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Abstract— The recent revolution in Industry 4.0 (IR 4.0) has characterized the integration of advance 
technologies to bring the fourth industrial revolution to scale the manufacturing landscape. There are 
different key drivers for this revolution, in this research we have explored the following among them such 
as, Industrial Internet of Things (IIoT), Deep Learning, Blockchain and Augmented Reality. The emerging 
concept from blockchain namely “Non-Fungible Token” (NFT) relating to the uniqueness of digital assets has 
vast potential to be considered for physical assets identification and authentication in the IR 4.0 scenario. 
Similarly, the data acquired through the deployment of IIoT devices and sensors into smart industry 
spectrum can be transformed to generated robust analytics for different industry use-cases. The predictive 
maintenance is a major scenario in which early equipment failure detection using deep learning model on 
acquired data from IIoT devices has major potential for it. Similarly, the augmented reality can be able to 
provide real-time visualization within the factory environment to gather real-time insight and analytics from 
the physical equipment for different purposes. This research initially conducted a survey to analyse the 
existing developments in these domains of technologies to further widen its horizon for this research. This 
research developed and deployed a smart contract into an ethereum blockchain environment to simulate 
the use-case for NFT for physical assets and processes synchronization. The next phase was deploying deep 
learning algorithms on a dataset having data generated from IIoT devices and sensors. The Feedforward and 
Convolutional Neural Network were used to classify the target variables in relation with predictive 
maintenance failure analysis. Lastly, the research also proposed an AR based framework for the visualization 
ecosystem within the industry environment to effectively visualize and monitory IIoT based equipment’s for 
different industrial use-cases i.e., monitoring, inspection, quality assurance. 
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I. INTRODUCTION 

In recent years, technological advancements and 
developments in manufacturing processes have caused a 
significant shift in global manufacturing. As “Industry 4.0” 
(IR 4.0) has gained widespread acceptance in the corporate 
world due to its emerging technological development. 
However, it has its origins in academic research before it was 
even into its development phases [1]. As a result of the 
Internet of Things and Cyber-Physical Systems (IoT/CPS), 
this new industrial paradigm unites the digital and physical 
worlds and is anticipated to have a significant impact on 
industry, markets, and the economy (digital and physical), 
enhancing production processes and boosting industrial 
productivity, influencing the entire product lifecycle, and 
spawning new business models. The manufacturing industry 
has evolved rapidly over the years as a result of these 
technological advancements, generating more 

opportunities and a rise in efficiency, productivity, and 
quality. The innovation and development in smart 
manufacturing, also known as IR 4.0, have been driven by 
the integration of a broader range of technologies and 
processes, such as the Industrial Internet of Things (IIoT), 
Deep Learning, Augmented Reality (AR), Blockchain and 
Data analytics [2]. 

The advancements in blockchain technology, specifically 
the concept and implementation of Non-Fungible Tokens 
(NFT) into digital commerce, the development of deep 
learning intelligence to integrate advance technologies into 
industrial processes, the use of augmented reality (AR) as 
potential tool for the development and enhancement of 
smart manufacturing process, have emerged as a new 
horizon for the development of IR 4.0 [3]. Moreover, the 
idea of NFT as a form of digital assets that employ 
blockchain technology for authentication, identification and 
can enhance the manufacturing process with its traceability 
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and transparency aspects [4]. Similarly, augmented reality 
can provide real-time visual guidance and instructions to 
industrial workers and engineers, thereby reducing errors 
and increasing manufacturing process productivity [5]. 

Additionally, the IIoT has played an important role in the 
realm of smart manufacturing thus revolutionizing the 
traditional industrial processes into modern and robust 
industrial practices. The connectivity between machines, 
devices and sensors in a network along with leveraging data 
analytics, built a seamless IIoT communication and 
automation infrastructure leading towards enhanced 
productivity and efficiency [6]. Furthermore, the use of deep 
learning algorithms to analyse massive amounts of data, 
identify patterns and trends in the manufacturing process, 
optimize scheduling, predict equipment failure, and reduce 
waste [7]. However, when these emerging technologies 
combined with IR 4.0 specially the IIoT, then it provides real-
time monitoring options, the control of machines, devices 
and sensors by which manufacturers can develop smart 
industrial manufacturing systems and processes that are 
more prone to efficiency, productivity, and cost-
effectiveness [8].  

