
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

14

Modeling the Workflow of Bug Prioritization Tasks
Descriptively Using the Past Events
*Sohaib Altaf Raja, 1Madihah Sheikh Abdul Aziz, 2Asadullah Shah

Dept. of Computer Science, KICT, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia

*Corresponding author: suhaibraja@hotmail.com
(Received: 3rd April 2023; Accepted: 20th May 2023; Published on-line: 28th July 2023)

Abstract—Prioritizing bugs is one of the critical decision-related tasks in managing the maintenance phase
whereas it is exposed as a key challenge in handling bug reports. On the other hand, the bug triager is a
prominent role to observe influencing factors for handling the bug prioritization tasks effectively. Analysis of
previous bug reports shows that it is essential to handle bug prioritization tasks with the appropriate
workflow. However, it is revealed that there is a research gap in modeling the workflow of prioritization
tasks. The paper aims to characterize the workflow model of prioritization tasks. This research is based on a
document analysis design using qualitative data from previous bug reports and other artefacts. Over 100 bug
reports from large software corporations are accessed and filtered, while 20 bug reports are used for
obtaining empirical data. In this study, a descriptive workflow model for prioritizing bugs is proposed by
analyzing past events. This model characterizes the states of bug prioritization tasks, their statuses, and the
transitions between them. Additionally, this research analyzes the industrial aspect of the proposed model
and demonstrates its usefulness in providing valuable insights to the bug triager into ongoing prioritization
tasks that will assist him in decision-making in prioritizing bugs retrospectively and prospectively. The finding
of this research also reveals that bug reports are a valuable resource that contains significant prioritization
features which is useful for illustrating the workflow of bug prioritization tasks descriptively. Thus, the
implications of the model for theory and practice are discussed.

Keywords— Bug Priority, Workflow Model, Bug Handling, Decision-Making, Previous Bug Reports, Bug
Triagers’ Role

I. INTRODUCTION

Software projects face various challenges during the
maintenance phase [1]–[6]. Prioritizing bugs comprises
critical decision-related tasks that have a considerable
impact on the maintenance phase and become a challenge
in the management of software development projects. Bug
prioritization studies evaluate various factors that affect the
prioritizing of bug reports [7]–[9]. On the other hand, the
role of the bug triager is prominent in observing influencing
factors that impact decision-making in prioritizing bug
reports and handling tasks associated with bug prioritization
[9]–[11]. The literature describes the lifecycle of bug reports
by illustrating the states of bugs and the transitions
between these states[11], [12]. A review of the empirical data
from the bug reports’ history indicates several tasks
connected with Triaging or Prioritization states, whereas
there is a research gap in characterizing the prioritizing tasks
descriptively. The transition arrows with the red color of
Fig. 1 indicate this gap.

A. Workflow of Handling Bug Report

The literature describes the lifecycle of bugs through
their reporting cycle till their closure and deployment. The
bug-handling process of Atlassian [13], [14] is described by

Fig. 1. Display the Lifecycle of a Bug, its States and Transitions and
Switching into Different States, and the Rationale Behind these

Transitions [11].

the workflow activities which are divided into various
phases, further classified by different statuses, and shown
by transitions between them. Fig. 1 depicts the lifecycle of
an Eclipse bug report and displays several aspects of the
bug-handling process [11]. It shows the transitions of bug

14

https://doi.org/10.31436/ijpcc.v9i1.285
mailto:suhaibraja@hotmail.com

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

15

reports into various states as well as their switching back
and forth between different states and as a result, the
statuses of bug reports keep updating in the bug report. The
arrow directed toward different states shows the rationale
behind their transitions[11].

The backlog of bug reports contains the newly created
bug reports as well as reopened bug reports. The new bug
reports enter in backlog in an Unconfirmed state which
implies that bug reports require to be validated before
proceeding towards triaging and resolution tasks. The arrow
directing toward a Resolved state from an Unconfirmed
state shows that a bug is resolved without fixation and
various statuses are associated with a bug report for
describing the rationale behind the resolution which are
described below[11]:

 a bug is valid, but it is a duplicate, therefore fixation is
not required for it because it will be addressed
automatically when its original bug is resolved. Hence
it will be a dependent bug to its original bug and the
bug report will be assigned a Resolved state with
Duplicate status,

 a bug is not qualified as a valid bug, therefore cannot
proceed for fixation. Hence Resolved state with
Invalid status will be assigned to the bug report,

 a bug is valid, and fixation is not required for it because
it is resolved with a workaround, or any other
alternative solution worked. Hence the bug report
remains in a Resolved state with a Workaround status,
however, this status is not shown here in Fig. 1. This
status is examined from many bug reportsi,

 for other statuses, see [11].
The arrow directing toward a New state from an

Unconfirmed state indicates that a bug report is a valid bug
report and various triaging and prioritizing tasks proceed
before its resolution. In literature, these tasks are
categorized as repository-oriented or developer-oriented
tasks [2], [15]. The former tasks involve the investigation of
a bug and the completion and verifiability of its information
submitted in a bug report, whereas the latter tasks include
the developer selection and prioritization which is indicated
by the transition arrows with the red color shown in Fig. 1.

The Fig. 1 shows that the bug reports are put under
different states during their lifecycle so that stakeholders
could be kept informed about their resolution status, for
example, in Eclipse, when a bug is not addressed
appropriately and the Reopen state is assigned to it, which
implies that the solution is not worked on, therefore the bug
report needs re-assignment of a developer or some
developer has to take possession of the bug report. In Fig. 1,
this is shown by an arrow directing from the Reopen state
toward the Assigned state. It is also observed from the
history of bug reports that they need to be re-investigated

and re-prioritized or other triaging tasks are required for
their handling once they are Reopened. According to the
literature, various triaging tasks are performed between the
Unconfirmed and New states [11]. In Fig. 1, the transition
arrows that represent the different prioritization events,
and actions are depicted in red color. The figure does not,
however, describe the Triaging or Prioritization states,
associated statuses, and transitions between them.

