proposed agent-based MOM 
framework was simulated with two different types of SOA 
application as supported by the existing MOM. Due to the 

similar research work that supports multiple types of SOA 
applications in runtime is not available, the simulation to 
validate the multiplicity of cross-platform communications 
will be compared with java message services (JMS). JMS is 
the standard message-oriented middleware by Sun 
Microsystem, which provides similar functionality with the 
proposed cross-platform solution and was developed based 
on the Java environment. However, JMS functionality are 
incapable of supporting multiple types, and directly respond 
during runtime as the proposed framework, which capable 
of setting each agent to respond based on the request [13-
15]. 

 

 
Fig. 3. Simulation Topology 

 
 
As shown in Figure 3, SOAP-based application represents 

book broker for the seller and the two book REST-based and 
CORBA-based applications represent brokers as buyers. 
Each of SOA-based application is capable of performing as 
PABMOM and CABMOM in the simulation. For instance, the 
PABMOM sends the message based on SOAP, which will be 
de-scripted into WSDL format. Then the message is 
translated into ACL (Agent Communication Language) to 
enable the communications between multi-agent systems. 
The soap-based application can also act as the CABMOM to 
buy the book offered by other applications. Two significant 

situations are to activate the communications process, 
which is the PABMOM offers to sell the book and the 
CABMOM requests to buy the book. 

In the case of book broker buyer requested to buy the 
book, it will send a request message to the seller PABMOM. 
The message includes specific information, such as the book 
title, max cost and the time of the request. If the book title 
is available in the current offer then the seller PABMOM will 
check whether the max cost of the request is in the range of 
the best price and min price from the offer. In the case, the 
book title matched but the requested price is not in the 
range, then the seller PABMOM will send a denial message 

44 

https://doi.org/10.31436/ijpcc.v10i1.429


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

41 
 

of the transaction to the buyer CABMOM. On the other hand, 
if the book title matched with the current offer and the 
requested price is in range, the confirmation of selling will 
be sent instead of the denial message. The detail of how the 
translator process and translation mapping work. The 
following describes in details the functions used in the 
selling process (PABMOM) and the buying process 
(CABMOM) of the simulation. 

A. Selling Process (PABMOM) 

The PABMOM has a GUI by means which the user can insert 
new book titles and the associated prices in the local catalog 
of the books for sale. The PABMOM also continuously waits 

for a request from a CABMOM. Once the PABMOM receives 
a request to provide an offer of the product, the agent 
receiver will check whether the requested book is in the 
catalog and will reply with the price. Otherwise, the agent 
will refuse the request. Figure 4 shows the actual 
transaction of the PABMOM in which Buyer_corba@dss is 
the CABMOM side. The CABMOM appoints the agent 
receiver in the translation model. Furthermore, each 
message transmission describes its activities, i.e., INFORM, 
CFP (Call for proposal), PROPOSE and REQUEST. INFORM is 
used to inform about the offer by PABMOM. CFP is used to 
call for proposal from CABMOM regarding the book to sell. 
PROPOSE is used to propose the book to sell and REQUEST 
is used to query the book to sell from PABMOM. 

 

Fig. 4. ACL Message from PABMOM to CABMOM 

45 

https://doi.org/10.31436/ijpcc.v10i1.429


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

40 
 

       In addition, the request from the CABMOM can be a 
request to query an offer for a book to sell. A possible 
solution to achieve that is to make the PABMOM execute 
two cyclic behaviors: one is dedicated to serving requests 
for offers, and the other is dedicated to helping purchase 
orders. Therefore, this is how incoming requests from 
CABMOM are received. Moreover, it is necessary to make 
the PABMOM execute a one-time behavior such as updating 
the catalog of the products available for sale whenever the 
user adds a new book to sell from the GUI. 

 

 

B. Buying Process (CABMOM) 

      CABMOM will be receiving the title of the books for sale 
(the product to sell) as a command line argument, and 
sometimes CABMOM is requesting the PABMOM to provide 
the offered product. When the offer is received, the 
CABMOM accepts it and issues a purchase order. In case of 
more than one proposals are provided by the PABMOM, the 
CABMOM agrees with the lowest price, where price is the 
element to analyze before accept or reject the offer. After 
buying the book, the CABMOM terminates the offer. In 
Figure 5, the actual CABMOM transaction is shown in which 
the receiver agent is Seller_soap@dss in PABMOM side. The 
content of the message is the title of the book to buy. 