Similarly, despite the potential benefits of these 
technologies, their integration with industrial processes and 
systems also poses its own challenges related to 
machines/device inspection, data engineering and process 
optimization. This research paper dives into this potential 
problem faced by IR 4.0 and to understand its weakness and 
challenges associated with the integration of these 
technologies in industrial systems, and to provide potential 
solutions to such problems. This study also aims to explore 
these issues and provide insights in terms of leveraging 
these emerging technologies to improve industrial 
automation and manufacturing related operations. 

II. RELATED WORK 

The products are designed to meet consumer needs, and 
this is a fundamental and basic part of manufacturing. All the 
costs and outcomes associated with products hinge on the 
choices made at this level. The complexity of the process 
goes far beyond just brainstorming and scribbling; it 
involves incorporating target market, consumer opinions, 
choices and specificity, researching current technologies, 
and evaluating available manufacturing resources all while 
requiring the cooperation of many people, often from 
various backgrounds [9]. To formalize the product design 
process, a variety of models and methodologies have been 
proposed in the literature. To that end, the design of the 
final product should be linked to how the necessary 
components will be manufactured and assembled as a 
whole. In order to ensure that this key component of 
manufacturing is as effective as possible, it is critical to 
ensure that the professionals engaged maintain a high level 

of expertise and experience [10]. In response to the growing 
market demands for more complicated, inventive, and 
intelligent products, virtual alternatives in the form of 
augmented reality have grown in popularity. During the 
creation of complex goods, the adoption of efficient digital 
product modelling and simulation technologies, it can 
reduce development time and optimize the use of industrial 
resources [11].  

The researchers in [12] proposes a problem related to 
healthcare supply chain which was exacerbated during the 
COVID 19 pandemic. The solution illustrates the use of NFT 
including with digital certification to maintain the healthcare 
product ownership, a smart contract to allows smooth 
trading and delivery of products and an arbitration related 
to disputes settling. The metadata relevant to healthcare 
product were store in Interplanetary File System (IPFS) to 
circumvent large amount of data storage into blockchain 
ledger. Similarly, the [13] discusses on the low-cost sensors 
in the realm of IIoT architecture. It demonstrated the 
machine learning capabilities in brownfield production 
machines on the industrial implementation of Electric 
Monorail System on the heavy lifting of it. The outcome 
significantly reduces the cost by overall equipment 
improvement, its effectiveness and extending its remaining 
life for production machines. Moreover, the [14] discusses 
the application of IIoT for increasing the productivity in the 
industrial sector. The researcher explores the use of IoT 
devices with sensors to monitor devices and machines to 
ensure better performance from processes and the 
equipment’s. Also, the research addresses the predictive 
maintenance which ensures the monitoring and health of 
machines to exactly determine the probability of failure into 
them. Furthermore, the use of edge computing was also 
proposed to overcome the data transmission related issues, 
its associated costs and increase the speed of processing in 
the IIoT devices and sensors. Lastly, it also examines both 
the traditional and modern approaches of using edge 
computing to perform machine learning and deep learning 
related activities.  

The authors in [15] explores the impact of advancement 
on the internet, computational and automation capabilities 
in the manufacturing sector. The outcome illustrates the 
data connectivity, authoring process and automation in 
configuration from the demonstration of a Volvo Group 
plant using users’ feedback, latency, AR triggering, real-time 
communication and special anchor studies respectively. Also, 
the demonstration illustrates the AR promising application 
into factory floors for real-time visualization and 
troubleshooting on machine data. Similarly, the researcher 
in [16] discusses the concept of digital twin technology to an 
executable system during the running of an operation. The 
application of IIoT and digital twin for the product 
development lifecycle, focuses on data acquisition 
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processes and generating system health related 
performance over it. The researcher also outlines the 
methodology of connectivity between the operational data 
using online-simulation models and the data visualization in 
an AR ecosystem. The methods elaborate on the 
infrastructure requirement to realize the applications and 
the utilization of IIoT to facilities innovation in the field.  

