
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 25

Structurally and Arithmetically Controlled
Grammars

S. Ashaari1, S. Turaev1, A. Okhunov2

1Department of Computer Science, Kulliyyah of Information and Communication
2Department of Science in Engineering, Kulliyyah of Engineering

International Islamic University Malaysia, Kuala Lumpur, Malaysia

Abstract— Over the quarter century, it is gratifying to note that the significance of regulated or controlled
grammars (i.e. grammars with regulated rewriting) has been recognized by many parties where it has been
used widely in a great variety of scientific disciplines ranging from Linguistics through DNA Computing up
to the Informatics and recently come to Big Data Analytics. Therefore, literally we can find hundreds of
studies of well-known of various types of controlled grammars and their investigation have amount to a
thrilling trend within formal language theory. Given the extensive literature on issues related to controlled
grammars, this research focused on arithmetically controlled grammars and tree controlled grammars,
which are practically important. Thereby, in this paper, we briefly recapitulate the background of formal
language theory and highlight the key results of multiset grammars, valence grammars and tree controlled
grammars. In this paper, a new controlled grammar that can be generated using both control mechanisms
together is proposed for future research.

Keywords— Multisets, Valences, Weights, Trees, Controlled Grammars.

I. INTRODUCTION

The study of formal language theory which started in the
middle of the 20th century and primarily originated from
mathematics [1] where later on has emerged in disciplines
of linguistics, computer science and biology has been
widely recognized as the stem of theoretical computer
science in the sense that all human problems can be
considered as symbol manipulation, and as structures
formulated by symbols. It was born in three phases: In 1956,
Chomsky [2] claimed a new way of looking at natural
languages syntax by proposing a generative device
hierarchy. Subsequently, Ginsburg and Rice [3]
demonstrated that the hierarchy of Chomsky is applicable
not only for natural languages but it is also able to cope
with the problems of semantic and syntactic of
programming languages too in 1961. Because of that, the
theory of formal grammars and languages has become
nearly identical to the programming languages theory.
Later, Salomaa [4] presented a chapter of theoretical
computer science that contains a complete and accurate
mathematical clarification of the theory in 1973. Since then,
the theory of formal language has been an active and
growing research area with broad applications in fields
such as pattern recognition, cryptography, compiler,
computer networks, artificial life, molecular computing,
image enhancement or compression and many more until
today [5, 6].

In principle, the theory of formal language consists of
two basic approaches, which are grammatical and
automata approach. Grammatical approach, which is better
known as grammars, are language generation models that
define their language strings so their process of rewriting
will generate them starting from a special start symbol. On
the other hand, automata approach, the language
recognition models define their language strings by a
process of recognition that starts from the initial state and
ends in a final state [5]. In this paper, we focus on the
grammar formalism.

A grammar is naturally a set of rules (or productions)
used to construct a language over a certain alphabet Σ	,
where different language types can be developed
depending on the way of rewriting rules. It also contains
the other three principal constructs, which are sets of
nonterminals, terminals and productions. A nonterminal is
written in upper case (eg : S, A) and it represents the
grammar’s state, and indicate which productions can be
used afterwards. A terminal is written in lower case (eg: a,
b) that delineates a value generated by the grammar in the
final string and a production in form of 𝐴 → 𝑤	 is a
combination series of terminals and nonterminals where
the left hand side must have at least one nonterminal
symbol and it works in such a value from left hand side is
turning into the right hand side value. In addition, in term
of derivation to generate a string of a language, it will start
with a string that consists of a single start symbol S where

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 26

then any rule can be applied in any order to replace the
nonterminal symbol in right hand side as long as it is a
substring of the designated left hand side. Then, it is said to
be a complete derivation, when there exists only terminal
symbols in the current string. The set of all generated
strings will defined the language type. In fact, any certain
sequence of rules on the start symbol will produce a
distinct string in the language and a grammar is called
ambiguous if it can generate the same single string in
multiple ways [6-8].

Indeed, a containment hierarchy of grammars classes
that well known and received most attention in formal
models field is referred as Chomsky hierarchy. In Chomsky
hierarchy, grammars are categorized into four main classes
such as regular which decided by finite automaton,
context-free which recognized by pushdown automaton,
context-sensitive which acknowledged by linear bounded
automaton and recursively enumerable (aka unrestricted)
which accepted by Turing machine according to the order
of increasing complexity where a language of higher order
contains a subset of all languages of lower complexity. In
other words, there exist context-free languages which are
not regular, context-sensitive languages which are not
context-free and as well as unrestricted languages which
are not context-sensitive [7, 8].

Fig. 1: Set Inclusion of Grammars Described by Chomsky Hierarchy

Then, in the Chomsky hierarchy, the context-free

grammars which in the first place used to study human
languages are the most flourishing and favouring class of
grammars in the evolution of language models due to their
beauty in term of simplicity and intuitively captivating
formalism. They are a natural formalism that deputizes the
constituency language behaviour where a constituent is
clarified as a group of sequential of strings operating as a
unit. Informally, a context-free grammar is a set of rules
that grant one to substitute a variable by a string of
terminals and variables where each string in the language
own a derivation tree with leftmost derivation. In fact they

have a broad applicability and the same time they have a
great mathematical appeal [6, 9].

However, it is well known that the world is not “context-
free” where there are many circumstances that caused the
appearing of non-context-free languages which have the
basic features like reduplication (e.g.: 	{𝑤𝑤|𝑤 ∈ 𝑇∗}) ,
multiple agreement (e.g: {𝑎/𝑏/𝑐/𝑑/|𝑛 ≥ 1}) and crossed
agreements (e.g: {𝑎/𝑏6𝑐/𝑑6|𝑛,𝑚 ≥ 1}) [10]. This
situation has called for more powerful grammars with
similar properties of context-free grammars known as
grammars with regulated rewriting.

The first type of grammars with regulated rewriting,
called matrix grammars, (i.e. controlled grammars or
regulated grammars) was introduced by Abraham in 1965
[11]. These grammars use the same rules of grammars as in
Chomsky hierarchy but have accompanied by certain
additional mechanisms so that the application of rules can
be restricted in order to avoid particular derivations. Since
then, a lot of variants of grammars with regulated rewriting
have been investigated and studied in formal language field
where mostly are based on context-free grammar with the
aim to increase their computational power so that they can
cover more aspect of real application problems.

Despite their diversity, all of the introduced regulated
grammars can be classified into several types depending on
their common characteristics like (1) control by prescribed
sequences such as matrix grammars [12-17], regularly
controlled grammars [18], vector grammars [19], different
variants of Petri net controlled grammars [20-26] and
Parikh vector controlled grammars [27], (2) control by
context conditions such as conditional grammars and
ordered grammars [28], random context grammars [29],
tree controlled grammars [30-37], semi-conditional
grammars [38] and string-regulated graph grammars [39],
(3) control by computed sequences such as programmed
grammars [40] and valence grammars [41-47], (4) control
by memory such as indexed grammars [48], (5) control by
partial parallelism such as scattered context grammars [49],
Russian parallel grammars [50], Indian parallel grammars
[51] and global indexed grammars [52] and many other
regulated grammars [5, 53]. Among all established
controlled grammars, we interested on reviewing the
multiset grammars, valence grammars and tree controlled
grammars since they are simple but powerful grammars.

The rest of section in this paper is structured as
following: In Section 2, we recall some well-known basic
notations, terminologies and concept related to formal
languages theory, multiset, tree and so on which will be
used throughout this paper. In Sections 3, 4 and 5, we recall
the original definition of multiset grammars, valence
grammars and tree controlled grammars with their well-
established computational power and closure properties as
well as the relevant overview of research done in previous
until current one which related to them. In Section 6, we

Regular

Context-Free

Context-Sensitive

Unrestricted

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 27

give a brief summarization of all materials discussed before
and present some suggestions for future work.

II. PRELIMINARIES

In this section, we shortly recall the necessary basic
notations, notions and definitions related to formal
languages theory, multiset, and a derivation tree which will
be used in the following section. For more detailed
information, the reader is referred to [6-9, 12].

