
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.397

8

New demand on assembly language proficiency in
performing binary reverse engineering tasks

Khairol Amin bin Mohd Salleh
HeiTech Padu Berhad, Application Security Department, 47600, Subang Jaya, Malaysia

*Corresponding author: khairolms@heitech.com.my

(Received: 31st March 2023; Accepted: 20th May 2023; Published on-line: 28th July 2023)

Abstract— Cybersecurity encompasses a wide field of disciplines and as cyber threat landscape changes,
there is a need for tools, techniques and skills to provide safe and secure internet environment. The cyber
space industry introduced new roles for reverse engineers, malware analysts, digital forensic experts,
exploit engineers, etc which demand the new skill set, and in this context, the proficiency in assembly
language programming is highly essential. This paper presents an observation on the training programme
for software developers from a software integration company to attain the skills of reverse engineers,
application penetration testers as well as application security analysts. In preparing for the new generation
of reverse engineers and other new roles that are related to cybersecurity, it would be a good step if
assembly language could be taught as a separate programming subject, and it would be highly
recommended for higher education institutions to collaborate with the industry to undertake co-teaching
in supporting the new roles within the realm of cybersecurity. It has been well observed that being
endowed with a working knowledge of developing application from scratch using assembly language
would offer a foundation to be a good binary reverse engineer.

Keywords— Reverse Engineering, Assembly Language, Debugger, Static Analysis, Dynamic Analysis.

I. INTRODUCTION

In the modern connected cyber world, cybersecurity is
one of the important fields in providing safe and secure
internet environment as malware and malicious code are
still on a widespread. The cyber space industry introduced
new roles for reverse engineers, malware analysts, digital
forensic experts, exploit engineers, etc which demand the
new skill set, and in this context, an insight on assembly
language proficiency in performing binary reverse
engineering tasks would be unravelled.

II. LITERATURE REVIEW

There are cybersecurity training houses such as SANS,
Kaspersky, Mandiant, Koenig, to name a few, that offer
certification programmes in reverse engineering especially
in analysing malware. These intensive professional
programmes are usually for experienced participants and
they include teaching the theoretical aspects of the
assembly language, without the inclusion of practical
programming sessions.

A typical malware analyst would require at least four to
five years of working experience in programming x86
assembly language. However, developers with four years
of experience in assembly language programming,
especially in x86/x64 architecture, may not be easy to come

by, as most of the modern-day applications are developed
using high level languages, such as Java, PhP, .NET, Python
and the like. To a reverse engineer who needs the skill to
dissect a binary file for vulnerability detection, the
exposure and experience in developing an application
using assembly language is highly required.

In another scenario, assembly language programming is
not offered as a single or separate subject under the
constantly evolving nature of curriculums in computer
science departments worldwide [9], and it often means
that less time is spent on this low-level programming
language [5]. Assembly or machine language programming
is treated as a topic within the computer architecture and
organization subject, which entails 25 percent of the said
subject[2].
 The myths that assembly language is dinosaur language
is not true. TIOBE [12] index reported that assembly
language was ranked number 9 out of 100 languages, in the
TIOBE top 10 popular language index as depicted in Table 1.
There is an increase in the usage of assembly language for
the year 2023. Assembly language is still the best language
to perform binary reverse engineering on malware analysis
[6].

Kaspersky mentioned that reverse engineering is the
most highly demanded skill among the information security

https://doi.org/10.31436/ijpcc.v9i1.285
mailto:khairolms@heitech.com.my

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.397

9

specialists [8]. Assembly language skill is the vital skill to
perform binary reverse engineering executable file [6].

TABLE 1
TIOBE TOP 10 PROGRAMMING LANGUAGES

Programming
Language

2023 2018 2013 2008 2003 1998

Python 1 4 8 7 13 25

C 2 2 1 2 2 1

Java 3 1 2 1 1 17

C++ 4 3 4 4 3 2

C# 5 5 5 8 9 -

Visual Basic 6 15 - - - -

JavaScript 7 7 11 9 8 21

SQL 8 251 - - 7 -

Assembly
language

9 13 - - - -

PHP 10 8 6 5 6 -

Objective-C 18 18 3 45 52 -

III. METHOD

Envisaging the increasing demand for binary reverse
engineers and that assembly language is vital for this
profession, the Assembly Language for Reverse Engineers
programme has been introduced with a comprehensive
structure of programming and reversing lessons for a
duration of four days, as depicted in Table 2. This has been
crafted for five batches of Senior and Junior Software
Developers, from the Product Development Department in
HeiTech Padu Berhad, and in this respect, they are the
participants of this programme.