Furthermore, the IR 4.0 has transformed the entire value 
chain, bringing about the significant changes in the 
production organization and design systems by seamlessly 
integrating technology and people at different levels of 
manufacturing [17]. IR 4.0 has created a plethora of 
opportunities for customizing product lifecycle with the 
introduction of cutting-edge digital technologies for 
product development and prototyping, making a significant 
impact on the entire product development lifecycle [18]. 
Blockchain technology is a decentralized and distributed 
digital ledger that allows for the secure and transparent 
recording and storage of different types of data i.e., 
transactions. It was introduced in 2008 as the fundamental 
technology behind the development of Bitcoin, but since 
then has been applied to various other industrial sectors, 
including manufacturing [19]. The primary ingredient of 
blockchain technology is its ability to initialize highly secure 
and tamper-proof records of data. Every block in the 
blockchain contains a cryptographic hash of the previous 
block, thus creating a chain of blocks that is technically 
impossible to tamper or change without being detected. 
This makes it an ideal technology for ensuring the 
authenticity and integrity of data, to those industrial sectors 
where transparency and traceability are crucially of great 
importance especially in manufacturing industry [20].  

Moreover, there is a potential to apply blockchain 
technology in industrial manufacturing which can be used to 
create a transparent and traceable record for the entire 
supply chain, from raw materials to finished products. This 
can help manufacturers ensure that their products are 
ethically sourced and produced and can also help them 
identify and address issues such as counterfeiting and fraud 
[21]. Furthermore, another great potential application of 
blockchain technology in manufacturing is in the 
management of digital assets such as Non-Fungible Tokens 
(NFTs). NFTs can be used to represent digital assets such as 
designs, blueprints, and other intellectual property, and can 
be securely stored and transferred using blockchain 
technology [22]. Blockchain technology has the ability to 
scale and reform industrial manufacturing by providing a 
secure and transparent data storage mechanism, thus 
improving traceability and transparency, and supporting 
robust management of digital assets [23]. 

Similarly, the deep learning which is a branch of machine 
learning that involves training different types of neural 
networks using a wide range of algorithms to learn, 

recognize and predict different patterns in large segments 
of datasets. It involves the application of multiple layers of 
interconnected nodes (neurons) to analyse, classify and 
predict data related required parameters [24]. The key 
benefit of deep learning is its ability to handle complex 
amounts of data both structured and unstructured, i.e., 
images, videos, and natural language processing. With its 
multiple layers of neural networks, deep learning algorithms 
can identify patterns and relationships in data which is 
apparently beyond human sight [25]. 

Moreover, the potential to apply deep learning in 
industrial manufacturing can be used to analyse large 
amounts of data from sensors and actuators, along with a 
variety of sources to optimize production processes, 
improve quality control, and predict the need for 
maintenance [26]. For instance, a deep learning algorithm 
can analyse data from sensors to predict when equipment is 
likely to fail, allowing manufacturers to perform 
maintenance before a breakdown occurs.  Additionally, 
another best application of deep learning is in the area of 
computer vision, where it can be used to analyse images and 
videos to identify defects or other quality control issues [27]. 
For instance, deep learning algorithms can analyse images 
of products to identify defects or anomalies in the 
manufacturing process.  

Furthermore, the Augmented reality (AR) is a technology 
that overlays digital information onto the physical world, 
creating an interactive and immersive experience [28]. 
Unlike virtual reality, which creates a completely artificial 
environment, AR enhances the real world by adding digital 
elements to it.  In industrial manufacturing, AR can be used 
to improve productivity and reduce errors by providing real-
time visual guidance and instructions to workers [29]. For 
example, AR can be used to guide workers through complex 
assembly processes, displaying step-by-step instructions 
and highlighting specific components or tools. This can 
reduce errors and improve productivity by ensuring that 
workers have a clear understanding of the task at hand [30].  
Moreover, AR technology can be used for training purposes, 
providing workers with a virtual simulation of a task or 
process before they attempt it in the real world. This can 
help to reduce the time and cost associated with traditional 
training methods, while also allowing workers to practice 
tasks in a safe and controlled environment [31].  However, 
there are also challenges associated with the use of AR in 
manufacturing, including the need for specialized hardware 
and software, as well as issues related to data management 
and cybersecurity [32].  