The bug reports participate in the triaging process and
remain in the Triaged state when they need to be
investigated. Further, the right developer must be chosen
for them, and the appropriate priority category must be
assigned. It has been noticed that the word Triaged is also
used in some bug reports to indicate the bug’s state. The
Triaging or Prioritization states, on the other hand, can
inform the stakeholders about various triaging and
prioritization events that take place in between the
validation and resolution tasks, for instance, triaging and
prioritization tasks that perform when a bug report moves
from Unconfirmed to a New state; New to an Assigned state;
and Assigned to a Resolved state. Fig. 1 demonstrates how a
bug can reopen after it has been resolved, verified, and even
closed. On the other hand, the history of bug reports reveals
a number of tasks connected with Triaging or Prioritization
states. The prioritization states, statuses, and transitions
that occur between them are therefore analyzed in this
paper using past events from the bug reports.

B. Bug Prioritization and the Categories

Software organizations use priority categories to label
the priority levels and assign them to the bug reports [12],
[15], [16]. They have to prioritize the bugs so that impactful
and urgent bugs can be resolved at the earliest. At the
Atlassian corporation, highest, high, medium, and low are
specific labels that describe the categories of priority [14].
These categories determine the relative importance of the
bugs for their resolution. Hence, the purpose of
prioritization is to categorize the bug reports considering
their importance to schedule their fixation in present, next,
or any onward sprints.

The prioritization process is described in the literature as
the decision-making task that handles the assignment of the
suitable category of priority to bug reports that are waiting
for their resolution in a backlog. As a result, the outcome of
the prioritization process should be an appropriate
prioritization decision that was taken to assign relative
importance to bugs and is reflected in bug reports.
Therefore, the bug triager is a key factor in decision-making
whose role is to triage the bug reports, observe various
decision-related aspects and choose the appropriate or
better priority decision which is represented by a priority
category, for instance, (1) a decision to select either the
highest, high, medium, or low priority category for a specific

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

16

bug report, (2) select default priority category, (3) not to
select any priority category at this stage and leave the
priority attribute empty, (4) a decision to change the
existing priority category and select either new category of
priority or leave the priority attribute empty. The
characteristics of bug reports are essential information for
the bug triager to gain insights into various choices for
decision-making. The priority categories must be evaluated
and assigned to bug reports to determine their relative
importance for fixation.

In this paper, the study of bug reports reveals that while
some bug reports are resolved in accordance with the
priority category that was assigned to them, others are
delayed because either their priority category changed or
because the priority category is still being assigned. It has
been noted that some bug reports had empty priority values,
indicating that the bug triager in those cases did not select a
priority category and left the priority value empty. Because
of this, empty would also be regarded as a decision that
should be made in cases when either none of the
aforementioned priority categories match the criteria or the
bug triager is constrained in their ability to select a suitable
priority category [14], [17].

C. Challenges of Bug Prioritization

Prioritizing bug reports are important decision-related
activity among other bug-handling tasks [7], [9], [15] that is
essential to handle with the appropriate workflow. In
literature, bug prioritization is exposed as a critical challenge
for handling bug reports, while plenty of research is
conducted to address this challenge [7], [9], [15], [17].

This study analyzes the prioritization workflow by
examining several bug reports of Atlassian corporation
which tells that the prioritization statuses of some of the
bug reports kept on changing when the bug reports switch
back and forth between different states. Among them,
some of the bug reports are waiting for prioritization in the
backlog, whereas others are engaged in the process of
prioritization. Hence, the bug reports in the prioritization
lifecycle move between different prioritization statuses [14].

An investigation of empirical data from bug reports
reveals that bug reports remain in various prioritization
statutes during their lifecycle: (1) some bug reportsii have no
priority value; (2) some bug reports iii have priority values
but are initially empty before being prioritized; (3) priority is
assigned to some bug reports iv but needs to be reprioritized;
and (4) some bug reports need to be reprioritized i, v again;
(5) priority is assigned to some bug reports but then they are
deprioritized vi . The transition between the prioritization
status updates the priority value of the bug report and there
are various rationales behind the prioritization statuses [14],
[18].

The bug-handling process, which Eclipse and Atlassian
prescribe for fixing bugs, comprises a sequence of triaging
and prioritization tasks [14], [18], [19]. The model shown in
Fig. 1 is generic and of a prescriptive nature because it does
not describe the triaging and prioritization states. The
descriptive model, on the other hand, should describe the
exact workflow of each bug report, beginning with its
reporting cycle, moving through its triaging and
prioritization cycle, and iterating back and forth into
different states until their closure and deployment.

This descriptive model should provide the bug-handling
team with information about the present status of bug
reports in the backlog, which can help them handle bug
reports for future tasks such as triaging, prioritizing, and
resolution as well as modeling the lifecycle of prioritization
tasks descriptively and will give useful insights to the bug
triager in decision-related tasks. Therefore, it becomes
critical for the bug triager to observe the workflow of bug
prioritization to monitor which bug reports are either
pending or require reprioritization and hence need urgent
attention. Thus, his role as a decision-maker is of utmost
importance in which he needs visions into various ongoing
prioritization tasks during decision-making for handling bug
reports for prioritization.

Many studies model the lifecycle of bug reports [12], [20]
however, there is a research gap in characterizing the
lifecycle of prioritization tasks associated with handling bug
reports. Previous bug reports are valuable artefacts that can
be used for understanding the phenomena of bug
prioritization [9], [16], [21]. This study examines the
prioritizing and triaging tasks from Eclipse and Atlassian
workflow processes using previous bug reports and models
the workflow states of bug prioritization which illustrates
the transitions of bug reports into prioritization states and
statuses.

II. LITERATURE REVIEW

This section introduces the related studies on triaging and
prioritization tasks and presents briefly issues of bug
prioritization.

Empirical studies evaluate various factors to address the
decisions-related challenges in handling bugs that are faced
by software projects during the maintenance phase [3]–[6].
Plenty of studies report factors that impact the maintenance
phase [22]–[24], while several empirical studies on bug
handling present statistical findings using datasets of the
past bug report to provide [4], [20], [25], [26].

Bug prioritization is an essential decision-related task to
address the bug-handling issues faced by software projects.
Most of the studies conducted on bug prioritization using
datasets of bug reports worked on machine learning, deep
learning, and NLP-based approaches, and proposed

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

17

automated techniques [8], [9], [15], [20], [27]. Many studies
use textual data such as summary and description, as well as
category information such as severity, temporal information,
and other factors [17], [28] whilst some demonstrate the
significance of dependent bug reports linked as external
sources with the bug reports, for the design of the
automated techniques [8], [9], [29]. The purpose of the
automated techniques is to improve the performance of
bug-prioritizing tasks, however, there is still a research gap
to put these techniques into practice [9], [15], [20].