Introduction to x86 assembly language was the kick-
start for the participants on the first day and thereupon
they journeyed into their practical programming session on
Win32 assembly language on the second day. Static
analysis was introduced on the third day, and on the last
day, the participants focussed on dynamic analysis for
which they worked on real binary files that have been
downloaded from crackmes.one website.

The learning experience for the participants of the
Assembly Language for Reverse Engineers Programme was
in a lab-based environment with software tools and
training kit that entailed the programme content for every
participant. Participatory observation in the capacity of a
programme facilitator took place throughout the training
programme.

A. Tools and Software

 The easiest approach to teaching assembly language
was by using less complicated operating system such as

Microsoft DOS (Disk Operating System). We used vDOS
(Virtual DOS) that has been created by JHM Schaars [10] to
execute Debug.com (written by Paul Vojta [13]) and
Netwide Assembler [11].

TABLE 2
THE PROGRAMME STRUCTURE

Participants have been taken through to understand the

intel x86 16-bit instruction set to develop a simple
application program, and by using the debug.com program
they performed native debugging of binary .com files.
Participants were then exposed to the basic DOS operating
system call, to understand how an application could make
use of the operating system services to perform a specific
task, such as displaying data using standard output.

After familiarizing with x86 16-bit assembly language
programming in vDOS, participants were exposed to the
use of the 32/64bit Netwide Assembler (NASM) in Windows
environment. Basic Windows system call has been taught
unto the participants to provide the same functionalities
that are used in DOS system call, on standard input output
function.
 During static analysis, IDA Free 7.7 [4] program was used
to perform the binary code analysis. CFF Explorer [7] was
used to dissect and patch Windows Portable Executable
files. WinDBG Preview [14] program was used to perform
dynamic analysis of windows binary files. The actual
patching and by-passing of binary files was done using
xdbg64 software.

Day Topic

Day 1 Introduction to x86 Assembly Language
x86 Architecture
 DOS internal and services (INT 21)
using DEBUG command in virtual DOS (vDOS)
x86 command instructions
 data transfer, arithmetic & logic instructions
 flags, program control & subroutines
using Netwide Assembler (NASM 16bit) in vDOS

Day 2 Programming in Win32 Assembly Language
IA-32 architecture & assembly language
Programming using NASM in Windows
Windows System Call - Win32 API
Porting 16bit to 32bit Assembly program

Day 3 Static and Dynamic Analysis
Dissecting Portable Executable (PE) CFF Explorer
Static Analysis using IDA-Pro (Freeware)
Dynamic Analysis -Dissecting Portable Executable
(PE) file using WinDbg Preview

Day 4 Reversing, by-passing and patching binary files.
C and C++ structure – Heap, Stack, Calling
convention
Reversing, by-passing and patching using x64dbg

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.397

10

B. Programme Content

In addressing this new demand on assembly language
proficiency in performing binary reverse engineering tasks,
the programme content has been designed for the
workplace learners to:

•understand the x86 and IA-32/Win32 Architecture and
assembly language.

•understand the structure of executable file in Windows
(PE – Portable Executable).

•learn about the tools that are used in dissecting binary
file.

•understand the techniques of debugging, patching and
by-passing machine code.

•be able to understand the application logic from the
binary file analysis.

Participants of this four-day programme are required to
have the pre-requisite knowledge on any programming
language, and in this situation, understanding variables,
data types, loops, if-else conditions, simple mathematical
operations and string manipulations would enable them to
close the learning curve in respect of programming
competency in assembly language.

Essentially, this programme provides a focus on teaching
16-bit and 32-bit programming to reduce the complexity of
having to deal with 64-bit numbers. Understanding 16-bit
number is much easier to learn and visualize. It is quite easy
to understand 32-bit programming after learning from the
16-bit experience, and the existing 16-bit instruction can be
used in 32-bit programming. Saving the registers into the
stack using the POP instruction is quite simple in 16-bit and
32-bit, as compared to the 64-bit programming.