Additionally, the Industrial Internet of Things (IIoT) is a 
network of connected devices and sensors that collect and 
transmit data in industrial systems. It enables manufacturers 
to optimize production processes, improve efficiency, and 
reduce costs by providing real-time data and insights [33].  
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The key advantages of IIoT are its ability to collect and 
analyse data from a wide range of sources, including sensors 
on machinery, production lines, and even individual 
products. This data can be used to monitor performance, 
identify congestion, and optimize processes in real-time [34]. 
For example, IIoT can be used to monitor the performance 
of individual machines and equipment, detecting issues and 
identifying opportunities for further improvement. It can 
help manufacturers to reduce downtime, increase 
productivity, and reduce maintenance costs.  IIoT can also 
be used to monitor the quality of products as they move 
through the production process, ensuring that they meet 
the required standards and specifications. It can help 
manufacturers improve quality control and reduce waste, 
resulting in cost savings and increased customer satisfaction 
[35]. The IIoT has tremendous potential for use in the 
manufacturing sector. IIoT has the ability to revolutionize 
the manufacturing sector and enhance how goods are 
created and distributed to customers by supplying real-time 
data and insights, streamlining operations, and enhancing 
quality control. 

III. RESEARCH METHODOLOGY 

The methodology in this study aims to provide a 
comprehensive understanding of the research topics and 
problem associated to IR 4.0 in the context of smart 
manufacturing. The study describes the overall approach, 
data analysis, and experiment details, in the context of 
blockchain and NFT, deep learning, IIoT and AR. The 
methodology overviews the IIoT assets and processes in the 

smart manufacturing context, the design and development 
of the NFT based smart contract to simulate the idea of NFT 
into IIoT based assets and processes, the concept of deep 
learning into IIoT and lastly a guiding framework on the 
deployment of AR into smart manufacturing ecosystem. 

A. NFT Representation for IIoT based Assets and Processes 

The NFT representation is fundamentally related with the 
IIoT based industrial machines i.e., sensors, devices, robots, 
and industrial processes associated with them. The idea lies 
in the smart manufacturing ecosystem in which the 
deployed IIoT infrastructure generates data and information 
on different manufacturing stages. This data is generally 
stored into relational, or NoSQL based data storage for 
record purposes, thus providing deep insights about the 
performance and efficiency of different IIoT based 
manufacturing devices and processes. However, such data 
storage mechanism lacks various characteristics which the 
NFT has strong potential to address with such as, data 
immutability and verification, effective traceability and 
auditing, compliance and regulatory requirement, and lastly, 
the ownership and provenance. The Figure 1. Illustrates a 
typical example with the diagram to represent both the 
physical assets and processes in manufacturing scenarios 
using NFT identification. By considering such potential, the 
study explores NFT based smart contract development into 
a based blockchain ecosystem to test its feasibility 
requirements. 

 

 
Fig 1. NFT based Assets and Processes Representation in Manufacturing

B. NFT based Smart Contract Design and Development 

The NFT based smart contract represents an important 
aspect of the intersection of blockchain with digital assets 

representation. The smart contracts are self-executing 
programs with logic directly embedded into the code and 
can be deployed into blockchain ecosystem for execution. 
The NFT based smart contract involves the governance of 
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the ownership, transfer and interaction with non-fungible 
token on digital or physical assets representation.  

Since NFT based smart contract design and development 
in the context of smart manufacturing introduces a new 
dimension to industrial automation and monitoring. By 
leveraging tools like Truffle with Ganache on a local 
environment, a simulated environment was created to test 
and deploy smart contracts. In this simulation, we have 
choses a Truffle Suite which is an ethereum based 
blockchain ecosystem for decentralized application 
development (dApp). The ecosystem primarily comprises of 
three main components i.e., Truffle, Ganache and Drizzle. 
The truffle is the development environment primarily 
utilizing the EVM (Ethereum Virtual Machine). It packaged 
with all the tools a developer is needed to build a dApps on 
ethereum blockchain Similarly, the ganache is a tool to be 
used to deploy the smart contract into local environment to 
avoid paying unnecessary gas fees on smart contract 
deployment while being in the development stages. Lastly, 
the drizzle is a library of frontend components with to use 
with truffle as a user-interface. 