Certain empirical studies evaluate the factors and
establish their relationship with bug prioritization to
examine their impact [7]–[9]. Almhana et al., [21] examine
the changeovers in bug priority from a large data set of
open-source bug reports and analyze the tasks that are
performed when the transition in bug priority decisions took
place. Some studies demonstrate the significance of
empirical data using datasets from past bug reports by
presenting the statistical findings of bug triaging and
prioritization tasks [9], [16], [20].

The review of related studies on bug prioritization reports
[2], [7]–[10], [15]–[17], [21] as well as looking at the
prioritization tasks from previous bug reports, reveal
research gaps in addressing decision-related challenges in
bug prioritization due to many factors such as constraints on
decision-making in prioritizing bug reports, for instance, a
large backlog of bug reports; awaiting priority decisions, re-
prioritization and changeovers noticed in priority decisions;
the role of the bug triager as decision-maker; and lack of
automation support. Literature models the lifecycle of bug
reports [12], [20], however, examination of studies reveals
that there is a study gap in exploring the factors that have
an impact on bug prioritization and defining the ongoing
tasks of prioritizing bug reports.

III. METHODOLOGY

The task of learning from the past is important in software
development [30]. Due to open access to datasets of bug
reports and other project archives over the decade,
empirical research has gained popularity for handling bug
reports and became a valuable resource for making data-
driven decisions [4], [9], [20], [31], [32]. Many actions are
taken during bug-triaging decisions, which are difficult to
monitor during the decision-making process, but the
empirical study indicates that bug reports are the platform
that records the actions of software teams when they
communicate [4], [9], [20], [32], [33]. As a result, the
outcome of bug priority decisions, as well as the history of
the activities done during the bug prioritization tasks, can be
traced back, allowing decision-making-related issues in bug
prioritization to be studied.

Plenty of research studies on bug handling tasks employ
datasets from bug reports as a subject for different
statistical assumptions and suppositions. This study is based
on a document analysis design. In this study, bug reports
from closed-source projects of Atlassian Corporation [34]
and other open-source projects, such as those of Mozilla,
Eclipse, and Red Hat [35]–[37], serve as the main source of
empirical data. The secondary sources of empirical data,
such as artefacts outlining the triaging and prioritizing
process, are defined by various large software corporations
[14], [38]–[43]. These artefacts are used to analyze
qualitatively the bug report data.

Atlassian, [44] is an Australian software corporation that
develops a family of products that are serving over 200000
customers in over 190 countries. The Atlassian product
family includes Atlassian-owned and operated products,
including Jira, Confluence, web apps, and mobile apps. Jira
and Bugzilla are bug-tracking systems, designed to help
teams of software developers, project managers, and other
software development teams to handle bugs. It gives a

Fig. 2. (a) Illustrates the Data Collection Process of Bug Reports Based on
Prioritization Features Contained in it. (b) Display the Different

Prioritization Features Present in Bug Reports.

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

18

platform to many open-source and commercial software
projects. Bugzilla provides custom filters to access the bug
reports, whereas Jira provides both the custom filters and
JQL to access the bug reports. The data in this study is
collected from open and closed-source projects managed in
the Bugzilla and Jira bug-tracking systems.

Bug reports i-viii are the primary unit of observation in this
study that is collected from different software corporations.
The sampling technique used in this study is purposive. The
dataset of bug reports selected for this study is based on the
prioritization features that are examined mainly from the
comments and history section of bug reports. It is examined
in this study that the prioritization decisions taken are
reflected in many bug reports. It is also observed that some
bug triager communicates the priority decisions and
discusses their rationales in the commentsi. Therefore, to
analyze these features, the comments and history section of
bug reports are examined because they contain rich past
data. The datasets of past bug reports are examined, and
the prioritization events are analyzed from comments,
history, and other features of past bug reports which
indicates that bug reports contain events that are
performed and actions that are taken by the bug triager
during the bug prioritization tasks. Therefore, these actions
are traced back by examining the outcome of priority
decisions.

For empirical setup, bug reports are accessed and filtered
in two steps. The first step involves accessing the more than
100 opened bug reports, and the second step includes
filtering them based on several prioritization features that
should be present in their contents, such as one or more
priority decisions; reprioritizations; comments containing
discussion about the prioritization; assignment and
reassignment of priority shown in the history section; and
temporal data related to prioritization. The methodology is
shown in the flowchart in Fig. 2. The process of
collecting and analyzing data is shown in Fig. 2 (a), while
examples of prioritization features found in bug reports are
shown in Fig. 2 (b), which is used to evaluate bug reports in
an empirical setup. In this figure, the rectangles in blue that
have short descriptions are used to tag the prioritization
features. In the figure, it demonstrates how events can be
analyzed from history, comments, temporal information,
and triaging tasks while using this information. For instance,
the reason why the current priority is high can be traced
back to past events, which indicate that this action was
taken on January 12, 2022, and analyzed from comments
made on October 12, 2021. These events are used to identify
the present and past statuses of bug reports as well as
transitions between them, whereas the triaging tasks are
used to identify the prioritization states.

IV. FINDINGS

During the handling of the bug reports, it is significant for
the bug triager to visualize the workflow of bug
prioritization to observe which bug reports need immediate
consideration. This study examines previous bug reports,
analyzes the workflow of bug prioritization, and illustrates
the transitions between prioritization states and statuses in
bug reports.

A. Workflow of Handling Bug Reports for Prioritization
Tasks

An examination of empirical data from bug reports
shows that bug reports stay in two states either they are
waiting for prioritization or are involved in the process of
prioritization. They switch between unprioritized,
reprioritized, prioritized, deprioritized, and cannot-be-
prioritized statuses during their lifecycle, as a result, the
priority value of bug reports keeps on updating, for instance,

 the priority value of some bug reports remains empty,
 some bug reports are prioritized once,
 some bug reports are prioritized more than once,
 some bug reports need to be reprioritized,
 while some bug reports were given specific priority

levels, their priority was later changed to empty.
 Table 1 describes the workflow model of prioritization
according to which the triaging and prioritization tasks are
coordinated; some are dependent, whereas others are
interdependent tasks. Fig. 3 illustrates it diagrammatically
and it shows the collaboration between the two
prioritization states. Fig. 4 shows the synchronization
between various lifecycle states of bug reports and
prioritization states. The digit in a bracket shows the number
of bugs moving in a bug-handling pipeline under a specific
state. It is supposed in Fig. 4, that twelve bugs are newly
reported though many existing bugs are in the pipeline for
triaging and resolution tasks. Among newly reported bugs,
some bug reports are waiting-for-prioritization state,
whereas other bugs are in-process-of-prioritization state.
This equation also holds for bug reports that are in the
triaging backlog which implies that some triaged bugs are
waiting to be prioritized while some are engaged in the
process of prioritization. Fig. 3 demonstrates that the bug
reports can be either moved to a prioritization state or
remain in waiting for the prioritization state, however, it goes
through different statuses. It displays that nine bug reports
are waiting for prioritization, and the other eleven bug
reports are moved to the prioritization state.