A. General Notation

Throughout the paper, we use the following notations.
In the set theory area, we have the symbols ∈ and ∉ to
represent the set membership and negation of set
membership of an element to a set; ⊆ to signify the
inclusions which is not necessarily proper and ⊂ to mark for
the strict inclusion; |𝐴| to portray the cardinality of a set A
which is the number of elements in the set A and 2< to
depict the power set of a set A; ∅ to denote the empty set
which implies that there is no elements in the set. Then in
the set of numbers field, we have the set of integer, natural,
real and rational number which are denoted by ℤ, ℕ, ℝ	and
ℚ . Next, we have an alphabet which is a finite and
nonempty set of elements known as symbols or letters in
which denoted by Σ and a string (sometimes referred as
word) over the alphabet Σ, which is a finite sequence of
symbols (concatenation of symbols) from 	Σ. Then, the
formed string without symbols is called null or empty string
and it is denoted by	𝜆. The set of all strings (including	𝜆)
over the alphabet, Σ is represented by Σ∗and the set of all
non-erasing strings is denoted by ΣC, i.e., ΣC = Σ∗ − {𝜆}. A
language 𝐿 is a subset of Σ∗ and 𝐿 ⊆ Σ∗ is termed 𝜆 -free
if	𝜆 ∉ 𝐿.

B. Grammars

A phrase structure grammar is a quadruple 	𝐺 =
(𝑁, 𝑇, 𝑆, 𝑃), where 𝑁 is an alphabet of non-terminals, 𝑇 is an
alphabet of terminals, 𝑆 is the start symbol where 𝑆 ∈ 𝑁, 𝑃
is a finite set of production of the form 𝐴 → 𝑤 where 𝐴 ∈
𝑁 ∪ 𝑇 C, 𝑤 ∈ 𝑁 ∪ 𝑇 ∗ and with the condition that 𝐴 must

contains at least one non-terminal symbol. If a production
is in form of 𝐴 → 𝜆 then it is called an erasing rule.

For a grammar 𝐺 = 𝑁, 𝑇, 𝑆, 𝑃 , a direct derivation
relation over	(𝑁 ∪ 𝑇)∗ which denoted by ⇒ and defined as
𝑢 ⇒ 𝑣 provided if and only if there is a rule 𝐴 → 𝑤 ∈ 𝑃 such
that 𝑢 = 𝑥Q𝐴𝑥R and 𝑣 = 𝑥Q𝑤𝑥R for 𝑥Q, 𝑥R ∈ (𝑁 ∪ 𝑇)∗ . Since
⇒ is a relation, then the nth power of ⇒ is ⇒/ for 𝑛 ≥ 0
where ⇒C is known as transitive closure and ⇒∗ as
reflexive-transitive closure.

A derivation that use the sequence of rules 𝑚 =
𝑟U𝑟Q … 𝑟/, 𝑟W ∈ 𝑃, 1 ≤ 𝑖 ≤ 𝑛,	 is denoted by

6
 or

Z[Z\….Ẑ
.

Then, a string 𝑤 ∈ (𝑁 ∪ 𝑇)∗ is a sentential form if	𝑆 ⇒∗ 𝑤.
If	𝑤 ∈ 𝑇∗, then 𝑤 is called a sentence or a terminal string
and 𝑆 ⇒∗ 𝑤 is said to be a successful derivation.

The language generated by 𝐺 denoted by 𝐿 𝐺 is defined
as 𝐿 𝐺 = 𝑤 ∈ 𝑇∗	 	𝑆 ⇒∗ 𝑤}.

Two grammars 𝐺Q and 𝐺R are called to be equivalent if
and only if they generate the same language such
that	𝐿 𝐺Q = 𝐿(𝐺R).

The Chomsky hierarchy classifies all grammars into four
basic categories according to their complexity of
production rules, i.e., a grammar 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) is called

unrestricted or recursively enumerable grammar
(type-0) if its productions are in the form of 𝐴 → 𝑤
where 𝐴 ∈ (𝑁 ∪ 𝑇)C , 𝑤 ∈ (𝑁 ∪ 𝑇)∗ and 𝐴 contains
at least one non-terminal symbol.
context sensitive grammar (type-1) if its
productions are in the form of 𝐴 → 𝑤 where |𝐴| ≤
|𝑤|, 𝐴 ∈ 𝑁 ∪ 𝑇 ∗	𝑁C	(𝑁 ∪ 𝑇)∗ and 𝑤 ∈ (𝑁 ∪ 𝑇)C.
context free grammar (type-2) if its productions are
in the form of 𝐴 → 𝑤 where 𝐴 ∈ 𝑁 and 𝑤 ∈
(𝑁 ∪ 𝑇)∗.
linear grammar if its productions are in the form of
𝐴 → 𝑤 where 𝐴 ∈ 𝑁 and	𝑤 ∈ 𝑇∗ ∪ 𝑇∗𝑁𝑇∗.
regular grammar (type-3) if its productions are in
the form of 𝐴 → 𝑤 where 𝑤 ∈ 𝑇∗ ∪ 𝑇∗𝑁 and 𝐴 ∈ 𝑁.

The families of languages generated by arbitrary,
unrestricted, context sensitive, context free, regular, linear
and finite grammars are denoted by 𝐑𝐄, 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆, 𝐋𝐈𝐍
and 	𝐅𝐈𝐍 , respectively. For these language families,
Chomsky hierarchy holds:

𝐅𝐈𝐍 ⊂ 𝐑𝐄𝐆 ⊂ 𝐋𝐈𝐍 ⊂ 𝐂𝐅 ⊂ 𝐂𝐒 ⊂ 𝐑𝐄.

A parallel rewriting system called an 𝐸𝑇𝑂𝐿 system is

defined as a construct 𝐺 = 𝑁 ∪ 𝑇, 𝑇, 𝑃Q, 𝑃R, … , 𝑃6, 𝑆 where
𝑁, 𝑇, 𝑆 are defined as normal context-free grammars with
𝑃W as a finite subset of 𝑁 ∪ 𝑇 ×(𝑁 ∪ 𝑇)∗ such that for each
𝛼 ∈ 𝑁 ∪ 𝑇, there is at least one pair (𝛼, 𝛽) take place in 𝑃W.
The pairs in 𝑃W are known as productions and written as
𝛼 → 𝛽. Then, for an arbitrary word 𝑤 = 𝑎Q𝑎R … 𝑎/, 𝑎W ∈ 𝑁 ∪
𝑇 with productions 𝑎Q → 𝛽Q, 𝑎R → 𝛽R, … , 𝑎/ → 𝛽/ of the
equal set 𝑃m, we write 𝑎Q𝑎R … 𝑎/ ⇒ 𝛽Q𝛽R …𝛽/ and denote
its reflexive-transitive closure of ⇒ by ⇒∗. The language
generated by this 𝐺 is defined same as phrase structure
grammar such 𝐿(𝐺) = {𝑤 ∈ 𝑇	∗	|		𝑆 ⇒∗ 	𝑤}.

Then, an 𝐸𝑇𝑂𝐿 system that consists of only a single set
of productions is known an 𝐸𝑂𝐿 system. The languages
generated by both systems are noted as 𝐸𝑇𝑂𝐿 languages
and 𝐸𝑂𝐿 languages respectively.

Henceforth, a retrospect of some definition of regulated
grammars that will be used in the following sections will be
defined here and forward.

A matrix grammar is a quadruple 𝐺6 = (𝑁, 𝑇, 𝑆,𝑀)
where 𝑁, 𝑇 and 𝑆 are defined exactly as for a normal
context-free grammar and 𝑀 is a set of matrices,
sequences of context-free rules over 𝑁 ∪ 𝑇. The language
generated by 𝐺6 is defined by

𝐿 𝐺 = 𝑤 ∈ 𝑇∗ 	𝑆
o
𝑤	and	𝜋 ∈ 𝑀∗}.

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 28

An unordered vector grammar is a quadruple 𝐺 =
𝑁, 𝑇, 𝑆,𝑀 where 𝑁, 𝑇, 𝑆 and 𝑀 are defined as for matrix

grammars. Then, the language 𝐿 𝐺 generated by a
derivation such

𝑆 ⇒t\ 𝑤Q ⇒tu 𝑤R ⇒tv … 	⇒/ 𝑤
where 𝑝Q𝑝R …	𝑝/ is a permutation of a string in 𝑀∗.