C. Observational Analysis

The programme has been conducted for five times
within a duration of two years. At the end of every
programme, questionnaires were issued as a feedback
mechanism from the participants. In addition, an evaluation
process has been undertaken on the last two days of each
programme, for which individual assignment has been
given to gauge their level of understanding in respect of
the lessons that they have journeyed through in this
programme. Observation on the Assembly Language for
Reverse Engineers Programme could well be elucidated in
the following manner:

1. Day 1 – Introduction to x86 assembly language

At the onset, participants have been introduced to the
basic x86 architecture, with the inclusion of the 16-bit
general purpose registers such as ax, bx, cx and dx, special
purpose registers, like ip, bp, sp, si, di and segment
registers, like ds, ss, cs and es. Before using the debug.com,

participants were given a recapitulation briefing on
hexadecimal, binary number, and ASCII (American Standard
Coding version II).

Participants were guided on the use of the basic system
call that has been provided by DOS operating system via
interrupt 21 (INT 21h). The basic call included the display of
the OS version, print string and print a single character.

Participants undertook to write a simple program using
debug.com to display single character and string and save
file to .COM extension without using any compiler, as
illustrated in Fig. 1.

Fig. 1 Running debug.com on vDOS

The x86 instructions have been divided into two parts.
The first part encompassed data transfer instructions
especially the MOV (move) command and the type of
memory addressing, followed by simple arithmetic
instructions such as addition, subtraction, multiplication
and division. Bit wise logic instructions like OR, AND, NOT
and XOR (Exclusive OR) have been addressed in this part.

The second part of the x86 included the usage of x86
flag registers and how each flag register changes; the
different types of jump instructions, as well as the calling
and writing subroutines.

At the end of Day 1, participants have gained an
appreciation of the basic structure in the assembly
language program. The basic NASM (Netwide Assembler)
compiler which includes labelling, assembler directives, as
well as declaration of memory section with its data, code
and stack segment have been addressed as part and parcel
of the lesson. Finally, participants were given the
experience in writing their first assembly program using
selected Windows editor with the use of Notepad or
Notepad++ and NASM compiler.

In respect of the Day 1 encapsulation, the exposure to
x86 16-bit architecture which includes basic x86
instructions, enabled the participants to create a program
named disphex.asm to display hexadecimal number as an
ASCII character. The disphex.asm program uses string and

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.397

11

bit manipulation with the aid of DOS system call to display
the printable hexadecimal number.

2. Day 2 - Programming in Win32 Assembly Language

Win32 architecture which includes the 32-bit register and
the technique of using Windows system service via stdcall
(standard call) have been presented as the highlight on Day
2. A sample program to display “Hello world” string was
used to introduce Win32 program structure and method of
compiling ‘console’ program in Windows. In ensuring that
participants have been endowed with an understanding of
the 32-bit programming knowledge, the 16-bit disphex.asm
that was written for vDOS environment was ported to the
Windows environment.

The objective of Day 2 was to provide an understanding
of the 32-bit architecture with the expansion of registers
from 16-bit to 32-bit length, together with the technique of
using Windows System call using stdcall and the required
registers, in comparison with using DOS system call via INT
21h and 32-bit memory addressing. Participants have been
able to observe the changes involved in porting 16-bit DOS
program to 32-bit Windows program.

3. Day 3 - Static Analysis

Participants were taken through static analysis on Day 3,
for which they were given an understanding on how
Address Space Layout Randomization (ASLR) could be used
to protect hackers from hacking the fix loading address of
an executable program. In order to perform reverse
engineering on an executable file, having a fix loading
address is important for the debugging and patching
process. Participants have been taught on how the
Portable Execute (PE) file was organized. CFF Explorer was
used to change the PE file characteristics to load on a fixed
address.

Using the executable files that have been written in Day
2, IDA-Free was used to perform static analysis on the files.
Participants have been able to observe and identify the
fixed static data area and the subroutines.

At the end of Day 3, dynamic analysis was also
introduced by using WinDbg Preview software. Some of
the commands in WinDbg Preview are similar as in
debug.com in vDOS. WinDbg Preview was used to change
the static data that have been found in Day 2 PE files to
illustrate dynamic patching (as in Fig. 2). The patching
involved changing the register value and the static data
value.

Fig. 2 Changing Data Content in a Binary File Using WinDbg Preview

In encapsulating the Day 3 programming experience,

participants have gained an understanding on the basics of
reverse engineering through static and dynamic analysis.
The use of Day 2 executable file could ease the patching
exercises since the program was written by the participants
themselves. The knowledge of using debug.com in Day1,
could ease the participants in using WinDbg Preview.