 The transition between prioritization states is triggered
by an event that takes place when a bug triaging team
chooses certain bug reports from the backlog for the
prioritization process, and as a result of it, the status and

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

19

value of priority change. Fig. 3 illustrates that when the bug
reports switch to the process-of-prioritization state, their
initial priority statuses and values may change to new priority
values. Table 1 illustrates the initial and new values. It shows
that prioritization statuses and priority values change in
many situations after the transition takes place in the
prioritization states. The first part of Fig. 3 shows the
transitions between the two prioritization states, the middle
part illustrates their existing statuses, and the last part shows
that priority values are updated when bug reports switch
between the prioritization states.

B. Possible Statuses

Table 1 describes the transitions between the various
states and statuses. The first column of the Table shows the
two possible prioritization states and the second column
show the possible statuses of the bug report and their
transitions, for instance, a bug report can switch from one
state to another and between the following possible
statuses.

1) ‘Unprioritized’ Status: The bug report with
‘unprioritized’ status indicates that the decision to assign
any specific priority category was not taken and the priority

attribute is left empty. Therefore, the bug report with
‘unprioritized’ status may need to be either prioritized,

remain in unprioritized status, or cannot be prioritized
during the process of prioritization.

2) ‘Reprioritized’ Status: The bug report with
‘reprioritized’ status implies that the bug report is assigned
a specific priority category more than once. Therefore, the
bug reports with the ‘reprioritized’ status can be either
reprioritized again, deprioritized, or cannot be prioritized
during the process of prioritization.

3) ‘Prioritized’ Status: The bug report with ‘prioritized’
status means that a specific priority category is already
assigned once to the bug report. Therefore, the bug reports
in this state can be reprioritized, deprioritized, or cannot be
prioritized during the process of prioritization.

4) ‘Cannot be Prioritized’ Status: The bug report with
‘cannot be prioritized’ status implies that they cannot be
fixed now. Therefore, the ‘cannot be prioritized’ status is
assigned and hence they cannot be prioritized during the
process-of-prioritization state.

5) ‘Deprioritized’ Status: The bug reports with
‘deprioritized’ status implies that priority is initially assigned
to the bug reports but later it is removed, and the priority

value is now changed to a null value. Therefore, a
‘deprioritized’ status is assigned to these bug reports.

Prioritization States Existing Priority Status New Priority Status

Initial Status Initial Value New Status New Value

The backlog of the
Bug Report is
Waiting-for-
Prioritization (9)

Unprioritized Empty (3)

Prioritized High (1)

Reprioritized Highest (1), Medium (4)
– Already Assigned Priority
 More than Once

The Backlog of the
Bug Report is In-
Process-of-
Prioritization (11)

Unprioritized Empty (5) Unprioritized Leave Empty (1)

Cannot be
Prioritized

Leave Empty (1)

Prioritized Low (2)
– Assign Default Priority

Prioritized Highest (1)
– Assign Appropriate Priority

Prioritized Low (1) Reprioritized High (1)
– Change and Assign New Priority

Reprioritized High (1)
– Already Assigned Priority Once

Reprioritized Medium (1)
– Change and Assign New Priority

Medium (2)
– Already Assigned Priority More
than Once

Reprioritized High (1), Low (1)
– Change and Assign New Priority

Highest (1)
– Already Assigned Priority Once

Deprioritized Leave Empty (1)

Medium (1)
– Already Assigned Priority Once

Cannot be
Prioritized

Leave Empty (1)

TABLE I

DISPLAY THE WORKFLOW, THE PRIORITIZATION STATES OF BUG REPORT AND, THEIR TRANSITIONS INTO VARIOUS STATUSES

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

20

C. Existing and New Statuses

 The bug reports in existing priority status display their
initial priority status and value when they are either in a
‘waiting for prioritization’ status or moved to a ‘process of
prioritization’ state. In Table 1, the second column shows
three initial statuses in which bug reports may remain that
are ‘unprioritized’, ‘prioritized’, and ‘reprioritized’ statuses.
The third column shows the initial priority value of bug
reports after which they can move to any other possible
statuses, for instance, a bug report can be empty, or already
a priority is assigned to it once or more times.

The fourth and fifth column displays the new priority
status and value of the bug reports. It demonstrates how the
transition that occurs when the bug reports move between
the prioritization states causes the prioritization statuses to
change to ‘unprioritized’, ‘prioritized’, ‘reprioritized’, ‘cannot
be prioritized’, and ‘deprioritized’ and how this updates the
priority values.

D. Bug Reports in ‘Waiting for Prioritization’ State

 The second column of Table 1 illustrates that nine bug
reports in the backlog are waiting-for-prioritization among
which three are in unprioritized status, one is in prioritized
status and five are in reprioritized status. The waiting-for-
prioritization state indicates that the prioritization process
of these bug reports is pending. The unprioritized status of
bug reports indicates that it has never been prioritized, in
which case its priority value is empty, or that it has been
prioritized once or more, in which case its priority value has
been assigned, but it has moved to the deprioritized status
later, where it has changed to an empty value.

Reprioritized status implies that bug reports are already
prioritized once or maybe more and are currently waiting to
be reprioritized. It is shown in the third column that the three
bug reports with unprioritized statuses have empty priority
values, one bug report with prioritized status has a high
priority value, and among the five bug reports with
reprioritized statuses, the existing priority of one bug report
is the highest and the other four bug reports are medium.

 The fourth and fifth column is empty because the
prioritization process of these bug reports is pending and
therefore, the value of priority will not update and remain the
same.