The families of languages generated by matrix,
unordered vector grammars (with erasing rules) are
denoted by 𝐌𝐀𝐓, 𝐮𝐕	 (𝐌𝐀𝐓}, 𝐮𝐕𝛌), respectively.

C. Derivation Tree

A derivation tree of 𝑆 ⇒∗ 𝑤 is an ordered and directed tree
whose its nodes are assigned with symbols of 𝑁 ∪ 𝑇 ∪ {𝜆}
in a manner like

any nonterminals of 𝑁 are the interior nodes,
the start symbol 𝑆 is the root and
𝐴 → 𝑥Q𝑥R … 𝑥/ is a production of 𝑃 if 𝑥Q, 𝑥R, … , 𝑥/ are
the nodes children of nonterminal 𝐴 which ordered
from left to right.

Then, a derivation tree yield is the string over 𝑁 ∪ 𝑇
constructed by reading the leaves nodes starting from left
to right.

III. MULTISET GRAMMARS

Multiset is defined in [54] as a collection of unordered
objects (known as elements) that are allowed to have
repeated occurrences of identical elements and its number
of times of occurrences is called multiplicity. It is important
to consider the term multiset since there exist
circumstances such there are repeated hydrogen and
oxygen atoms in a sulfuric acid molecule (𝐻R𝑆𝑂�) ,
repeated roots of polynomial equations, repeated
observations in statistical samples and so on where those
repeated elements are needed to be counted in order to
attain their definiteness and adequacy. On account to its
aptness [54, 55], multiset has been used interchangeably
with a variety of term that carrying a synonymy meaning
with it even in different contexts like “heap”, “bag”,
“occurrence set”, “fireset”, “weighted set”, “sample”,
“bunch” and “list”.

The notion of relating multiset rewriting with Chomsky
grammars was initiated by Kudlek, Martin and Paun [56] in
2001 with the name of “multiset grammars” where they
considered the applicability of rules as multiset in
restricting the use of productions of grammars. The
definition of multiset grammar with its computational
powers and closure properties are demonstrated in the
following definition and theorems.

Definition 1 [56] A multiset grammar is a quadruple 𝐺 =

(𝑁, 𝑇, 𝑆, 𝑃) where 𝑁 and 𝑇 are alphabets of nonterminals
and terminals, 𝑆 is the starting multiset and 𝑃 is a finite set
of multiset rewriting rules in form 𝛼 → 𝛽 with 𝛼, 𝛽 are
multisets over 𝑁 ∪ 𝑇 and 𝛼(𝐴) ≥ 1.<∈� For to multisets

𝑥Q, 𝑥R over 𝑁 ∪ 𝑇, we write 𝑥Q ⇒ 𝑥R if there is a multiset
rule 𝑟 ∶ 	𝛼 → 𝛽	 ∈ P	such that 𝛼 ⊑ 𝑥Q and 𝑥R = 	 𝑥Q − 𝛼 + 𝛽.
Then, the language generated by multiset grammar is
defined by 𝐿 𝐺 = 𝑤 ∈ 𝑇⊕	 	𝑆 ⇒∗ 𝑤}.

The families of language generated by multiset

grammars are denoted by 𝑚 𝐗 ,					𝐗 ∈ {𝐑𝐄𝐆, 𝐋𝐈𝐍, 𝐂𝐅, 𝐅𝐈𝐍,
𝐀𝐑𝐁,𝐌𝐎𝐍,𝐌𝐀𝐓(𝐌𝐀𝐓𝛌 - 	with	erasing	rule, 𝐌𝐀𝐓𝐚𝐜	 - with
appearance checking), 𝐋𝐎𝐂} for regular, linear, context-
free, finite, arbitrary, monotone, matrix and local multiset
grammars respectively. The languages family of matrix,
Parikh sets of vectors and semilinear which denoted by
	𝐏𝐬(𝐗) and 𝐒𝐋𝐢𝐧 are also considered.

The following theorem present the entrenched relations
of families of language generated by multiset grammars.

Theorem 1 [56]

𝐦𝐅𝐈𝐍 = 𝐏𝐬𝐅𝐈𝐍. [𝑎]
𝐦𝐑𝐄𝐆 = 𝐦𝐋𝐈𝐍 = 𝐦𝐂𝐅 = 𝐏𝐬𝐑𝐄𝐆 = 𝐏𝐬𝐋𝐈𝐍
= 𝐏𝐬𝐂𝐅 = 𝐒𝐋𝐢𝐧. [𝑏]
𝐦𝐌𝐎𝐍 = 𝐦𝐌𝐀𝐓 = 𝐏𝐬𝐌𝐀𝐓. [𝑐]
𝐦𝐌𝐀𝐓𝐚𝐜 = 𝐏𝐬𝐌𝐀𝐓𝐚𝐜. [𝑑]
𝐦𝐀𝐑𝐁 = 𝐦𝐌𝐀𝐓𝛌 = 𝐏𝐬𝐌𝐀𝐓𝛌. [𝑒]
𝐦𝐌𝐀𝐓𝐚𝐜𝛌 = 𝐏𝐬𝐑𝐄 = 𝐏𝐬𝐌𝐀𝐓𝐚𝐜𝛌 . [𝑓]

From there, we have
𝑎 ⊂ 𝐦𝐋𝐎𝐂 ⊂ 𝑏 ⊂ 𝑐 ⊂ 𝑒 ⊂ [𝑓].
𝑐 ⊂ 𝑑 ⊂ [𝑓].

The closure properties of families of language generated

by multiset grammars are given in the next theorem.

Theorem 2 [57]

The language family of 𝐦𝐑𝐄𝐆 is closed under set
union, set difference, complement, set intersection,
arbitrary homomorphisms, inverse homomorphism,
intersection with regular multiset languages,
multiset addition and arbitrary substitution.
The language family of 𝐦𝐂𝐅 is closed under set
union, set intersection, set difference, complement,
multiset addition, 𝜆-free homomorphisms, arbitrary
homomorphisms, inverse homomorphisms, 𝜆 -free
substitution, arbitrary substitution and intersection
with regular multiset languages.
The language family of 𝐦𝐀𝐑𝐁 is closed under set
union, set interaction, 𝜆 -free homomorphisms,
arbitrary homomorphisms, inverse
homomorphisms, 𝜆 -free substitution, arbitrary
substitution, multiset union, multiset intersection,
multiset difference, multiset addition and
intersection with regular multiset languages.
The language family of 𝐦𝐌𝐎𝐍 is closed under set
union, set intersection, 𝜆 -free homomorphisms,
multiset union, multiset addition, 𝜆 -free
homomorphisms, inverse homomorphisms, 	𝜆-free

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 29

substitution, linear erasing, and intersection with
regular multiset languages. However, it is not closed
under arbitrary homomorphism, arbitrary substitution
and multiset difference.

Since then, a plenty of studies have been on multiset

grammars in various directions with one inclination to
improve its generative power. Therefore, here we continue
to review on articles which found federated to multiset
grammar since its first discovery until the present one.

In the same year where multiset grammar was
discovered, Csuhaj-Varju, Martin and Mitrana [58]
immediately came up with a Chomsky hierarchy
characterization of multiset grammars in term of multiset
automata where their working mode is according to the
addition and subtraction of multiset. In that paper [58],
they defined three types of multiset automata which are
multiset finite automata (MFA), multiset linear bounded
automata (MLBA) and multiset Turing machine (MTM).

A multiset finite automata is like an input bag for placing
a multiset and a detecting head which used for detecting
the existence of a given symbol in that bag. It works as
follows: it starts with a multiset in its bag in the initial state
where then depending on the former state and a symbol
detection in the bag, it will change its current state. A
symbol will be automatically eliminated from the bag if it
has been located. The automaton will stop when the bag is
empty or there are no possible further movement. The
input multiset will only be accepted if the bag is empty at
the final state [58]. Formally, a multiset finite automata is
defined as:

Definition 2 [58] A multiset finite automata is a

construction of an automaton having a structure 𝐶 =
(𝑄, Σ, δ, 𝑞U, 𝐹) where 𝑄 is a finite set of non-empty of states,
Σ is the alphabet of input, 𝑞U is the initial (start) state, 𝐹 is
the final state and δ is the mapping of transition

𝛿 ∶ 𝑄×Σ → 2¥.