In this simulation, there is a provision to use only the 
truffle with ganache on the local environment. The smart 
contract was specifically designed to address the unique 
characteristics of the IIoT devices incorporating variables 
commonly associated with telemetry data of rotational 
devices such as, pump or motor. Parameters such as, speed, 
temperature, vibration, and other relevant metrics are 
included into it to enable real-monitoring and analyses of 
such devices. The NFT hash was generated with ERC-721 
standard for generating the non-fungible token into 
ethereum environment to identify the unique association. 
The smart contract has the following functions associate 
with it as shown in Table 1. Moreover, the algorithm of smart 
contract is shown in Figure. 1 

TABLE I 
LIST OF FUNCTIONS IN NFT SMART CONTRACT 

Functions Purpose 

addTelemetryData () To add data into smart contract 
from the rotational device. 

generateNftHash () To generate a unique non-
fungible hash value. 

getTelemetryData () To fetch the data from the 
deployed block. 

getNft () To fetch the unique NFT hash 
value from the block. 

 
The data structure format for the telemetry data for the 

rotational machine component was precisely shown in 
Figure 1. Additionally, the same figure also provides the 
structure of NFT based ERC-721 based token. Similarly, the 
addTelemetryData function as depicted in Figure 1, outlines 
the essential steps involved in the generation and 

integration of telemetry data, and the creation an ERC-721 
unique NFT hash based on it. The function serves as the 
crucial component within overall architecture, allowing 
seamless flow of telemetry data and enhancing the integrity 
of the blockchain. Lastly, the Figure 1 shows both the 
generateNFT function to generate NFT and getNft function 
to retrieve the NFT from the blockchain respective. 

C. Predictive Maintenance using Deep Learning 

The deep learning algorithms can analyse sensor data 
from machinery and equipment to detect patterns and 
anomalies. By predicting failures or malfunctions in advance, 
the proactive schedule maintenance, minimize downtime 
and optimize the lifespan of physical assets related activities 
will be organized on time even before the date schedule for 
it. The study aims to explores the predictive maintenance 
using deep learning models on the NFT based ecosystem 
associated using IIoT infrastructure. To explores the 
predictive maintenance ecosystem, the study selected a 
dataset from UC Irvine Machine Learning Repository namely 
“AI4I 2020 Predictive Maintenance Dataset” [36] which is a 
synthetic dataset reflecting the real predictive maintenance 
data generated by the IR 4.0. There are around 10,000 
datapoints with 7 features columns. The Table 2. Illustrates 
the features columns with description. 

The subsequent steps include the use of exploratory data 
analysis (EDA) on the dataset to gain deeper understanding 
of the dataset and uncover valuable insights such as, check 
for missing values which can hinder the accuracy and 
reliability of the analysis, correlation between percentage 
failure with product types, generate valuable analytics such 
as graphs, charts, plots, descriptive statistics, determining 
the percentage of failures from the target variables and 
applying distribution to detect potential outliers. Moreover, 
the next phase will be the data-preprocessing, which 
involves the ordinal encoding turning each label from string 
into integer values and identify the sequence of label from 
the data. Also, scaling the data on the outliers from the 
feature columns. The last phase will be to train and test our 
model and generate the classification report from it. 

TABLE 2 
LIST OF FUNCTIONS IN NFT SMART CONTRACT 

Feature Columns Description 

UID Unique identifier ranging 
from 1 – 10,000. 

 
Product ID 

It includes letter such as      L, M, H, 
for Low, Medium and High 
product quality variants or serial 
number.  

 
Air Temperature (K) 

It generated stochastic random 
walk process over time ranging 
from 2k to 300k approx. 

 
 

It generated stochastic random 
walk process normalized to a 
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Process Temperature (K) standard deviation from 1k to 10k 
plus air temperature added. 

Rotational Speed (RPM) The calculated power of 2860W 
overlaid with distributed noise 

Torque (Nm) The value distributed approx. 
40Nm with no negative values. 

 
 
Tool Wear (Min) 

The label H, M, L used in the 
process as quality variant having 
values 5,3,2 indicating the 
machine failure on any datapoint. 