E. Bug Reports in the ‘Process of Prioritization’ State

The table displays that eleven bug reports moved to the
‘process of prioritization’ state among which five bug reports
are in ‘unprioritized statuses’ and no priority is assigned
before, one bug report is in prioritized status whereas the
remaining five bug reports are in reprioritization status and
priority values are already assigned to them.

1) Unprioritized’ Status: Table 1 shows that five bug
reports with unprioritized status moved to the ‘process-of-
prioritization’ state. The existing status is shown in the
second column whereas the existing value of priority is
shown in the third column. The fourth column shows that
among five bug reports, one bug report remained in
unprioritized status which implies that this bug report is
moved to the waiting-for-prioritization state, whereas one
bug report is invalid and therefore, cannot be prioritized in
the future and is closed. On the other hand, among the three
bug reports, low priority is assigned to two bug reports,
whereas the highest priority is assigned to one bug report,
which is displayed in the fifth column.

2) ‘Prioritized’ Status: Table 1 displays that one bug report
with prioritized status moved to the ‘process of
prioritization’ state that needs reprioritization. The third
column shows that low priority is assigned to one bug report.
The fourth column shows the status of the bug report is
updated to reprioritized status, whereas high priority is
assigned to it which is displayed in the fifth column.

3) ‘Reprioritized’ Status: Table 1 displays that five bug
reports with reprioritized status moved to the ‘process of
prioritization’ state that needs reprioritization and has
different priority values. The third column shows that three
bug report is already assigned priority once among which
one is now at the highest priority, one is at the medium
priority and one is at the high priority, whereas two bug
reports are already assigned priority more than once which
is now at medium priority. The fourth and fifth columns
show that these bug reports are reprioritized and assigned
new priority values. Fig 3 shows that a new priority value is
assigned to three bug reports, the priority value is left empty
in four bug reports, while the priority value is updated in four
bug reports. The fourth column of Table 1 displays the new
statuses of the four bug reports that have empty priority
values, showing that one bug report has been given the

Fig. 3. Illustrates the Switching between Prioritization States, Statuses of
Bug Reports, and Priority Values.

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

21

status of "unprioritized," two bug reports have been given
the status of "cannot be prioritized," and one bug report has
been given the status of "deprioritized."

V. IMPLICATIONS OF THE STUDY

The implications of the study to both theory and practice
are analyzed which are discussed in this section. The
suggested workflow is useful as it contributes to theoretical
knowledge as well as is valuable for the software industry.
From theoretical aspects, it characterizes the workflow
states and statuses to demonstrate the phenomena of bug
prioritization, which can be further input for future research
in this area. For example, different bug prioritization tasks
can be explored that comprise various events that may take
place during the prioritization of bug reports and actions
that are taken as a result.

A. Collaboration between different lifecycle states of bug
reports and prioritization states

The literature models different workflows for handling
bug reports. In Fig. 1, the lifecycle of a bug report and
transitions into various bug-handling states is illustrated,
while the arrow directed toward different states shows the
rationale behind their transitions[11]. In this study, it is
examined from various bug reports that several bug triaging
and prioritization are performed after the bug is validated,
assigned, resolved, verified, closed, and reopened. However,
there is a research gap in characterizing the workflow for
prioritization. Therefore, the proposed workflow for
prioritization can be integrated with the various existing
bug-handling models.
 Fig. 4 displays the lifecycle of bug reports and their
interaction with prioritization states. It illustrates that bug
reports either remain in the waiting-for-prioritization state or
in-process-of-prioritization state during or after their
reporting cycle, triaging cycle, resolving, closing, or
reopening of bug reports. The numbers of bug reports
shown in italics are hypothetical and are just shown for
illustrating the life cycle of bug reports and their
synchronization with prioritization workflow, for instance,

 twelve bug reports are newly reported and either
remain in the waiting-for-prioritization state or in-
process-of-prioritization state,

 eighteen bug reports are in the triaging backlog and
either remain in the waiting-for-prioritization state or
in-process-of-prioritization state,

 eight bug reports are resolved, and twenty-four bugs
are closed, whereas the arrow directing towards
Reopen state shows that some bugs are reopened
after being resolved and closed,

 six bug reports are reopened bugs and the arrow
directing from reopen towards triaging state shows
that some bugs may again need triaging and
prioritization.

 The two-directional arrows between the bug reporting
cycle and the prioritization states highlight the fact that
some bug reports are in a waiting-for-prioritization, due to
which their priority values are left empty. This fact is also
evident from bug reports, which show that most bugs are
not assigned a priority when they are reported. Some bug
reports, on the other hand, are newly created and move to
the ‘process of prioritization’ state during their reporting
cycle, and the priority value is assigned to them. This
phenomenon is also evident from several Atlassians’ bug
reports where many bugs are given low priority during the
reporting cycle. In Fig. 4, a collaboration between triaging
cycle and prioritization states is shown in which some bug
reports are in a waiting-for-prioritization state because of
either delay in triaging process or other bug handling
constraints. However, bug reports that are triaged and have
no constraints, can move in-process-of-prioritization state.
Fig. 1 shows that some bug reports reopen after being
verified or closed, while it is analyzed from the history of bug
reports that some bugs reprioritize after they reopen. Thus,
the bug reports that cannot be verified or closed after being
fixed, can be moved again into reprioritization status where
they either will be in a waiting-for-prioritization or in-process
of-prioritization state.

B. Software Industrial Aspects

From an industry perspective, this workflow is valuable to
observe bug prioritization tasks that are being performed
during the lifecycle of a bug. The software industry

Fig. 4. Illustrates the Lifecycle of Bug Reports in and its Interaction with
Prioritization States.

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

22

recognizes the significance of sprint planning, daily stand-up,
review, and retrospective meetings which are important
ceremonies of the Scrum development process. This
research demonstrates the advantages of the suggested
workflow for the bug triager during the scrum meetings, to
visualize the prioritization statuses for effectively handling
bug reports. The bug triager can visualize the workflow of
bug prioritization in sprint planning, daily stand-up and
review meetings, and analyze the various prioritization
statuses of bug reports. The bug triager can observe the
workflow of bug prioritization and examine the prioritization
statuses of various bug reports from the backlog of the
previous iteration which are waiting for prioritization and
analyze the rationale behind the prioritization process in a
retrospective meeting to make plans for prioritizing the bug
reports in the future.