A configuration of 𝐶 is a pair (𝑞, 𝜇) where 𝑞 is the current

state and 𝜇 is a multiset. Then, the following relation on all
configuration set is defined as (𝑞, 𝜇) ⇒ (𝑠, 𝜌) iff there
exists 𝑎 ∈ Σ such 𝑠 ∈ 𝛿(𝑞, 𝑎) and 𝜇 − 𝜌 = 𝜇©.

The macroset accepted by 𝐶 is elucidated by 𝑅𝑒𝑐 𝐶 =
	𝜇	 (𝑞U,𝜇) ⇒∗ (𝑞, 𝜆) for some 𝑞 ∈ 𝐹} with ⇒∗ is the

reflexive and transitive closure of the operation.
Then, there exists family of all macrosets accepted by

multiset finite automata which denoted by 𝐌𝐅𝐀
deterministic multiset finite automata which denoted
by 𝐃𝐌𝐅𝐀.
multiset finite automata with detection which denoted
by 𝐌𝐅𝐀𝐃.
deterministic multiset finite automata with detection
which denoted by 𝐃𝐌𝐅𝐀𝐃.

Further, in term of its generative power, some
propositions have been proved such :

Proposition 1 [58]

𝐌𝐅𝐀 = 𝐦𝐑𝐄𝐆 = 𝐦𝐂𝐅 = 𝐏𝐬𝐑𝐄𝐆 = 𝐏𝐬𝐂𝐅 = 𝐒𝐋𝐢𝐧.
𝐃𝐌𝐅𝐀 is incomparable with 𝐋𝐢𝐧 and the finite
macrosets family respectively to the set inclusion.
𝐃𝐌𝐅𝐀 ⊂ 𝐌𝐅𝐀.
𝐌𝐅𝐀 = 𝐌𝐅𝐀𝐃.
𝐃𝐌𝐅𝐀𝐃 consists of all finite macrosets.
𝐋𝐢𝐧 and 𝐃𝐌𝐅𝐀𝐃 are incomparable respectively to
the set inclusion.

Subsequently, a multiset linear bounded automata

working procedure is the same as multiset finite automata
except in changes state process, it will not only changes its
state but it also can add or not a symbol in to the bag
contents. Formally, it can be defined as follows.

Definition 3 [58] A multiset linear bounded automaton

(𝑀𝐿𝐵𝐴) is a 6-tuples construct such 𝐶 = (𝑄, Σ, 𝑈, 𝛿, 𝑞U,𝐹)
where (𝑄, Σ, 𝑞U, 𝐹) are defined as in MFA, 𝑈 is the bag
alphabets with Σ ⊆ U and 𝛿	is the the mapping of transition
from 𝑄×𝑈 into all subsets set of 𝑄×(𝑈 ∪ 𝑒). Then, its
configuration is a also a pair (𝑞, 𝜇) such 𝑞 is the present
state and 𝜇 is the bag content written as (𝑞, 𝜇) ⇒ (𝑠, 𝜌) if
and only if there is 𝑎 ∈ Σ such

𝑠, 𝑏 ∈ 𝛿 𝑞, 𝑎 , 𝑏 ≠ 𝑒, 𝜇 𝑎 ≥ 1, 𝜌 𝑎 = 𝜇 𝑎 − 1,
	𝜌 𝑏 = 𝜇 𝑏 + 1, and 𝜌 𝑐 = 𝜇(𝑐) for all 𝑐 ∈ Σ, 𝑐 ∉
{𝑎, 𝑏} or
𝑠, 𝑒 ∈ 𝛿 𝑞, 𝑎 , 𝜇 𝑎 ≥ 1, 𝜌 𝑎 = 𝜇 𝑎 and 𝜌 𝑐 =
𝜇(𝑐) for all 𝑐 ∈ Σ, 𝑐 ≠ 𝑎.

The macroset accepted by 𝐴 is expounded by 𝑅𝑒𝑐 𝐴 =
	𝜇	 (𝑞U,𝜇) ⇒∗ (𝑞, 𝜆) for some 𝑞 ∈ 𝐹	} with ⇒∗ is the

reflexive and transitive closure of the opreration.
This type of automaton also have provide some

significance propositions and theorem such

Theorem 3 [58] The macrosets class generated by linear

bounded grammars is equal to the macrosets class
generated by monotone grammars.

Proposition 2 [58]

𝐦𝐌𝐎𝐍 equals to macrosets class accepted by
𝑀𝐿𝐵𝐴𝑠.
Deterministic 𝑀𝐿𝐵𝐴𝑠 are strictly less powerful than
𝑀𝐿𝐵𝐴𝑠.
Every macroset in multiset random context
grammars is accepted by a deterministic 𝑀𝐿𝐵𝐴.

Another type of multiset automata is multiset Turing

machine (MTM) which its working mode is defined
precisely like multiset linear bounded automata. However,

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 30

unlike multiset linear bounded automata, it has a bag for
storing an infinite multiset together with a read-write head
which allow a symbol to be picked up from the bag and
added the symbol to the bag content at most one symbol.
Thus, such machine accepted a multiset if its bag has an
infinite number of 𝑊’𝑠 with nothing else and also entered a
final state. By denoting 𝛽 as the multiset 𝛽 𝑊 = ∞ and
other symbol 𝑎 as 𝛽 𝑎 = 0, a multiset turing machine is
defined as in the next definition.

Definition 4 [58] A multiset Turing machine is a 7-tuples

𝑇 = (𝑄, Σ, 𝑈, 𝛿, 𝑞U,𝑊, 𝐹) where (𝑄, Σ, 𝑈, 𝑞U,𝐹) are defined
exactly for 𝑀𝐿𝐵𝐴, 𝑊 is a special symbol occurs in the bag
in infinitely many times and 𝛿 is the mapping of transition
from 𝑄×𝑈 into all subsets set of 𝑄×(𝑈 ∪ 𝑒 {𝑊}). Then,
a configuration of 𝑀𝑇𝑀 is also written exactly for MLBA
but the macroset accepted by 𝑇 is defined by 𝑅𝑒𝑐 𝑇 =
	𝜇	 (𝑞U,𝜇) ⇒∗ (𝑞, 𝛽) for some 𝑞 ∈ 𝐹	} where its generative

powers are demonstrated such

Proposition 3 [58]

The accepting power of 𝑚𝐴𝑅𝐵 is equal to 𝑀𝑇𝑀𝑠.
Deterministic 𝑀𝑇𝑀𝑠 are strictly less powerful than
𝑀𝑇𝑀𝑠.
𝑀𝑇𝑀𝑠 with detection are powerful than 𝑀𝑇𝑀𝑠.
𝑃𝑠𝐴𝑅𝐵 is equal to the macrosets accepted by 𝑀𝑇𝑀𝑠
with detection.

Since then, after a while, the direction of multiset study
are continuing expanded where in 2007, Cavaliere et al.
[59] developed a new grammar model known as random
context multiset grammars which based on relation of
partial order on the objects the grammars contend with
together with the multiset random context checkers and
transducers concept. In that paper [59], they showed how
those grammars can generate set of recursively
enumerable of finite multiset and also can be easily
enhanced to antiport P system. Further, Wang, Yin and Gu
in [60] made use of fuzzy concept to introduce two new
extensions of multiset grammars and automata called
fuzzy multiset grammars and fuzzy multiset finite automata
with discussion of the relationship between fuzzy multiset
regular grammars with fuzzy multiset finite automata in
2013. Besides, they defined some closure properties of
fuzzy multiset finite languages family under certain regular
operations [60]. Shortly thereafter, in 2015, Tiwari, Gautam
and Dubey widened the study done by Wang and his
friends by associating a deterministic fuzzy multiset finite
automaton with a given fuzzy multiset finite automaton
and showing that both automata are equally powerful in
the sense of fuzzy multiset language acceptance in [61].
They as well studied and presented two minimal
realizations of fuzzy multiset language where they proved
that both of them are isomorphic [61].