 

D. Workflow on NFT based Augmented Reality 

The workflow for NFT-based AR involves different key 
steps to integrate these technologies effectively. The 
manufacturing process and relevant assets need to be 
identified and converted into digital assets. These digital 
assets will include 3D models, CAD designs and even real-
time equipment design generated from the LIDAR (Light 
Detection and Ranging) sensors. These assets will be 
tokenized as NFT on blockchain ecosystem as defined in 
earlier section. The integration of AR technology into the 
manufacturing environment involves the use of smart 
glasses or mobile devices equipped with AR capabilities and 
can have the ability to visualize digital assets in the physical 
manufacturing space. With the use of AR, the workers and 
engineers can be able to access real-time device information 

overlaid by the physical objects and can be able to visualize 
the NFT data from them. This will include instructions from 
the assembly, maintenance and quality related assurance 
tasks. Moreover, the AR layers improve the connectivity 
between the IIoT infrastructure with the integration of 
blockchain based NFT and the physical object deployed into 
the space. 

E. Workflow on NFT based Augmented Reality 

The framework consists of several interconnected steps 
which involves asset tokenization, AR integration, metadata 
management, AR interaction with physical device and the 
use-case management. The Figure 2 illustrates the overall 
workflow and design of the internal structure for the 
proposed framework. The asset tokenization comprises of 
digitization of manufacturing assets by identifying key 
devices from the pool. The assets then be converted into 
digital representation such as, 3D model, and ready to be 
deployed into the AR ecosystem. Moreover, after the asset 
tokenization phase, the manufacturer opts for the relevant 
AR hardware within the manufacturing environment to 
implement necessary AR infrastructure. The goal is to 
seamlessly integrate the AR devices to existing 
manufacturing environment allowing for smooth 
interaction between physical and digital realm. 
 

 
Fig 2. AR Workflow and Framework for NFT Based Manufacturing

 
Similarly, one of the essential aspects of the framework is 
the management of NFT metadata. The metadata contain 
relevant information about the assets such as, specification, 

locations and history. The established blockchain ecosystem 
enables sufficient storage and retrieval mechanism for NFT 
metadata, which is crucial for the protection of the integrity 
and confidentiality of data. Furthermore, the subsequent 
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steps involved focuses on the interaction between physical 
assets and AR devices. The manufacturer deployed AR 
hardware allows to scan real-time with physical assets and 
with advance computer vision algorithms deployed into the 
AR hardware, retrieved the NFT metadata information 
immediately to the user. The device overlays contents such 
as, asset information, status etc. which can help the staff 
worker and engineer to get quick insights from the devices 
for variety of use-case purposes such as equipment 
inspection, maintenance etc. Another aspect of framework 
relates with the monitoring and analytics which gathered 
from AR interaction with physical device. By leveraging 
analytics, manufacturer can optimize the production 
efficiency, quality control measures, improve workers 
experience with the physical components. Lastly, the 
framework emphasized the importance of maintenance and 
updates. The protocols should be established to ensure the 
ongoing activities related to maintenance and updates of 
the NFT metadata using AR interaction and physical devices. 

IV. EXPERIMENTAL ANALYSIS AND PRESENTATION OF THE RESULTS 

The experimental analysis focuses on the implementation of 
a smart contract, which was carried out according to the 
proposed conceptual framework. 

A. Smart Contract Deployment 

The smart contract was deployed using Truffle Suite 
installed into the local machine. Once installed, the Truffle 
CLI (Command-line Interface) was used to create a new 
project and generate the smart contract file. To deploy the 
smart contract into Ganache blockchain, the migration was 
created inside the project to efficiently deploy the NFT 
based smart contract into Ganache blockchain. Basically, 
migrations are essential scripts to specify the sequence of 
steps required to deploy the smart contract into a 
blockchain network.  

Similarly, the migration file specified the contract to be 
deployed, include with any constructor or initial 
configuration and the desired network to be deployed. The 
Figure 3 shows the return outcome on the deployment of 
the migration script. The results show that the blockchain 
total cost was around 0.0107441775 ETH with a gas fee of 
3.375 gwei (1 gwei equals 0.000000001) from the Ganache 
local blockchain account. The successfully deployment of 
smart contract shows that the NFT was generated 
successfully for the rotational devices with the tested 
telemetry data to simulate the IIoT based NFT infrastructure. 