The bug tracking and management system is used to
handle various aspects of bug reports, for instance, creating
news bug reports, and triaging, searching, and tracking bugs.
Hence these bug-tracking systems are essential tools to
handle bug reports and facilitate their resolution. The
workflow model of prioritization tasks can be integrated
with any bug tracking and management tool using Machine
Learning approaches. Thus, the bug triager can visualize the
ongoing prioritization tasks and customize his dashboard of
the bug tracking tool which will give him insights and notify
him with alerts. However, analyzing the adoption of this
model and its integration with any bug-tracking tool will be
part of future research.

C. Decision-making Approaches

The proposed workflow model of bug prioritization will
be useful for a retrospective and prospective decision-
making approach. For a retrospective decision-making
approach, the bug triager can observe the prioritization
workflow of past bug reports during the retrospective and
review meetings, which is useful for lesson learning. He can
find the bug reports waiting for prioritization and analyze the
rationale behind the prioritization process, improving future
processes. For the prospective decision-making approach, he
can select the backlog of open bug reports and monitor the
prioritization of bug reports during the sprint planning, and
daily stand-up and analyze the various prioritization statuses.

VI. CONCLUSION AND FUTURE DIRECTION

Literature reports many decision-related challenges in
prioritizing bug reports due to various reasons including
constraints in prioritizing bug reports, awaiting priority
decisions, re-prioritization, and changeovers in priority
decisions whereas the role of bug triager is critical in
handling the bug prioritization tasks. The study analyzes and
discusses the implications of the study for both theory and

software industrial aspects. It proposes a descriptive
workflow model of bug prioritization that characterizes the
states of bug prioritization tasks, their statuses, and the
transitions between them. The utilization of the suggested
model for the software industry is also examined according
to which this model can be integrated into any bug-tracking
and management tool that will provide meaningful insights
to bug triager into ongoing prioritization tasks and describes
their synchronization with other bug-handling tasks.
Further, this model can be used in different formats of
Scrum and other triage meetings to assist him in decision-
making in prioritizing bugs retrospectively and prospectively.

The paper examines the datasets of previous bug reports
from Atlassian, Eclipse, Mozilla, Apache, and Red Hat
projects and qualitatively analyzes the prioritization tasks
from the previous events which reveal that bug reports
contain events that are performed and actions that are
taken during the bug prioritization tasks. The actions can be
traced back by examining the outcome of priority decisions
whereas past prioritization events can be traced back by
analyzing the comments and the history of past bug reports
which demonstrates the decision-making of bug
prioritization. Some prioritization features are explored in
this study to describe the workflow model of prioritization
tasks, whereas other prioritization features can be explored
in future work. Therefore, it can be said that bug reports are
a valuable resource for outlining the workflow of bug
prioritization tasks that can assist the bug triager in decision-
making.

This model can be expanded in the future by looking at
bug reports from other open-source projects and close-
source projects to explore additional prioritization statuses
that are not covered in this workflow model. Future
research work can explore many events and the actions
associated with the different prioritization tasks. A
framework should be designed as part of future work that
can adopt this model for industrial aspects in order to
incorporate the suggested model. Therefore, empirical
research should be carried out to apply the suggested model
in different Scrum meeting formats and gather feedback.

ACKNOWLEDGEMENT

The authors hereby acknowledge the review support
offered by the IJPCC reviewers who took their time to study
the manuscript and find it acceptable for publishing

CONFLICT OF INTEREST

The authors declare that there is no conflict of Interest.

REFERENCES

[1] J. D. Herbsleb and A. Mockus, “Formulation and Preliminary Test of an
Empirical Theory of Coordination in Software Engineering,” 2003.

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

23

[2] J. Anvik, “Reducing the Effort of Bug Report Triage: Recommenders
for Development-Oriented Decisions,” vol. 20, no. 3, 2011, doi:
10.1145/2000791.2000794.

[3] R. P. Ghozali, H. Saputra, M. A. Nuriawan, Suharjito, D. N. Utama, and
A. Nugroho, “Systematic Literature Review on Decision-Making of
Requirement Engineering from Agile Software Development,”
Procedia Comput Sci, vol. 157, 2019, doi: 10.1016/j.procs.2019.08.167.

[4] T. M. Hesse, V. Lerche, M. Seiler, K. Knoess, and B. Paech,
“Documented decision-making strategies and decision knowledge in
open-source projects: An empirical study on Firefox issue reports,” Inf
Softw Technol, vol. 79, pp. 36–51, Nov. 2016, doi:
10.1016/j.infsof.2016.06.003.

[5] J. A. O. G. Cunha, H. P. Moura, and F. J. S. Vasconcellos, “Decision-
making in Software Project Management: A Systematic Literature
Review,” Procedia Comput Sci, vol. 100, 2016, doi:
10.1016/j.procs.2016.09.255.

[6] F. Mendes, E. Mendes, N. Salleh, and M. Oivo, “Insights on the
relationship between decision-making style and personality in
software engineering,” Inf Softw Technol, vol. 136, Aug. 2021, doi:
10.1016/j.infsof.2021.106586.

[7] N. Kaushik, M. Amoui, L. Tahvildari, W. Liu, and S. Li, “Defect
Prioritization in the Software Industry: Challenges and Opportunities,”
in 2013 IEEE Sixth International Conference on Software Testing,
Verification, and Validation, IEEE, Mar. 2013. doi: 10.1109/ICST.2013.40.

[8] S. Akbarinasaji, C. Kavaklioglu, A. Başar, and A. Neal, “Partially
observable Markov decision process to generate policies in software
defect management,” Journal of Systems and Software, vol. 163, May
2020, doi: 10.1016/j.jss.2020.110518.

[9] H. Jahanshahi, M. Cevik, J. Navas-Sú, A. Başar, and A. González-Torres,
“Wayback Machine: A tool to capture the evolutionary behavior of the
bug reports and their triage process in open-source software systems,”
Journal of Systems and Software, vol. 189, Jul. 2022, doi:
10.1016/j.jss.2022.111308.

[10] J. Xie, M. Zhou, and A. Mockus, “Impact of Triage: A Study of Mozilla
and Gnome,” in 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, IEEE, Oct. 2013. doi:
10.1109/ESEM.2013.62.

[11] J. Zhang, X. Y. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, “A survey on
bug-report analysis,” Science China Information Sciences, vol. 58, no. 2,
pp. 2–3, 2015, doi: 10.1007/s11432-014-5241-2.