IV. VALENCE GRAMMARS

Valence grammars which is a combination of a grammar
with a blind multicounter machine have been
acknowledged as one of the favourable controlled
grammars in formal language studies area due to their
naturalness and simplicity besides having a possession in
nice properties concerning closure under operations and
problems of decidability. It was independently introduced
by Gheorghe Paun in [42] in 1980. His notion was to assign
each production with an integer from a given monoid so
called valence and then all valences will be added along the
applied productions. A derivation is said to be valid if and
only if the sum of all valences evaluates to zero or the
product of all valences results in one. The formal definition
of a valence grammar is defined as follows.

Definition 5 [42] An additive (multiplicative) valence

grammar is a 5-tuples 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃, 𝑣) where (𝑁, 𝑇, 𝑆, 𝑃)
are defined as for a context-free grammar and 𝑣 is a
mapping from 𝑃 into ℤ	(ℚ). The language generated by the
additive (multiplicative) grammar 𝐺 consists of all string

𝑤 ∈ 𝑇∗ such that there is a derivation 𝑆
	Z\Zu…Ẑ 		

𝑤 where

𝑣 𝑟m = 0
/

m³Q

	 𝑣 𝑟m = 1
/

m³Q

.

The family of languages generated by additive valence
and multiplicative valence grammar are denoted by
𝒂𝐕𝐀𝐋,𝒎𝐕𝐀𝐋 (𝒂𝐕𝐀𝐋𝝀,𝒎𝐕𝐀𝐋𝝀	 – with erasing rule)
respectively.

Here, the examples to differentiate between additive
valence and multiplicative valence grammar.

Example 1 [53] Let 𝐺 = (𝑆, 𝐴, 𝐵 , 𝑎, 𝑏, 𝑐 , {𝑝Q, 𝑝R, 𝑝·, 𝑝�,	

𝑝¸}, 𝑆, 𝑣} be an additive valence grammar with 𝑝Q ∶ 𝑆 → 𝐴𝐵,	
𝑝R ∶ 𝐴 → 𝑎𝐴𝑏, 𝑝· ∶ 𝐵 → 𝑐𝐵, 𝑝� ∶ 𝐴 → 𝑎𝑏, 𝑝¸ ∶ 𝐵 → 𝑐, and
𝑣 𝑝Q = 𝑣 𝑝� = 𝑣 𝑝¸ = 0, 𝑣 𝑝R = 1, 𝑣 𝑝· = −1.

Thus, the grammar generates the language 	𝐿 𝐺 =
{𝑎/𝑏/𝑐/ ∶ 𝑛 ≥ 1}.

Example 2 [53] Let 𝐺 = (𝑆, 𝐴, 𝐵 , 𝑎, 𝑏, 𝑐 , {𝑝Q, 𝑝R, 𝑝·, 𝑝�,

𝑝¸}, 𝑆, 𝑣} be a multiplicative valence grammar with
𝑝Q ∶ 𝑆 → 𝐴𝐵, 𝑝R ∶ 𝐴 → 𝑎𝐴𝑏, 𝑝· ∶ 𝐵 → 𝑐𝐵, 𝑝� ∶ 𝐴 → 𝑎𝑏,
𝑝¸ ∶ 𝐵 → 𝑐, and 𝑣 𝑝Q = 𝑣 𝑝� = 𝑣 𝑝¸ = 1, 𝑣 𝑝R = 2,
𝑣 𝑝· = Q

R
.

Hence, the grammar also generated the same language
𝐿 𝐺 = {𝑎/𝑏/𝑐/ ∶ 𝑛 ≥ 1}.

The coming theorems convey the existing of well-

established relations of families of languages generated by
valence grammars.

Theorem 4 [53,62]
𝐂𝐅 ⊂ 𝒂𝐕𝐀𝐋 = 𝒂𝐕𝐀𝐋𝝀 and 𝐂𝐅 ⊂ 𝒎𝐕𝐀𝐋 = 𝒎𝐕𝐀𝐋𝝀.

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 31

𝒂𝐕𝐀𝐋, 𝐗 ⊂ 𝒎𝐕𝐀𝐋, 𝐗 = (𝒖𝐕, 𝐗) where
𝐗 ∈ {𝐑𝐄𝐆, 𝐂𝐅, 𝐂𝐅𝛌, 𝐂𝐒}.

The closure properties and decidability problems of

valence grammars are given in the following theorems.

Theorem 5 [53, 62]

The family of language of 𝒂𝐕𝐀𝐋 is closed under union,
intersection by regular sets, arbitrary morphisms, 𝜆-
free morphisms, inverse morphisms, 𝜆 -free gsm-
mappings, gsm-mappings, quotient by regular sets and
quotient by letters but it is not closed under
intersection, complementation, concatenation and
kleene-closure.
The family of language of 𝒎𝐕𝐀𝐋 is closed under union,
concatenation, intersection by regular sets, gsm-
mappings, 𝜆-free gsm-mappings, arbitrary morphisms,
𝜆 -free morphisms, inverse morphisms, quotient by
regular sets and quotient by letters. However, it is not
closed under intersection, complementation and
Kleene-closure.

Theorem 6 [53] The membership, emptiness and

finiteness problems can be decided in both families of
languages of 𝒂𝐕𝐀𝐋 and 𝒎𝐕𝐀𝐋.

In 1997, Fernau and Stiebe [43] continued investigating

the closure properties of languages of valence and
simultaneously they showed that valence grammars over
arbitrary monoids can stimulate equivalent matrix
grammars. They also demonstrated that by constructing
valence grammars over 	(ℚC,×	, 1) , there exist normal
forms for unordered vector grammars. In the meantime,
they have examined the use of valences in parallel systems
[43].

Shortly thereafter, the same authors in [45] extended
the concept of valence grammar by the notion like a valid
derivation value is acceptable to be a part of a given target
set. In that paper, they also have studied the closure
properties of those grammars together with their
generative power with target sets over the groups	ℤm ,
monoids ℕm, and finite monoid. Furthermore, they proved
that grammars with permutations of regular languages as a
controller can characterize the unordered vector languages
and at the same time, demonstrated that valence
grammars with finite monoids as target sets can be
constructed into an equivalent matrix language [45].
Interestingly, in the same year, Stiebe alone in [47] came
out with a notion such by assessing the productions of
grammar with integer vectors, we can generate an
equivalent matrix grammar as well as Parikh languages.
Those grammar is called positive valence grammar.

Then, one year later, Fernau and Stiebe together again
studied the power of use of valence in sequential grammar

and automata in [44] where then they showed a procedure
on how to construct the Chomsky and Greibach normal
form for those grammars. Besides, in that paper, they also
proved that context free valence grammars over
commutative or finite monoids have an equivalent power
as valence grammars over commutative groups or finite
group respectively. Later, after a few years which is in 2008,
Render and Kambites [41] continued the study done by
[45], where they investigate the languages class
recognized by polycyclic and bicyclic valence automata (or
identically regular valence grammar) with rational target as
well as together with the closure properties and rational
subset membership decidability problem of those grammar
where as their main results they showed that such
automata have accepted exactly the languages of context-
free for the case polycyclic monoids of rank two or more
and the languages class which including the languages of
partially blind one counter for the case bicyclic monoids
(polycyclic monoid of rank 1) [41].

The study concerning with the accepting power of
valence automata does not standstill there where in 2013,
Buckheister and his Zetzsche in [46] persisted to study
which monoids valence automata can recognize only the
languages of context-free and also the languages in the
company of semilinear Parikh image, respectively. In those
[46], they demonstrated a characterization of monoids
graph products for valence automata to accept only the
languages of context-free and also for the bicyclic monoids
and integers graph product to yield only the languages
which with semilinear Parikh image. They also proved that
all languages acknowledged by valence automata over
torsion groups will possess a semilinear Parikh image [46].

V. TREE CONTROLLED GRAMMARS

The idea of imposing restrictions upon the derivation
trees of context-free grammars was originated by Culik and
Maurer in [30] where they introduced a new regulated
grammar called tree controlled grammars (for short TC
grammars) in 1977. In this section, we present an
indigenous definition of a tree controlled grammar defined
in [30] together with an example and its well-proven
generative power in [53] [63] [31] as well as along with a
review on a continued studies done which found
concomitant with it.