 

 
Fig. 3 Smart Contract Deployment Outcome from Truffle Suite 

B. Conceptual Framework for Predictive Experimentation 

To simulate predictive maintenance using deep learning, the 
Google Colab environment was chosen to execute the 
Python-based scripts. Google Colab is a cloud-based 
platform that provides free access to Jupyter notebook 
along with computational resources including the GPUs and 

TPUs. The experiments start with importing various libraries 
such as, numpy, pandas, matplotlib, seaborn, sklearn. 

1)  Dataset:  The dataset utilized in this study was obtained 
from Kaggle. The initial inquiry revealed that the dataset 
contains 10,000 rows that are devoid of any missing values. 
The dataset was imported and an exploratory data analysis 
(EDA) was performed on it. There are two label variables in 
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this simulation i.e., Target and Failure Type to predict the 
machine failure (binary) based on different types of classes 
(Multiclass). The label column named “Target” includes 
binary values e.g., 0 and 1. The “UID” and “ProductID” 
columns were removed since they are just identification 
numbers and have no significant importance for the 
simulation. Furthermore, the label variable “Failure Type” 
was checked which shows six different failure types. The 
variable includes “No Failure”, “Heat Dissipation Failure”, 
“Power Failure”, “Overstrain Failure”, “Tool Wear Failure 
and Random Failure”. Similarly, the label variable “Target” 
to count its binary values. Moreover, the feature variable 
namely “Type” having three categories of data (Low, 
Medium and High).  

2)  Pre-processing Analysis:  The insights show that failure in 
power can occur for both the higher and lower values for 
torque and rotational speed. The highest rotational speed 
on such failure type tends to be 2500 rpm and lower will be 
below 15 Nm respectively, both shows the higher and lowest 
thresholds between the occurrence of power failures. The 
further analysis shows that the torque between 16 Nm and 
41 Nm are mostly related with failure on the tool wear 
features. However, the overstrain failure occur between the 
range from 47 Nm to 68 Nm with round 1200 rpm to 1500 
rpm rotational speed in approximation with them 
respectively. The heat dissipation failures illustrate with 
correlation with torque is to be smaller and rotational speed 
to be larger in number in an overall comparison with 
overstrain failures.  

The insights of the data show that failure in power can 
occur for both the higher and lower values for torque and 
rotational speed. The highest rotational speed on such 
failure type tends to be 2500 rpm and lower will be below 15 
Nm respectively, both shows the higher and lowest 
thresholds between the occurrence of power failures. The 
further analysis shows that the torque between 16 Nm and 
41 Nm are mostly related with failure on the tool wear 
features. However, the overstrain failure occur between the 
range from 47 Nm to 68 Nm with round 1200 rpm to 1500 
rpm rotational speed in approximation with them 
respectively. The heat dissipation failures illustrate with 
correlation with torque is to be smaller and rotational speed 
to be larger in number in an overall comparison with 
overstrain failures. Similarly, the distribution between all the 
variables with respect to their skewness in a plot. The 
outcome shows that the rotational speed is skewed towards 
positive direction while the rotational speed and torque 
have potential outliers. To analyse the outliers, the 
distribution between both the torque and rotational speed 
respectively. The details show that the operating range 
between the torque and rotational speed have similar 
attributes for all the product types. There might be outliers 

from the values higher or below the smaller but compulsory 
in this case. This shows that frequency between the higher 
and the smaller values of potential outliers in regards with 
the product types.  The insights show that values more than 
the higher and lower than the smaller are not in a correlation 
with product type. The corresponding distribution have the 
proportion ranging within 60%, 30% and 10% of the overall 
dataset respectively. However, the proportional have fewer 
Low and High product values in the overall three use cases 
respectively. Similarly, after further analysis, it was found 
that the percentage change for the values below or over the 
higher or lower threshold around 4.87%. 

Furthermore, the subsequent step of data pre-processing 
starts with applying the ordinal encoding into the product 
type columns variables such as, Low, Medium, and High to 
map each string value into integer values, depicting the 
sequence of target variable into encoding data format. To 
further analysis the outlier in this phase, the RobustScaler 
was applied to scale the data in accordance with its quantile 
ranges. However, the remaining feature was scaled using 
MinMax Scaler to subtract the minimum values from the 
feature and further divides them by the range which is a 
ratio between the actual minimum and maximum values. 
Since the dataset have unbalanced properties, the Macro F1 
and ROC AUC score was applied to analyse the performance 
of the model using StratifiedShuffleSplit functionality from 
sklearn which is a cross-validator to provide the training and 
test indices by splitting them into it. 