4. Day 4 – Dynamic Analysis - Reversing, By-passing, and
Patching Binary Files.

The approach for Day 4 was by way of sharing tips on
performing reverse engineering. Participants have been
given some of the useful techniques on where to look for
password and expiry date checking, static data, stack
framework, observing Windows API, dynamic allocation of
virtual memory and the like. These tips and techniques
have been useful to assist the participants to spark the
momentum for reverse engineering process.

 Fig. 3 Changing Data Content in a Binary File Using WinDbg
Preview

The x64dbg [15] software has been used to perform
patching binary file and by-passing certain checking, i.e.,
password (as in Fig. 3). The participants performed reverse
engineering on selected binary files from crackmes.one.

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.397

12

Crackmes.one is a site that contains crackmes, which is a
small program designed to test a programmer's reverse
engineering skills [3]. This was created by Stanislas [1].
Participants were exposed on the technique of patching
registers and instruction sets (as in Fig. 4). They were able
to perform the by-passing of the password checking
routine, as well as to identify simple encryption algorithm
and discover hardcoded password.

At the point of performing the reversing process, the
participants have only been given some clues for them to
experience themselves. Most course providers supply step-
by-step guide for the lab exercises except in the “catch the
flag (CTF)” exercise. The real hands-on experience in this
programme was a trigger for them to apply all the
knowledge gained from day one to day four. At the end of
Day 4, it is interesting to note that 85% of the participants
completed the assignments without much assistance.

In encapsulating the Day 4 session, participants have
been able to perform dynamic analysis using x64dbg
program and to apply the tips and techniques that have
been learned from the practical sessions. Participants have
been given the live patching and by-passing experience on
dissecting the selected crackmes. Day 4 marked the end of
the binary reverse engineering programme with the
tenacity of providing the exposure and experience to
software developers as workplace learners in encountering
the real-world situation.

Fig. 4 Patching instruction using x64dbg

IV. PROGRAMME FEEDBACK
Most of the participants who have not had previous

exposure to assembly language have modestly rated
themselves as having poor skills before attending this
programme. They account for 92%, as illustrated in Fig. 5.
After the completion of the programme, it is worthy to
note that 33% rated themselves as Very Good; 42% rated
themselves as Good, whilst 25% rated themselves as
Medium.

The overall evaluation was well received as the
programme has improved their assembly language skills at
the end of the four-day practical sessions.

Fig 5 Skills before and after attending the programme

The participants indicated that they were pleased with
the programme structure. In Fig. 6 there is indication that
50% of the participants who are the workplace learners
rated it as good whilst the remaining 50% rated it as very
good. This denotes that all the participants have been
satisfied with the programme structure which entailed a
blend of theory and practical aspects of binary reverse
engineering using assembly language.

Fig. 6 Programme structure and overall evaluation

Rating for the overall program was overwhelming as 67%

rated the course as very good and 33% rated as good. An
interesting observation to note is the indication by the
participants who have highlighted on the value of the
plentiful hands-on exercises relating to patching and by-
passing actual binary files, and they have also
recommended for this programme to be conducted as a
five-day programme with more lab exercises.

V. FINDINGS

1. Teaching assembly language can be effective by
lessening the complexity of having to use a complicated
operating system such as Windows or Linux. With the aid
of virtual DOS, programming in assembly language and
learning the operating system internals become simple.
Visualizing 8-bit and 16-bit data is much easier for the
participants in understanding the data movement and
memory address especially in respect of the little-endian
byte ordering. 16-bit processor is an easy path to learn

https://doi.org/10.31436/ijpcc.v9i1.285

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 9, Issue 2 (2023)
https://doi.org/10.31436/ijpcc.v9i2.397

13

assembly language before engaging into 32-bit and 64-bit
processor with the complex Windows operating system.

2. The art of reverse engineering is basically connected
with the technique of debugging binary files. Introduction
to debugging technique at the early stage could contribute
to a better understanding on the working of assembly
language. Doing programming using Debug.com in 16-bit
vDOS should be able to speed-up the reversing skill and
ease the ability to perform reverse engineering in Windows
using WinDbg Preview software which represents the new
Debug.com that runs on Windows.

3. Prior to dealing with complex malware analysis, basic
knowledge of by-passing and patching would equip the
participants with real reverse engineering on selected
binary files. It would be pertinent for Software Engineers to
be well exposed to the different techniques of by-passing
and patching instruction on simple executable PE files in
order to grasp a better understanding of PE files that are
written in C and C++.