Definition 6 [30] A tree controlled grammar is a

quintuple 𝐺 = 𝑁, 𝑇, 𝑃, 𝑆, 𝑅 where 𝑁, 𝑇, 𝑃, 𝑆 is defined
exactly as a context-free grammar and 𝑅 ⊆ 𝑁 ∪ 	𝑇 ∗ is a
regular set. It can also be considered as a pair 𝐺º = (𝐺, 𝑅).
Then, the language 𝐿 𝐺 consists of all words 𝑤 generated
by the underlying grammar 𝐺 in such a way that there
exists a derivation tree 𝑡 of 𝑤 with respect to 𝐺, where the
concatenating of words at any level of tree from left to
right excluding the last one are in 𝑅. The families of all tree

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 32

controlled grammars without or with erasing rules are
denoted by a symbol 𝐓𝐂 and 𝐓𝐂𝝀.

To demonstrate the working principle of a tree

controlled grammar, we consider the following example.

Example 3 [30] Let 𝐺º = 𝐺, 𝑅 where 𝐺 = (𝑆 , 𝑎 ,

𝑆 → 𝑆𝑆 𝑎 , 𝑆}) and 𝑅 = {𝑆}∗. For the control language 𝑅
consists of sequences of symbol of nonterminal 𝑆 known as
word 𝑤 with 𝑤 ∈ 𝐿(𝐺º) where all the nodes in every level
of the derivation tree except the last one are labelled by 𝑆.
This means, at every level of tree which not including the
last one, we applied the production rule as 𝑆 → 𝑆𝑆 in all
cases and then 𝑆 → 𝑎 at the last level since 𝑤 is the word
contains terminal symbols only. Hence, 𝐺º generated the
language	𝐿(𝐺º) = {𝑎R^|𝑎 ≥ 0}.

There are numerous of momentous theorems proved in
TC grammars such in term of its

characteristics, we have the theorems like
Theorem 7 [30] There is an algorithm for TC grammars

which working in time Ο(𝑛R) for any word 𝑤 with 𝑤 = 𝑛 if
𝑤 ∈ 𝐿(𝐺, 𝑅) and 𝐺 is unambiguous.

Theorem 8 [30] In every TC grammars, the language

𝐿(𝐺, 𝑅) is recursive when there is no empty word at all on
the right side of its production.

computational power, we have the theorem such

Theorem 9 [30] The families of languages 𝐑𝐄𝐆, 𝐋𝐈𝐍, 𝐂𝐅,
𝐑𝐄, 𝐄𝐎𝐋 and 𝐄𝐓𝐎𝐋 can be generated by TC grammars in an
innate manner.

Since the TC grammar was properly defined, a great

extent of researches have been done on it in variety
directions with a desire to further empower its generative
capacity where soon after which is in 1979, Paun in [63]
thoroughly examined the generative power of a TC
grammar by not only considering the context-free grammar
controlled by regular languages but by considering all
possible variants of the TC grammar with varying the
grammars and its control language its. Thus, he extends
the definition of TC grammars as in Definition 7.

Definition 7 [63] A tree controlled grammar is

considered a pair (𝐺,𝑀) instead of 𝐺, 𝑅 	as in [30] where
𝐺	is a grammar of type-𝑖 such 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) and 𝑀 is a
language type-𝑗 such 𝑀 ⊂ (𝑁 ∪ 𝑇)∗ with 𝑖 = 𝐂𝐅, 𝐂𝐅𝛌, 𝐑𝐄𝐆
and 𝑗 = 𝐑𝐄, 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆, 𝐅𝐈𝐍.	 Then, the language
generated by 𝐺,𝑀 is written as 𝐿 𝐺,𝑀 with condition
such there exists a derivation tree 𝑡 of words 𝑤 with
respect to 𝐺, where the concatenating of the words from
left to right at any level of tree excluding the last one are in
𝑀. The families of languages of TC grammars without or

with erasing rules are denoted by a symbol 𝐓𝐂(𝐢, 𝐣) and
𝐓𝐂𝛌(𝐢, 𝐣).

From those definition, the following theorems are

obtained.

Theorem 10 [63]

𝐓𝐂 𝐑𝐄𝐆, 𝐣 = 𝐑𝐄𝐆 for 𝐣 = 𝐑𝐄, 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆, 𝐅𝐈𝐍.
𝐓𝐂 𝐂𝐅𝛌, 𝐣 = 𝐑𝐄,	for 𝐣 = 𝐑𝐄, 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆.
𝐓𝐂 𝐂𝐅, 𝐑𝐄 = 𝐑𝐄.
𝐓𝐂 𝐂𝐅, 𝐣 = 𝐂𝐒,	for 𝐣 = 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆.
𝐓𝐂 𝐢, 𝐅𝐈𝐍 = 𝐌𝐀𝐓, 𝐢 = 𝐂𝐅, 𝐂𝐅𝛌.

Then, after around twenty years elapsed, there has

arisen an issue whether there is a possibility for a TC
grammar to possess the same power as it is if its derivation
tree level is controlled by subregular languages. This
problem has been investigated by Dassow and Truthe in [31]
in 2008 where they considered several different types of
subregular languages such as finite, combinational,
monoids, regular suffix-closed, nilpotent, non-counting,
regular commutative and circular languages. Those
grammars are called “subregularly tree controlled
grammars” and were defined as in the next theorem.

Definition 8 [31] A subregularly tree controlled

grammars is a quintuple 𝐺 = 𝑁, 𝑇, 𝑃, 𝑆, 𝑅 where
𝑁, 𝑇, 𝑃, 𝑆 is defined as a context-free grammar and 𝑅

belongs to some special subfamily of regular languages
family such regular circular, combinational, regular suffix-
closed, definite, regular commutative, regular power-
separating, regular non-counting, nilpotent and ordered
which denoted by 𝐂𝐈𝐑𝐂, 𝐂𝐎𝐌𝐁, 𝐒𝐔𝐅, 𝐃𝐄𝐅, 𝐂𝐎𝐌𝐌, 𝐏𝐒, 𝐍𝐂,
𝐍𝐈𝐋, and 𝐎𝐑𝐃 . The language 𝐿 𝐺 contains all words 𝑤
generated by the underlying grammar 𝐺 in such a way
there exists a derivation tree 𝑡 of 𝑤 with respect to 𝐺 ,
where the words of all levels (except the last one) are in 𝑅.
The families of all subregularly tree controlled grammars
are denoted by 𝐓𝐂 𝐗 , 𝐗 ∈ {𝐂𝐈𝐑𝐂, 𝐂𝐎𝐌𝐁, 𝐒𝐔𝐅, 𝐃𝐄𝐅, 𝐎𝐑𝐃,
𝐂𝐎𝐌𝐌, 𝐏𝐒, 𝐍𝐂, 𝐍𝐈𝐋} (𝐓𝐂𝛌 𝐗 − with erasing rule).

The subregularly TC grammars have achieved a good

result in generative power as showed in subsequent
theorems.

Theorem 11 [31]

𝐑𝐄 = 𝐓𝐂𝛌(𝐑𝐄𝐆) = 𝐓𝐂𝛌 𝐒𝐔𝐅 = 𝐓𝐂𝛌 𝐎𝐑𝐃 =
𝐓𝐂𝛌 𝐍𝐂 = 𝐓𝐂𝛌 𝐏𝐒 = 𝐓𝐂𝛌 𝐂𝐎𝐌𝐌 = 𝐓𝐂𝛌 𝐂𝐈𝐑𝐂 .
𝐓𝐂 𝐂𝐎𝐌𝐌 = 𝐌𝐀𝐓.
𝐄𝐎𝐋 = 𝐓𝐂(𝐌𝐎𝐍) ⊆ 𝐓𝐂(𝐂𝐎𝐌𝐁) ⊆ 𝐓𝐂(𝐃𝐄𝐅).
𝐄𝐎𝐋 ⊂ 𝐓𝐂(𝐃𝐄𝐅).
𝐓𝐂(𝐅𝐈𝐍) ⊂ 𝐓𝐂 𝐍𝐈𝐋 and 𝐓𝐂(𝐌𝐎𝐍) ⊂ 𝐓𝐂(𝐍𝐈𝐋).
𝐌𝐀𝐓𝐅𝐈𝐍 = 𝐓𝐂𝛌 𝐅𝐈𝐍 ⊂ 𝐓𝐂𝛌 𝐍𝐈𝐋 ⊆	 and
𝐓𝐂𝛌(𝐌𝐎𝐍) ⊂ 𝐓𝐂𝛌(𝐍𝐈𝐋).