[12] H. Bani-Salameh, M. Sallam, and B. al Shboul, “A Deep-Learning-Based
Bug Priority Prediction Using RNN-LSTM Neural,” e-Informatica
Software Engineering Journal, vol. 15, no. 1, 2021, doi: 10.37190/e-
Inf210102.

[13] (2023) The Atlassian website, Work with issue workflows, [Online].
Available: https://support.atlassian.com/jira-cloud-
administration/docs/work-with-issue-workflows/. [Accessed: 21-Feb-
2023].

[14] (2023) The Atlassian website, Atlassian Cloud Bug Fix Policy, Atlassian
Documentation. [Online]. Available:
https://confluence.atlassian.com/support/atlassian-cloud-bug-fixing-
policy-206865884.html. [Accessed: 01-Feb-2023].

[15] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, “A survey on
bug prioritization,” Artif Intell Rev, vol. 47, no. 2, pp. 145–180, 2017, doi:
10.1007/s10462-016-9478-6.

[16] M. Gökçeoğlu and H. Sözer, “Automated defect prioritization based
on defects resolved at various project periods,” Journal of Systems and
Software, vol. 179, Sep. 2021, doi: 10.1016/j.jss.2021.110993.

[17] M. Kumari and V. B. Singh, “An Improved Classifier Based on Entropy
and Deep Learning for Bug Priority Prediction,” 2020. doi: 10.1007/978-
3-030-16657-1_53.

[18] (2023) Apache Software Foundation, Bug Priority Guidelines and
Release Schedule for Apache NetBeans - [Online]. Available:
https://cwiki.apache.org/confluence/display/NETBEANS/Release+Sch
edule. [Accessed: 21-Feb-2023].

[19] Eclipse Foundation (2023), Mozilla Website for Describing Bug fields.
[Online]. Available:
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html. [Accessed: 18-
Feb-2023].

[20] J. Zhang, X. Y. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, “A survey on
bug-report analysis,” Science China Information Sciences, vol. 58, no. 2,
2015, doi: 10.1007/s11432-014-5241-2.

[21] R. Almhana, T. Ferreira, M. Kessentini, and T. Sharma, “Understanding
and Characterizing Changes in Bugs Priority: The Practitioners’
Perceptive,” in 2020 IEEE 20th International Working Conference on
Source Code Analysis and Manipulation (SCAM), IEEE, Sep. 2020. doi:
10.1109/SCAM51674.2020.00015.

[22] K. Punitha and S. Chitra, “Software defect prediction using software
metrics - A survey,” in 2013 International Conference on Information
Communication and Embedded Systems (ICICES), IEEE, Feb. 2013. doi:
10.1109/ICICES.2013.6508369.

[23] R. K. Saha, “An Empirical Study of Long-Lived Bugs,” pp. 144–153, 2014.
[24] Z. Abou Khalil, E. Constantinou, T. Mens, and L. Duchien, “On the

impact of release policies on bug handling activity: A case study of
Eclipse,” Journal of Systems and Software, vol. 173, Mar. 2021, doi:
10.1016/j.jss.2020.110882.

[25] Z. Abou Khalil, E. Constantinou, T. Mens, L. Duchien, and C. Quinton,
“A Longitudinal Analysis of Bug Handling Across Eclipse Releases,” in
2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), IEEE, Sep. 2019. doi: 10.1109/ICSME.2019.00010.

[26] J. Keung, “An Empirical Analysis of Reopened Bugs Based on Open-
Source Projects,” no. October, 2017, doi: 10.1145/2915970.2915986.

[27] Y. Feng, J. A. Jones, Z. Chen, and C. Fang, “Multi-objective test report
prioritization using image understanding,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
New York, NY, USA: ACM, Aug. 2016, pp. 202–213. doi:
10.1145/2970276.2970367.

[28] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report
priority using multi-factor analysis,” Empir Softw Eng, vol. 20, no. 5, pp.
1354–1383, 2015, doi: 10.1007/s10664-014-9331-y.

[29] R. Almhana and M. Kessentini, “Considering dependencies between
bug reports to improve bugs triage,” Automated Software Engineering,
vol. 28, no. 1, May 2021, doi: 10.1007/s10515-020-00279-2.

[30] (2023) The Standish Group, The Standish Group. [Online]. Available:
https://www.standishgroup.com/. [Accessed: 02-Feb-2023].

[31] K.-J. Stol and B. Fitzgerald, “The ABC of Software Engineering
Research,” ACM Transactions on Software Engineering and
Methodology, vol. 27, no. 3, pp. 1–51, Jul. 2018, doi: 10.1145/3241743.

[32] Y. Noyori et al., “What are Good Discussions Within Bug Report
Comments for Shortening Bug Fixing Time?” in 2019 IEEE 19th
International Conference on Software Quality, Reliability and Security
(QRS), IEEE, Jul. 2019, pp. 280–287. doi: 10.1109/QRS.2019.00044.

[33] A. J. Ko and P. K. Chilana, “Design, discussion, and dissent in open bug
reports,” in Proceedings of the 2011 iConference, New York, NY, USA:
ACM, Feb. 2011, pp. 106–113. doi: 10.1145/1940761.1940776.

[34] (2023) The Atlassian website for Browse projects - Jira Bug Tracking
System for Closed-Source Projects of Atlassian. [Online]. Available:
https://jira.atlassian.com/projects. [Accessed: 01-Feb-2023].

[35] Eclipse Foundation Bug Reports (2023), Bugzilla Bug Tracking System
to Browse Eclipse Bug Reports, [Online]. Available:
https://bugs.eclipse.org/bugs/query.cgi. [Accessed: 21-Feb-2023].

[36] Red Hat Bug Reports (2023), Jira Bug Tracking System to Browse Red
Hat Bug Reports. [Online]. Available:
https://issues.redhat.com/projects/. [Accessed: 01-Feb-2023].

[37] Mozilla Bug Reports (2023), Bugzilla Bug Tracking System to Access
Mozilla Bug Reports. [Online]. Available: https://bugzilla.mozilla.org/.
[Accessed: 21-Feb-2023].

[38] Bugzilla Guide (2023), The Firefox Source Docs documentation for Bug
Handling and Triaging in Bugzilla. [Online]. Available: https://firefox-
source-docs.mozilla.org/bug-mgmt/policies/triage-bugzilla.html.
[Accessed: 01-Feb-2023].

