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Abstract— Over the quarter century, it is gratifying to note that the significance of regulated or controlled 
grammars (i.e. grammars with regulated rewriting) has been recognized by many parties where it has been 
used widely in a great variety of scientific disciplines ranging from Linguistics through DNA Computing up 
to the Informatics and recently come to Big Data Analytics. Therefore, literally we can find hundreds of 
studies of well-known of various types of controlled grammars and their investigation have amount to a 
thrilling trend within formal language theory. Given the extensive literature on issues related to controlled 
grammars, this research focused on arithmetically controlled grammars and tree controlled grammars, 
which are practically important. Thereby, in this paper, we briefly recapitulate the background of formal 
language theory and highlight the key results of multiset grammars, valence grammars and tree controlled 
grammars. In this paper, a new controlled grammar that can be generated using both control mechanisms 
together is proposed for future research. 
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I. INTRODUCTION 

The study of formal language theory which started in the 
middle of the 20th century and primarily originated from 
mathematics [1] where later on has emerged in disciplines 
of linguistics, computer science and biology has been 
widely recognized as the stem of theoretical computer 
science in the sense that all human problems can be 
considered as symbol manipulation, and as structures 
formulated by symbols. It was born in three phases: In 1956, 
Chomsky [2] claimed a new way of looking at natural 
languages syntax by proposing a generative device 
hierarchy. Subsequently, Ginsburg and Rice [3] 
demonstrated that the hierarchy of Chomsky is applicable 
not only for natural languages but it is also able to cope 
with the problems of semantic and syntactic of 
programming languages too in 1961. Because of that, the 
theory of formal grammars and languages has become 
nearly identical to the programming languages theory. 
Later, Salomaa [4] presented a chapter of theoretical 
computer science that contains a complete and accurate 
mathematical clarification of the theory in 1973. Since then, 
the theory of formal language has been an active and 
growing research area with broad applications in fields 
such as pattern recognition, cryptography, compiler, 
computer networks, artificial life, molecular computing, 
image enhancement or compression and many more until 
today [5, 6].  

In principle, the theory of formal language consists of 
two basic approaches, which are grammatical and 
automata approach. Grammatical approach, which is better 
known as grammars, are language generation models that 
define their language strings so their process of rewriting 
will generate them starting from a special start symbol. On 
the other hand, automata approach, the language 
recognition models define their language strings by a 
process of recognition that starts from the initial state and 
ends in a final state [5]. In this paper, we focus on the 
grammar formalism.  

A grammar is naturally a set of rules (or productions) 
used to construct a language over a certain alphabet Σ	, 
where different language types can be developed 
depending on the way of rewriting rules. It also contains 
the other three principal constructs, which are sets of 
nonterminals, terminals and productions. A nonterminal is 
written in upper case (eg : S, A) and it represents the 
grammar’s state, and indicate which productions can be 
used afterwards. A terminal is written in lower case (eg: a, 
b) that delineates a value generated by the grammar in the 
final string and a production in form of 𝐴 → 𝑤	  is a 
combination series of terminals and nonterminals where 
the left hand side must have at least one nonterminal 
symbol and it works in such a value from left hand side is 
turning into the right hand side value. In addition, in term 
of derivation to generate a string of a language, it will start 
with a string that consists of a single start symbol S where 
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then any rule can be applied in any order to replace the 
nonterminal symbol in right hand side as long as it is a 
substring of the designated left hand side. Then, it is said to 
be a complete derivation, when there exists only terminal 
symbols in the current string. The set of all generated 
strings will defined the language type. In fact, any certain 
sequence of rules on the start symbol will produce a 
distinct string in the language and a grammar is called 
ambiguous if it can generate the same single string in 
multiple ways [6-8]. 

Indeed, a containment hierarchy of grammars classes 
that well known and received most attention in formal 
models field is referred as Chomsky hierarchy. In Chomsky 
hierarchy, grammars are categorized into four main classes 
such as regular which decided by finite automaton, 
context-free which recognized by pushdown automaton, 
context-sensitive which acknowledged by linear bounded 
automaton and recursively enumerable (aka unrestricted) 
which accepted by Turing machine according to the order 
of increasing complexity where a language of higher order 
contains a subset of all languages of lower complexity. In 
other words, there exist context-free languages which are 
not regular, context-sensitive languages which are not 
context-free and as well as unrestricted languages which 
are not context-sensitive [7, 8]. 
 

 

 

 

 

 

 
 
 
Fig. 1: Set Inclusion of Grammars Described by Chomsky Hierarchy 
 
Then, in the Chomsky hierarchy, the context-free 

grammars which in the first place used to study human 
languages are the most flourishing and favouring class of 
grammars in the evolution of language models due to their 
beauty in term of simplicity and intuitively captivating 
formalism. They are a natural formalism that deputizes the 
constituency language behaviour where a constituent is 
clarified as a group of sequential of strings operating as a 
unit. Informally, a context-free grammar is a set of rules 
that grant one to substitute a variable by a string of 
terminals and variables where each string in the language 
own a derivation tree with leftmost derivation. In fact they 

have a broad applicability and the same time they have a 
great mathematical appeal [6, 9]. 

However, it is well known that the world is not “context-
free” where there are many circumstances that caused the 
appearing of non-context-free languages which have the 
basic features like reduplication (e.g.: 	{𝑤𝑤|𝑤 ∈ 𝑇∗}) , 
multiple agreement (e.g: {𝑎/𝑏/𝑐/𝑑/|𝑛 ≥ 1}) and crossed 
agreements (e.g: {𝑎/𝑏6𝑐/𝑑6|𝑛,𝑚 ≥ 1})  [10]. This 
situation has called for more powerful grammars with 
similar properties of context-free grammars known as 
grammars with regulated rewriting. 