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 33

𝐂𝐅 ⊂ 𝐄𝐎𝐋 = 𝐓𝐂𝛌(𝐌𝐎𝐍) ⊆ 𝐓𝐂𝛌(𝐂𝐎𝐌𝐁) ⊆
𝐓𝐂𝛌(𝐃𝐄𝐅) ⊆ 𝐑𝐄 and 𝐓𝐂𝛌(𝐌𝐎𝐍) ⊂ 𝐓𝐂𝛌(𝐃𝐄𝐅).

The investigation of subregularly TC grammars does not

stop there where in the same year in [32] by Dassow and
Truthe again continued to study on the hierarchy of
subregularly TC languages. In that paper, they presented
several ideas of controlling derivation trees levels of
context-free grammar by the regular languages with
restricted complexity, by finite union of monoids and by
languages accepting deterministic finite automata with
mostly prescribed number of states. This is the starting
where the complexity of tree controlled grammars are
being investigated.

Then, in the same year as [31] also, [35] validated that
every linearly bounded queue automaton has a TC
grammar. He also showed that context-sensitive languages
can be generated by a TC context-free grammar that has a
control language accepted by deterministic finite
automaton with at most five states and if erasing
productions are allowed in the grammar, it can generate
the recursively enumerable languages [35]. Subsequently,
Turaev, Dassow and Selamat in [37] recommenced
investigating the TC grammars in the company of bounded
nonterminal complexity in 2011. They proved that without
erasing rules, the nonterminals number in TC grammars can
lead to an infinite hierarchy of TC languages families and
with erasing rules, any recursively enumerable languages
can be generated with no more than nine nonterminals [37].
The same authors, Turaev et al. in another paper in [36]
demonstrated that any recursively enumerable language
can be generated by a TC grammar with at most seven
nonterminals only. They also established that a TC grammar
with three nonterminals is already sufficient to generate
any regular simple matrix and linear languages [36].

Later on, in 2012, by using the same technique as in [36]
but with different version of the Geffert normal form,
Vaszil presented that the complexity of nonterminal of TC
grammars can be reduced from seven to six in [34].
Interestingly, in the same year, Koutny and Meduna in [33]
came out with a new different idea of generating TC
grammars where instead of placing the restrictions on tree
levels, they placed them on tree paths and cuts. They
restricted the derivation tree cuts by an advocated regular
language with the notion that in every derivation tree in
the grammar, there exists a set X of tree cuts which
specified by regular language and cover all the tree. They
showed that these grammars can characterize the family of
languages of recursively enumerable. Not only that, they as
well introduced a binary relation over those grammars
together with the proof that it also can generate the
identical family of languages of recursively enumerable [33].

VI. CONCLUSION AND FUTURE WORK

In a nut shell, we have designated a review on the topics
related to arithmetically controlled grammars and tree
controlled grammars, such as multiset grammars, valence
grammars and tree controlled grammars. From the original
definition of those three controlled grammars, we can see
that all of them have a simple procedure in term of
generating the languages yet they are powerful grammars
since they have achieved many remarkable result in formal
language theory.

However, there are still some captivating topics in this
direction to look for future study. First, if we notice, in the
multiset grammar review, there is no research done in
using multiset on terminal symbols which can be based on
an operation namely “counter” where in every production
in the grammar, a multiset value will be given to it
depending on the number of terminal alphabet existed in
the right hand side of that production as a control
mechanism. For example, if a production has one terminal
symbol “a” and two terminal symbol “b”, its multiset will
be counting as “1” for “a” and “2” for “b” in vector form.
Then, a derivation in the grammar is called successful when
it satisfied certain function.

Other than that, it will be more interesting if we combine
the valence and tree concepts to control the derivation of
grammar like in tree controlled grammars. In this way, we
can replace the regular sets with valences where every
main production with certain integer value will be derived
into sub-productions with the value of combination of zero
and one or zero and minus one represented in matrices
form in which the sum of those values given in the value of
main production. Then, a derivation in grammar is called a
successful one if and only if there are such permutations in
each row yield a value of zero. This idea also can be
combined with multiset rather than valence by replacing
the regular set with certain summation of natural number.
Besides, rather than checking the production rules with
regular set, we can implement regular sets of production
rules of the grammars.

REFERENCES

[1] A.M. Turing, “On Computable Numbers with and An Application to
the Entscheidungsproblem,” in Proceeding of the London
Mathematical Society, 1937.

[2] N. Chomsky, “Three Models for the Description of Language,” IRE
Transaction, Information Theory, vol. 2, no. 3, pp. 113-124, 1956.

[3] S. Ginsburg and H. Rice, “Two Families of Languages Related to
Algol.,” Journal of the ACM, vol. 9, no. 3, pp. 350-371, 1962.

[4] A. Salomaa, Formal Language, New York: New York Academic Press,
1973.

[5] A. Meduna and P. Zemek, Regulated Grammars and Automata, New
York: Springer-Verlag , 2014.

[6] G. Bel-Enguix, M. Jiménez-López and C. Martín-Vide, New
Developments in Formal Languages and Applications, vol. 113,
Springer Berlin Heidelberg, 2008.

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 34

[7] A.M. Natarajan, A. Tamilarasi and P. Balasubramani, Theory of
Automata and Formal Languages, New Delhi: New Age
International (p) Ltd, 2008.

[8] P. Linz, An Introduction to Formal Languages and Automata,
Massachusetts: Jones and Bartlett, 2001.

[9] C. Martín-Vide, V. Mitrana and G. Paun, Formal Languages and
Applications, vol. 148, Springer Berlin Heidelberg, 2004.

[10] J. Dassow, G. Paun and A. Salomaa, “Grammars with Controlled
Derivations,” Handbook of Formal Languages, vol. 2, pp. 101-154,
1997.

[11] A. Abraham, “Some Questions of Phrase Structure Grammars,”
Computational Linguistics, vol. 4, pp. 61-70, 1965.

[12] A. Cremers and O. Mayer, “On Matrix Languages,” Information and
Control, vol. 23, pp. 86-96, 1973.

[13] S. Abraham, “Some Questions of Language Theory,” in Proceeding
COLING '65 Proceedings of the 1965 conference on Computational
linguistics, Bonn, Germany, 1965.

[14] O.H. Ibarra, “Simple Matrix Languages,” Information and Control,
vol. 17, pp. 359-394, 1970.

[15] G. Paun, “On The Generative Capacity of Simple Matrix Grammars of
Finite Index,” Information Processing Letters, vol. 7, no. 2, pp. 100-
102, 1978.

[16] G. Paun, “On the Family of Finite Index Matrix Languages,” Journal
of Computer and System Sciences, vol. 18, pp. 267-280, 1979.

[17] A. Salomaa, “Matrix Grammars with a Leftmost Restriction,”
Information and Control, vol. 20, pp. 143-149, 1972.

[18] S. Ginsburg and E.H. Spanier, “Control Sets on Grammars,”
Mathematical Systems Theory, vol. 2, no. 2, pp. 159-177, 1968.

[19] A. Cremers and O. Mayer, “On Vector Languages,” Journal of
Computer and System Sciences, vol. 8, no. 2, pp. 158-166, 1974.

[20] J. Dassow and S. Turaev, “Petri net Controlled Grammars:the Power
of Labelling and Final Markings,” vol. 12, no. 2, pp. 191-207, 2009.

[21] J. Dassow and S. Turaev, “Petri net Controlled Grammars:the Case
of Special Petri Nets,” Journal of Universal Computer Science, vol. 15,
no. 12, pp. 2808-2835, 2009.