 
Fig. 5. ACL Message from CABMOM to PABMOM 

 
 
       In addition, the CABMOM uses the CFP (Call for proposal) 
method to send the message that the CABMOM query an 
offer of a product from the PABMOM. The content of the 

CFP message with the book title and price is as shown in 
Figure 6. The CFP method starts by creating a new CFP 
object with new ACLMessage(ACLmessage.CFP);. Then the 
CABMOM searches for all the agent sellers, which provide 

42 
46 

https://doi.org/10.31436/ijpcc.v10i1.429


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

41 
 

the offer. The target of CFP message is book title and price. 
The PROPOSE method is used in CABMOM for the message 
carrying of the CABMOM to request a book, and the 
ACCEPT_PROPOSAL method is used for message carrying to 
accept the offer. Finally, the REFUSE method is used to 
refuse a proposal from the PABMOM. 
 

    

  // Message carrying a request for offer 

ACLMessage cfp = new 

ACLMessage(ACLMessage.CFP); 

for (int i = 0; i < sellerAgents.lenght; ++i) { 

cfp.addReceiver(sellerAgents[i]); 

} 

cfp.setContent(targetBookTitle&Price); 

myAgent.send(cfp); 

Fig. 6. Call for Proposal (CFP) Message 

IV. THE FINDING 

To evaluate and validate the proposed agent-based MOM 
framework, the communications between multi-agent 
systems in the experiments are recorded in two different 
levels. The first level is observing the communications at the 
code level by observing the performances in the source code. 
The second level is observing the communications in the 
application level, i.e., observe the communications process 
and round-trip time performance between applications. 
Additionally, all the experiments scenarios have been 
implemented in two cases. Namely, the simulation to 
validate the cross-platform communications and the 
simulation to validate the multiplicity of cross-platform 
communications at the low level and the high level of the 
request as presented in Table 3 and Table 4 respectively. It is 
to check the actual performance between the proposed 
agent-based MOM framework and existing MOM. SOAP-
based and REST-based SOA application is simulated to 
validate the cross-platform communications, and SOAP-
based, REST-based, CORBA-based SOA application is 
simulated to verify the multiplicity of cross-platform 
communications. The low level of request execution means 
that 10, 20, 30, 40 and 50 requests were allocated at the run 
time. The high level of request execution means that 60, 70, 
80, 90 and 100 requests were allocated at run time during 
execution of the simulation. The low level and the high level 
of traffic were defined based on the availability metric, 
which the value of total available time to process the 
request and the value of outages during low level and high 
level of request for agent-based MOM framework and 

existing MOM are different. All these simulations were 
repeated 20 times to increase the accuracy of the simulation 
results. 

 
Table 3 

Simulation Parameters for Cross-platform Communications (low level) 

 
Framework 

 
Traffic 

 
Number of 
Requests 

(at run time) 

Agent-based MOM 
Framework 

(SOAP - REST) 

 
 

Low Level 

 
 

{10, 20, 30, 40, 50} 

 
Existing MOM 
(SOAP – REST) 

 
Low Level 

 
{10, 20, 30, 40, 50} 

 

 
      Furthermore, the proposed agent-based MOM 
framework examined the communications to validate the 
performance of cross-platform communications. To 
evaluate the communications of the proposed framework, 
the measured values of the simulation metrics were 
observed based on twenty different execution times of 
communications scenario, twenty times in the low level of 
the request and twenty times in the high level of traffic 
allocated during runtime. It is to find an accurate average 
result of each simulation metrics. Then, the measured values 
were compared with the values obtained from existing 
MOM and JMS to evaluate the cross-platform 
communications and multiplicity cross-platform 
communications respectively. The simulation metric that 
was measured in the experiments were average of the 
round-trip time, availability and scalability will be evaluated. 
      

Table 4: 
Simulation Parameters for Cross-platform Communications (high level) 

 
 

Framework 
 

Traffic 
 

Number of Request 
(at run time) 

 
Agent-based MOM  
Framework  
(SOAP – REST ) 

 
High 
level 

 
{60, 70, 80, 90, 100} 

 
Existing MOM  
(SOAP – REST) 

 
High  
Level 

 
{60, 70, 80, 90, 100} 

42 47 

https://doi.org/10.31436/ijpcc.v10i1.429


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

42 
 

      Table 5 presents the results of the average round-trip 
time experiment for the proposed agent-based MOM 
framework and the existing MOM. The results are ranked by 
the number of requests allocated and categorized by two 
levels of request during runtime, which are low level and 
high level of traffic. Therefore, the second and third column 
of the first row in Table 5 contains the number of requests 
allocated and the average round-trip time respectively. That 
mean, the value of 11.3 and 30 for the average round-trip 
time in the first row of the agent-based MOM framework 
and the existing MOM are actually the average round-trip 
time for the first ten requests allocated during runtime. 
      Table 5 presents the results of the average round-trip 
time experiment for the proposed agent-based MOM 
framework and the existing MOM. The results are ranked by 
the number of requests allocated and categorized by two 
levels of request during runtime, which are low level and 
high level of traffic. Therefore, the second and third column 
of the first row in Table 5 contains the number of requests 
allocated and the average round-trip time respectively. That 
mean, the value of 11.3 and 30 for the average round-trip 
time in the first row of the agent-based MOM framework 
and the existing MOM are actually the average round-trip 
time for the first ten requests allocated during runtime. 
 