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.398

24

[39] Bug Handling Guideline (2023), Triage and Priority Guide for Firefox
Bugs on Mozilla Central. [Online]. Available:
https://searchfox.org/mozilla-central/source/docs/bug-mgmt/.
[Accessed: 01-Feb-2023].

[40] Priority definitions (2023), Firefox Source Docs documentation for Bug
Handling Policy. [Online]. Available: https://firefox-source-
docs.mozilla.org/bug-mgmt/guides/priority.html. [Accessed: 01-Feb-
2023].

[41] Bug Handling Guideline (2023), What are issue statuses, priorities, and
resolutions? Published by Atlassian Support. [Online]. Available:
https://support.atlassian.com/jira-cloud-administration/docs/what-
are-issue-statuses-priorities-and-resolutions/. [Accessed: 01-Feb-2023].

[42] Priority definitions (2023), What are the Priority Levels in Jira Service
Management? For Jira Service Management Cloud Published by

EndNotes

i (a) Bug Report Resolved with Workaround Status (b) Bug Report
Reprioritized Many Times: Bitbucket Cloud: BCLOUD-19548, JIRA Bug
Tracking System. [Online]. Available:
https://jira.atlassian.com/browse/BCLOUD-19548 [Accessed: 02-Feb-2023].

ii Bug Report with Empty Priority Value: Jira Work Management Cloud:
JWMCLOUD-105, JIRA Bug Tracking System. [Online]. Available:
https://jira.atlassian.com/browse/JWMCLOUD-105. [Accessed: 03-Feb-
2023].

iii Priority of Bug Report is Left Empty But Later on Priority is Assigned:
Server Deployments and Scale: SCALE-20, JIRA Bug Tracking System. [Online].
Available: https://jira.atlassian.com/browse/SCALE-20 [Accessed: 03-Feb-
2023].

iv Priority is Assigned to Bug Report Once: Sourcetree for Windows:
SRCTREEWIN-13863, JIRA Bug Tracking System. [Online]. Available:
https://jira.atlassian.com/browse/SRCTREEWIN-13863 [Accessed: 03-Feb-
2023].

v Priority of Bug Report is Changed: Sourcetree for Windows: SRCTREEWIN-
66547, JIRA Bug Tracking System. [Online]. Available:
https://jira.atlassian.com/browse/CONFSERVER-66547 [Accessed: 03-Feb-
2023].

vi Bug Report is Deprioritized: Jira Service Management Cloud: JSDCLOUD-
8330, JIRA Bug Tracking System. [Online]. Available:
https://jira.atlassian.com/browse/JSDCLOUD-8330 [Accessed: 03-Feb-
2023].

vii Following Bug Reports are accessible through JIRA Bug Tracking
System. Browser using https://jira.atlassian.com/browse/ [BCLOUD-19548;
CONFCLOUD-73781; CONFSERVER-66547: JRACLOUD-77460: BAM-21778;
JRASERVER-73435; CONFSERVER-79118; SRCTREEWIN-13863; OPSGENIE-396] -
[Accessed: 03-Feb-2023].

viii Following Bug Reports are accessible through Bugzilla Bug Tracking
System. Browser using https://bugs.eclipse.org/bugs/ [Bug 121995; Bug
178923, Bug 532097, Bug 121995, Bug 575890, Bug 551483] - [Accessed: 03-
Feb-2023].

Atlassian Support. [Online]. Available:
https://support.atlassian.com/jira-service-management-
cloud/docs/what-are-priority-levels-in-jira-service-management/.
[Accessed: 03-Feb-2023].

[43] (2023) Apache Software Foundation, Bug Priority Guidelines, and
Release Schedule for Apache NetBeans - [Online]. Available:
https://cwiki.apache.org/confluence/display/NETBEANS/Release+Sch
edule. [Accessed: 21-Feb-2023].

[44] (2023) The Atlassian website, Application Lifecycle Development and
Collaboration Tools for Software, IT, and Business Teams. [Online].
Available: https://www.atlassian.com/. [Accessed: 01-Feb-2023].

https://doi.org/10.31436/ijpcc.v9i1.285
https://jira.atlassian.com/browse/BCLOUD-19548
file:///G:/My%20Drive/Proposal/Research%20Papers/Paper%20on%20Quality%20Model/Copyright%20Paper/Jira%20Work%20Management%20Cloud
https://jira.atlassian.com/browse/JWMCLOUD-105
https://jira.atlassian.com/browse/JWMCLOUD-105
file:///G:/My%20Drive/Proposal/Research%20Papers/Paper%20on%20Quality%20Model/Copyright%20Paper/Server%20Deployments%20and%20Scale
https://jira.atlassian.com/browse/SCALE-20
https://jira.atlassian.com/browse/SRCTREEWIN
https://jira.atlassian.com/browse/SRCTREEWIN-13863
https://jira.atlassian.com/browse/SRCTREEWIN-13863
file:///G:/My%20Drive/Proposal/Research%20Papers/Paper%20on%20Quality%20Model/Copyright%20Paper/Sourcetree%20for%20Windows
file:///G:/My%20Drive/Proposal/Research%20Papers/Paper%20on%20Quality%20Model/Copyright%20Paper/SRCTREEWIN-
file:///G:/My%20Drive/Proposal/Research%20Papers/Paper%20on%20Quality%20Model/Copyright%20Paper/SRCTREEWIN-
https://jira.atlassian.com/browse/CONFSERVER-66547
https://jira.atlassian.com/browse/JSDCLOUD
https://jira.atlassian.com/browse/JSDCLOUD-8330
https://jira.atlassian.com/browse/JSDCLOUD-8330
https://jira.atlassian.com/browse/CONFSERVER-66547
https://jira.atlassian.com/browse/CONFSERVER-66547
https://jira.atlassian.com/browse/CONFSERVER-66547
https://jira.atlassian.com/browse/CONFCLOUD-73781
https://jira.atlassian.com/browse/JRACLOUD-77460
https://jira.atlassian.com/browse/BAM-21778
https://jira.atlassian.com/browse/JRASERVER-73435
https://jira.atlassian.com/browse/CONFSERVER-79118
https://jira.atlassian.com/browse/SRCTREEWIN-13863
https://bugs.eclipse.org/bugs/