3)  Experimental Analysis:  The first was applied on “Target” 
variable and the “Failure Type” attribute was removed to 
circumvent the data leakage into it. Table 3 shows the 
proportion the outcome of partitioning the dataset.  

TABLE 3 
DATASET PARTITIONING  

Dataset Target Proportion 

Original 0 0.966911 

1 0.033089 

Y-Train 0 0.966974 

1 0.033026 

Y-Test 0 0.96672 

1 0.03328 

B. Presentation of Results  

The subsequent step involved applying the deep learning 
model. The models selected for it was Feedforward Neural 
Network and Convolutional Neural Network. The models 
were applied on both the target variables i.e., Target and 
Failure Types. The Figure 4 and 5 shows the confusion matrix 
for neural networks on a Target Variable. The Table 4 
summarise the classification results. The outcome shows 
that in case of detecting highest failure then CNN should be 
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used for it. However, the precision will lot of false positives 
will need to renounce. In another model having multiclass 
Failure Type attributes, the performance of both models 
was in close relation to each other. There was a 
misclassification tendency for Heat Dissipation Failure as 
Tool Wear failure. Similarly, the Feedforward NN was able to 
classify the failure more accurately in comparison with CNN 
which lack in detecting the failures. 

TABLE 4 
SINGLE VARIABLE CLASSIFICATION WITH FEEDFORWARD AND CNN RESULTS  

Target F1 Precision Recall Support 

0 0.99 0.99 1.00 2411 

1 0.79 0.92 0.87 80 

 
 

 
Fig. 4  Multi-Variable Confusion Matrix from CNN 

 
Fig. 5  Multi-Variable Confusion Matrix from FeedForward Neural Network 

70 

https://doi.org/10.31436/ijpcc.v9i1.285


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 9, Issue 2 (2023) 
https://doi.org/10.31436/ijpcc.v9i2.407   

 

62 

 

V. CONCLUSIONS 

Industry 4.0, also known as IR 4.0, is a relatively new 
development that has been brought about by the 
incorporation of contemporary technology. This transition 
has remodeled the manufacturing landscape and ushered in 
the fourth industrial revolution. It is investigated if the 
Industrial Internet of Things (IIoT), Deep Learning, 
Blockchain, and Augmented Reality could serve as potential 
drivers of this change. The "Non-Fungible Token" (NFT) 
concept, which was developed from blockchain technology 
and fits within the framework of the Fourth Industrial 
Revolution (IR 4.0), holds a great deal of promise for its 
potential application in the identification and verification of 
tangible assets. In a similar vein, the data gathered by IIoT 
devices and sensors in the setting of smart industries can be 
turned into in-depth analytics that can underlie a broad 
variety of practical uses in the manufacturing industry. By 
utilizing deep learning models on data acquired from IIoT 
devices, predictive maintenance is a vital issue that has huge 
potential for detecting early equipment failure. This can be 
accomplished by using the data. Similarly, augmented reality 
(AR) is capable of providing real-time visualization in a 
manufacturing setting. This, in turn, makes it possible to 
collect real-time insights and analytics from the physical 
equipment. In order to widen the scope of this study, a 
survey was initially carried out in order to evaluate recent 
breakthroughs in a variety of technological disciplines. In 
this study, a smart contract was built and deployed inside 
the framework of an Ethereum blockchain in order to 
simulate the usage of NFTs for the management of physical 
assets and the synchronization of processes. This was done 
so that the results of the simulation could be analyzed. The 
last phase involved applying deep learning algorithms to a 
dataset that consisted of information collected by machines 
and sensors connected to an Internet of Things network. A 
Feedforward and Convolutional Neural Network was 
utilized in order to classify the target variables in conjunction 
with the analysis of expected maintenance failures. To 
summarize the findings of the study, a framework that 
makes use of augmented reality (AR) was offered as a 
means of enhancing the visualization ecology in industrial 
environments. This framework's objective is to enable 
efficient viewing and monitoring of IIoT devices employed in 
a wide variety of industrial applications, such as, but not 
limited to, monitoring, inspection, and quality assurance, 
amongst others. 
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