Table 5: 
Average round-trip time for Agent-based MOM framework and Existing 

MOM (low level) 

     Framework 
 
 

 
No. of requests 
at low level  
 

Average 
Round-trip 
time (sec) 
 

Agent-based      
MOM Framework 

(SOAP – REST) 
 
 
 

10 11.3 

20 20 

30 31.3 

40 39.5 

50 48.2 

Existing MOM 
(SOAP – REST) 
 
 
 
 

10 30 

20 42 

30 62 

40 80 

50 97 

     
  Likewise, in the third column of Table 5 also contains the 
average of round-trip time but in the high level of the 
request. The average round-trip time in the first row of the 
agent-based MOM framework and the existing MOM is the 

average round-trip time for the 60 requests allocated during 
runtime.  As seen in Table 4 and Table 5 the value of average 
round-trip time of the proposed agent-based MOM 
framework and the existing MOM are increasing linearly due 
to the increasing number of requests, which required more 
time and computing resources to process all the requests. 
The results in Table 4 and Table 5 also show that huge 
different of round-trip performance between the proposed 
agent-based MOM framework and the existing MOM at the 
low level and high level of traffic where the average round-
trip time of exiting MOM are double compared to the 
proposed agent-based MOM framework. The results also 
show that the average round-trip time of the proposed 
agent-based MOM framework did show lower increased of 
the average round-trip time while increasing the number of 
requests in runtime. 
 

 
Fig. 7. Average round-trip time for agent-based MOM framework and 

Existing MOM (low level) 
 
     In Fig. 7 and Fig. 8, the changing of the average round-trip 
time at this specific value of the graph clearly shown. In the 
low level and the high level of traffic allocated, the figure of 
the average round-trip time changes due to the difference in 
the number of requests is different between the proposed 
agent-based MOM framework and the existing MOM. The 
proposed agent-based MOM framework was able to 
manage the request and provide the response by using 
lesser time than the existing MOM during the low level and 
the high level of traffic allocated.  
 

0

20

40

60

80

100

120

0 20 40 60

A
ve

ra
ge

 R
o

u
n

d
tr

ip
 t

im
e

 (
se

c)

Number of requests

Agent-based MOM Existing MOM

48 

https://doi.org/10.31436/ijpcc.v10i1.429


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

43 
 

 
Fig. 8. Average round-trip time for Agent-based MOM Framework and 

Existing MOM (high level) 
 
     The linear pattern of the graph also had a substantial 
effect on the value of the average round-trip time and the 
number of requests allocated. As shown in Figure 7 and 
Figure 8, the number of requests assigned at the low level 
and the high level of request allocated were similar. The 
proposed agent-based MOM framework was able to achieve 
a more moderate and better average round-trip 
performance than the existing MOM. The difference in the 
average round-trip performance between the proposed 
agent-based MOM framework and the existing MOM in the 
low level and the high level of traffic was caused by the 
associated software components that were used to 
implement each application, which required different 
computation power and resources to execute the request 
and the respond in each communications scenario. 

V. CONCLUSIONS 

This paper presents the prototype implementation and 
the experimental simulation setup. The prototype 
implementation presents an overview of the tools and 
technologies used for prototyping. The multi-agent system 
was developed by using NetBeans and JADE platforms. The 
experimental setup was described in details for the 
experiment in Section 2. Subsequently, the simulation setup 
was described in details for implementation of the proposed 
work. Finally, the specific simulation scenario to be used for 
performance evaluation is presented. 

This paper explored the details of the experiment results 
and the analysis of the results obtained for the proposed 
agent-based MOM framework. Then, the criteria that were 
used to evaluate the system were identified and were 
classified into two comparisons. Firstly, the performance 
analysis was conducted to assess the proposed agent-based 
MOM framework performance and with the existing MOM. 

Secondly, a comparative study between the proposed 
agent-based MOM framework and the JMS to evaluate and 
compare the multiplicity of cross-platform communications. 
The comparative research also conducted between the 
cross-platform communications and the multiplicity cross-
platform communication of the proposed agent-based 
MOM framework. 

The implementation results show that the proposed 
agent-based MOM framework was successful communicate 
between multiple types of SOA application with a better 
performance of the average of round-trip time where the 
proposed framework was successful in responding to all the 
requests. Additionally, the availability and communications 
scalability on the performance of the average round-trip 
time was intangible as well, which makes the proposed 
agent-based MOM framework an excellent solution to 
adopt for the cross-platform communications in SOA 
environment. 