[22] J. Dassow and S. Turaev, “k-Petri Net Controlled Grammars,”
Language and Automata Theory and Application, vol. 5196, pp. 209-
220, 2008.

[23] N. Jan, S. Turaev, W. Fong and N. Sarmin, “A new variant of Petri
net controlled grammars,” in AIP Conference Proceedings 1682, pp.
040015, 2015.

[24] S. Turaev, Petri net Controlled Grammars. PHD Thesis, University
Rovira i Virgili, 2010.

[25] G. Mavlankulov, M. Othman, M. Selamat and S. Turaev, “Concurrent
Context-free Grammars,” in In: H. Tutut, D.M. Mat, A. Jemal (Eds.),
DaEng - 2013, Lecture Notes in Electrical Engineering, 285,, vol. 285,
Springer-Verlag, Berlin, 2014, pp. 521-528.

[26] R. Stiebe and S. Turaev, “Capacity Bounded Grammars,” Journal of
Automata, Languages and Combinatorics, vol. 15, no. 1/2, pp. 175-
194, 2010.

[27] R. Stiebe, “On Grammars Controlled by Parikh Vectors,” Languages
Alive, vol. 7300, pp. 246-264, 2012.

[28] I. Fris, “Grammars with Partial Ordering of the Rules,” Information
and Control, vol. 12, no. 5, pp. 415-425, 1968.

[29] A. Cremers, H. Maurer and O. Mayer, “A Note on Leftmost
Restricted Random Context Grammars,” Information Processing
Letters, vol. 2, no. 2, pp. 31-33, 1973.

[30] K. Culik-II and H.Maurer, “Tree Controlled Grammars,” Computing,
vol. 19, no. 2, pp. 129-139, 1977.

[31] J. Dassow and B. Truthe, “Subregularly Tree Controlled Grammars

and Languages,” in Proceeding in E. Csuhaj-Varju, Z.Esik (Eds):
Automata and Formal Languages, Balatonfured, Hungary, 2008.

[32] J. Dassow and B. Truthe, “On Two Hierarchies of Subregularly Tree
Controlled Languages,” in Proceeding in C. Campeanu, G. Pighizzini
(eds): Descriptional Complexity of Formal Systems, Charlottetown
PE, Canada, 2008.

[33] J. Koutny and A. Meduna, “Tree Controlled Grammars with
Restriction Placed Upon Cuts and Paths,” Kybernetika, vol. 48, no. 1,
pp. 165-175, 2012.

[34] G. Vaszil, “On the Nonterminal Complexity of Tree Controlled
Grammars,” Languages Live, vol. 7300, pp. 265-272, 2012.

[35] R. Stiebe, “On the Complexity of the Control Language in Tree
Controlled Grammars,” in Proceeding in J. Dassow, B. Truthe (Eds):
Colloquium on the Occasion of the 50th Birthday of Victor Mitrana,
Otto von Guericke Universitat Magdeburg, Germany, 2008.

[36] S. Turaev, J. Dassow and M.H. Selamat, “Language Classes
Generated by Tree Controlled Grammars with Bounded
Nonterminal Complexcity,” Descriptional Complexity of Formal
Systems, vol. 6808, pp. 289-300, 2011.

[37] S. Turaev, M.H. Selamat and J. Dassow, “Nonterminal Complexity of
Tree Controlled Grammars,” Theoretical Computer Science, vol. 412,
no. 41, pp. 5789-5795, 2011.

[38] J. Kelemen, “Conditional grammars: Motivations, definition and
some properties,” in Proc. Conf. on Automata, Languages and
Mathematical Systems, Salgótarjan, Hungary, 1984.

[39] D. Lobo, F. Vico and J. Dassow, “Graph Grammars with String
Regulated Rewriting,” Theoretical Computer Science, vol. 412, no.
43, pp. 6101-6111, 2011.

[40] D.J. Rosenkrantz, “Programmed Grammars and Classes of Formal
Languages,” Journal of the ACM, vol. 16, no. 1, pp. 107-131, 1969.

[41] E. Render and M. Kambites, “Polycyclic and Bicyclic Valence
Automata,” Language and Automata Theory and Applications, vol.
5196, pp. 464-475, 2008.

[42] G. Paun, “A New Generative Device: Valence Grammars,” Revue
Roumaine de Mathematiques Pures et Appliquees, vol. 6, pp. 911-
924, 1980.

[43] H. Fernau and R. Stiebe, “Regulation by Valences,” Mathematical
Foundations of Compuer Science, pp. 239-248, 1997.

[44] H. Fernau and R. Stiebe, “Sequential Grammar and Automata with
Valences,” Theoretical Computer Science, vol. 276, pp. 377-405,
2002.

[45] H. Fernau and R. Stiebe, “Valence Grammars with Target Sets,” in
Proceding in S. Yu, M. Ito, Gh. Paun (Eds) : Words, Semigroups and
Transductions, World Scientific, Singapore, 2001.

[46] P. Buckheister and G. Zetzsche, “Semilinearity and Context-
Freeness of Languages Accepted by Valence Automata,”
Mathematical Foundations of Computer Science 2013, vol. 8087, pp.
231-242, 2013.

[47] R. Stiebe, “Positive Valence Grammars,” in In Proceeding: J.Dassow
und Bernd Reichel (Hrsg), Theorietag Automaten und Formale
Sprachen,Coding Theory and Formal Languages, Wendgraben, 2001.

[48] A. Aho, “Indexed Grammar : An extension of Context-Free
Grammars,” Journal of the ACM, vol. 15, no. 4, pp. 647-671 , 1968.

[49] S. Greibach and J. Hopcroft, “Scattered context grammars,” Journal
of Computer and System Sciences, vol. 3, no. 3, pp. 233-247, 1969.

[50] M. Levitina, “On Some Grammars with Global Productions.,” NTI
Ser., vol. 2, no. 3, pp. 32-36, 1972.

[51] R. Siromoney and K. Krithivasan, “Parallel Context-Free
Languages,” Information and Control, vol. 24, no. 2, pp. 155-162,
1974.

[52] J.M. Castano, “Global Index Grammars and Descriptive Power,”

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

 35

Journal of Logic, Language and Information, vol. 13, no. 4, p. 403–
419, 2004.

[53] J. Dassow and G. Paun, Regulated Rewriting in Formal Language
Theory, vol. 18, Springer-Verlag Berlin Heidelberg, 1989.

[54] W.D. Blizard, “Multiset Theory,” Notre Dame Journal of Formal
Logic, vol. 30, no. 1, pp. 36-66, 1989.

[55] D. Singh, A. Ibrahim, T. Yohanna and J. Singh, “A systematization of
Fundamentals of Multisets,” Lecturas Matematicas, vol. 29, pp. 33-
48, 2008.

[56] M. Kudlek, C. Martin-Vide and G. Paun, “Toward a Formal Macroset
Theory,” Multiset Processing, vol. 2235, pp. 123-133, 2001.

[57] M. Kudlek and V. Mitrana, “Closure Properties of Multiset Language
Families,” Membrane Computing, Fundamenta Informatica, vol. 49,
no. 1, pp. 191-203, 2002.

[58] E. Csuhaj-Varju, C. Martin-Vide and V. Mitrana, “Multiset Automata,”
Multiset Processing, vol. 2235, pp. 69-83, 2001.

[59] M. Cavaliere, R. Freund, M. Oswald and D. Sburlan, “Multiset
Random Context Grammars, Checkers, and Transducers,”
Theoretical Computer Science, vol. 372, no. 2-3, pp. 136-151, 2007.

[60] J. Wang, M. Yin and W. Gu, “Fuzzy Multiset Finite Automata and
Their Languages,” Soft Computing, vol. 17, no. 3, pp. 381-390, 2013.

[61] S. Tiwari, V. Gautam and M. Dubey, “On Fuzzy Multiset Automata,”
Journal of Applied Mathematics and Computing, vol. 51, no. 1, pp.
643-657, 2015.

[62] J. Dassow, “Grammars With Regulated Rewriting,” Formal
Languages and Applications, vol. 148, pp. 249-273, 2004.

[63] G. Paun, “On the Generative Capacity of Tree Controlled
Grammars,” Computing, vol. 21, no. 3, pp. 213-220, 1979.