4. Professional courses on reverse engineering (SANS,
Mandrake) lay emphasis on assembly language,
theoretically within a brief duration. It will only be an
advantage to an experienced and seasoned assembly
language programmer to get the benefits of the binary
reverse engineering course. In this regard, we strongly
believe that some exposure in writing assembly language
from scratch would be invaluable before embarking on a
reverse engineering professional course, especially in
performing reverse engineering on malware.

5. It is recommended for a participant to have
knowledge of at least one high level programming
language before embarking on assembly language
programming, in order to understand a typical program
flow.

6. In preparing for the new generation of reverse
engineers and other new roles like malware analysts, digital
forensic experts and others that are related to
cybersecurity, it would be a good step if assembly language
could be taught as a separate programming subject.

7. It would be highly recommended for higher education
institutions to collaborate with the industry to undertake
co-teaching in supporting the new roles within the realm of
cybersecurity.

VI. PERSPECTIVE AND CONCLUSION

Adjudged from the Assembly Language for Reverse
Engineers programme that has been crafted for five
batches of software developers from the Product
Development Department in HeiTech Padu Berhad, it has
been well observed that being endowed with a working
knowledge of developing application from scratch using
assembly language would offer a foundation to be a good

binary reverse engineer. This paper has unleashed some
pointers in respect of x86 assembly language, practical
programming session on Win32 assembly language, Static
Analysis and Dynamic Analysis to ease the process of
debugging, fixing, patching and by-passing executable files
as a plausible programme structure to address the new
demand for assembly language proficiency in performing
binary reverse engineering tasks.

VI. ACKNOWLEDGEMENT

The authors hereby acknowledge the review support
offered by the IJPCC reviewers who took their time to
study the manuscript and find it acceptable for publishing

VII. CONFLICT OF INTEREST

The authors declare that there is no conflict of Interest.

REFERENCES

[1] Arnoud, Stanislas. “Creakmes.” Twitter, Twitter,
https://twitter.com/sar5430/.

[2] Computing Curricula 2020.
https://www.acm.org/binaries/content/assets/education/curricula-
recommendations/cc2020.pdf

[3] “Crackme.” Wikipedia, Wikimedia Foundation, 6 Sept. 2022,
https://en.wikipedia.org/wiki/Crackme.

[4] IDA Free, https://hex-rays.com/ida-free/.
[5] Jalal Kawash, Andrew Kuipers, Leonard Manzara, and Robert Collier.

2016. Undergraduate Assembly Language Instruction Sweetened
with the Raspberry Pi. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE '16).
Association for Computing Machinery, New York, NY, USA, 498–503.
https://doi.org/10.1145/2839509.2844552

[6] Mohd Shaid, S Z. “Introduction to Malware Reverse Engineering”.
Issues in Computer Security & Networking, Part 1. pp. 105-127. ISBN
978-983-52-0905-5. Penerbit UTM Press

[7] Pistelli, Daniel. “CFF Explorer.” GitHub, 18 Apr. 2016,
https://github.com/cybertechniques/site/blob/master/analysis_tools
/cff-explorer/index.md.

[8] Roberge, Alexandre. “Neutralize Malware with Reverse
Engineering.” Thot Cursus, Thot Cursus, 1 Feb. 2023,
https://cursus.edu/en/26547/neutralize-malware-with-reverse-
engineering.

[9] Sanati-Mehrizy, Reza, and Afsaneh Minaie. “A New Role of
Assembly Language in Computer Engineering/Science Curriculum.”
2003 Annual Conference Proceedings, https://doi.org/10.18260/1-2--
11839.

[10] Schaars, JHM. “VDOS .” VDos, https://www.vdos.info/index.html.
[11] Tatham, Simon, and Julian Hall. “NASM - Netwide Assembler.”

NASM, https://www.nasm.us/.
[12] Tiobe Index.” TIOBE, 23 May 2023, https://www.tiobe.com/tiobe-

index/.
[13] Vojta, Paul. “Debug 1.29: for Freedos.” Index of /Pub/Micro/PC-

Stuff/Freedos/Files/DOS/Debug/1.29,
http://www.ibiblio.org/pub/micro/pc-
stuff/freedos/files/dos/debug/1.29/.

[14] “WinDbg Preview.” Microsoft Apps, Microsoft Corporation,
https://apps.microsoft.com/store/detail/windbg-
preview/9PGJGD53TN86?hl=en-my&gl=my&rtc=1.

[15] “X64DBG.” x64dbg, https://x64dbg.com/.

https://doi.org/10.31436/ijpcc.v9i1.285
https://x64dbg.com/