 
ACKNOWLEDGEMENT 

We   would   like   to   express   our   gratitude   to   those   
that participate in this research 

 
CONFLICT OF INTEREST 

The authors declare that there is no conflict of interest. 

REFERENCES 

[1] M. Nikraz, G. Caire, and P.A. Bahri,.  MAES: A Multi-Agent Systems 
Framework for Embedded Systems. Master’s Thesis in Embedded 
Systems, Mekelweg 4, 2628 CD Delft, The Delft University of 
Technology Netherlands. (2017) 

[2] T. Bayer, and C. Reich,. Security of Mobile Agents in Distributed Java 
Agent Development Framework (JADE) Platforms. ICONS 2017: The 
Twelfth International Conference on Systems. (2017) 

[3] J. Board, (2008).  JADE web services integration gateway (WSIG) 
guide , JADE WSIG Add-On GUIDE. 

[4] X.T. Nguyen, , and R. Kowalczyk,. WS2JADE: Integrating Web Service 
with Jade Agents, in Verlag Berlin Heidelberg 2007, Springer: Berlin. 
(2007) 

[5] W. Laftah, Z. Al-Yaseen, Ali Othman ,  and M. Z. Ahmad Nazri. A Large 
Data Exchange Method for Multi-agent in Java Agent Development 
Framework. Special Issue for "International Conference on Applied 
Science and Technology (ICAST), Malaysia. (2016) 

[6]  M. Deepa, and J. Punitha.  A Hybrid Approach for Discovery of OWL-
S Services Based on Functional and Non-Functional Properties, in 
WSEAS TRANSACTIONS on COMPUTERS, IEEE. (2015) 

[7] N. Ibrahim M., I., and M.F Hassan, A Comprehensive Comparative 
Study of MOM for Adaptive Interoperability Communications in 
Service Oriented Architecture, International Journal of Trend in 
Scientific Research and Development (IJTSRD). (2019) 

[8] N. H, Alkahtania, S. Almohsen, N. M. Alkahtani, and G. A. Almalki.  A 
Semantic Multi-Agent system to Exchange Information between 
Hospitals. The 8th International Conference on Ambient Systems, 
Networks and Technologies (ANT 2017). 

[9] N. Ibrahim M., I., and M.F Hassan, and M. H, Abdullah,. ABMOM for 
Cross-platform Communication in SOA Systems, 2013 International 
Conference on Research and Innovation in Information Systems 
(ICRIIS). Universiti Tenaga National, 2013, IEEE: KL. (2013) 

0

50

100

150

200

250

50 70 90 110

A
ve

ra
ge

 R
o

u
n

d
tr

ip
 t

im
e

 (
se

c)

Number of requests
Existing MOM Agent-based MOM

49 

https://doi.org/10.31436/ijpcc.v10i1.429


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 10, Issue 1 (2024) 
https://doi.org/10.31436/ijpcc.v10i1.429   

 

44 
 

[10] S. Pawar, and N. N. Chiplunkar. Discovery and Invocation of Web 
Services using Multi-Dimensional Data Model with WSDL, Indian 
Journal of Science and Technology, Vol 10(17), DOI: 
10.17485/ijst/2017/v10i17/108890. (2017) 

[11] M. Pfaff, and H. Krcmar, A web-based system architecture for 
ontology-based data integration in the domain of IT benchmarking. 
Enterprise Information Systems Volume 12, Issue 3. (2018).  

[12] S., Mishra, S., Malik, N.K., Jain, and S. Jain.  A Realist Framework for 
Ontologies and the Semantic Web. Procedia Computer Science Volume 
70, Pages 483-490. (2015). 

[13] M., Saturno, L. F. P., Ramos, Polatoa,  F., Deschamps, F.,E. and Loures 
F. R. Evaluation of interoperability between automation systems 

using multi-criteria methods, 27th International Conference on 
Flexible Automation and Intelligent Manufacturing, FAIM2017, 
Modena, Italy. (2017). 

[14] H., Bensag, M. Youssfi, ,and O. Bouattane, Efficient Model for 
Distributed Computing based on Smart Embedded Agent. (IJACSA) 
International Journal of Advanced Computer Science and 
Applications, Vol. 8, No. 2. (2017). 

[15] N. M. Hamka, and R. Mohamad. OntoUji: Ontology to Evaluate 
Domain Ontology for Semantic Web Services Description, Jurnal 
Teknologi, Vol. 69, No. 6, pp. 21–26. (2014).  

 

 

50 

https://doi.org/10.31436/ijpcc.v10i1.429