The first type of grammars with regulated rewriting, 
called matrix grammars, (i.e. controlled grammars or 
regulated grammars) was introduced by Abraham in 1965 
[11]. These grammars use the same rules of grammars as in 
Chomsky hierarchy but have accompanied by certain 
additional mechanisms so that the application of rules can 
be restricted in order to avoid particular derivations. Since 
then, a lot of variants of grammars with regulated rewriting 
have been investigated and studied in formal language field 
where mostly are based on context-free grammar with the 
aim to increase their computational power so that they can 
cover more aspect of real application problems. 

Despite their diversity, all of the introduced regulated 
grammars can be classified into several types depending on 
their common characteristics like (1) control by prescribed 
sequences such as matrix grammars [12-17], regularly 
controlled grammars [18], vector grammars [19], different 
variants of Petri net controlled grammars [20-26] and 
Parikh vector controlled grammars [27],  (2) control by 
context conditions such as conditional grammars and 
ordered grammars [28], random context grammars [29], 
tree controlled grammars [30-37], semi-conditional 
grammars [38] and string-regulated graph grammars [39], 
(3) control by computed sequences such as programmed 
grammars [40] and valence grammars [41-47],  (4) control 
by memory such as indexed grammars [48], (5) control by 
partial parallelism such as scattered context grammars [49], 
Russian parallel grammars [50], Indian parallel grammars 
[51] and global indexed grammars [52] and many other 
regulated grammars [5, 53]. Among all established 
controlled grammars, we interested on reviewing the 
multiset grammars, valence grammars and tree controlled 
grammars since they are simple but powerful grammars. 

The rest of section in this paper is structured as 
following: In Section 2, we recall some well-known basic 
notations, terminologies and concept related to formal 
languages theory, multiset, tree and so on which will be 
used throughout this paper. In Sections 3, 4 and 5, we recall 
the original definition of multiset grammars, valence 
grammars and tree controlled grammars with their well-
established computational power and closure properties as 
well as the relevant overview of research done in previous 
until current one which related to them. In Section 6, we 
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give a brief summarization of all materials discussed before 
and present some suggestions for future work. 

II. PRELIMINARIES 

In this section, we shortly recall the necessary basic 
notations, notions and definitions related to formal 
languages theory, multiset, and a derivation tree which will 
be used in the following section. For more detailed 
information, the reader is referred to [6-9, 12]. 

A. General Notation 

Throughout the paper, we use the following notations. 
In the set theory area, we have the symbols  ∈  and ∉ to 
represent the set membership and negation of set 
membership of an element to a set; ⊆  to signify the 
inclusions which is not necessarily proper and ⊂ to mark for 
the strict inclusion; |𝐴| to portray the cardinality of a set A 
which is the number of elements in the set A and 2< to 
depict the power set of a set A; ∅ to denote the empty set 
which implies that there is no elements in the set. Then in 
the set of numbers field, we have the set of integer, natural, 
real and rational number which are denoted by ℤ, ℕ, ℝ	and 
ℚ . Next, we have an alphabet which is a finite and 
nonempty set of elements known as symbols or letters in 
which denoted by Σ and a string (sometimes referred as 
word) over the alphabet Σ, which is a finite sequence of 
symbols (concatenation of symbols) from 	Σ. Then, the 
formed string without symbols is called null or empty string 
and it is denoted by	𝜆. The set of all strings (including	𝜆) 
over the alphabet, Σ is represented by Σ∗and the set of all 
non-erasing strings is denoted by ΣC, i.e., ΣC = Σ∗ − {𝜆}. A 
language 𝐿  is a subset of Σ∗  and 𝐿 ⊆ Σ∗  is termed 𝜆 -free 
if	𝜆 ∉ 𝐿. 

B. Grammars 

A phrase structure grammar is a quadruple 	𝐺 =
(𝑁, 𝑇, 𝑆, 𝑃), where 𝑁 is an alphabet of non-terminals, 𝑇 is an 
alphabet of terminals, 𝑆 is the start symbol where 𝑆 ∈ 𝑁, 𝑃 
is a finite set of production of the form 𝐴 → 𝑤 where 𝐴 ∈
𝑁 ∪ 𝑇 C, 𝑤 ∈ 𝑁 ∪ 𝑇 ∗ and with the condition that 𝐴 must 

contains at least one non-terminal symbol. If a production 
is in form of 𝐴 → 𝜆 then it is called an erasing rule. 

For a grammar 𝐺 = 𝑁, 𝑇, 𝑆, 𝑃 ,  a direct derivation 
relation over	(𝑁 ∪ 𝑇)∗ which denoted by ⇒ and defined as 
𝑢 ⇒ 𝑣 provided if and only if there is a rule 𝐴 → 𝑤 ∈ 𝑃 such 
that 𝑢 = 𝑥Q𝐴𝑥R  and 𝑣 = 𝑥Q𝑤𝑥R  for 𝑥Q, 𝑥R ∈ (𝑁 ∪ 𝑇)∗ . Since 
⇒ is a relation, then the nth power of  ⇒ is ⇒/ for 𝑛 ≥ 0 
where ⇒C  is known as transitive closure and ⇒∗  as 
reflexive-transitive closure. 

A derivation that use the sequence of rules 𝑚 =
𝑟U𝑟Q … 𝑟/, 𝑟W ∈ 𝑃, 1 ≤ 𝑖 ≤ 𝑛,	 is denoted by 

6
 or 

Z[Z\….Ẑ
. 

Then, a string 𝑤 ∈ (𝑁 ∪ 𝑇)∗ is a sentential form if	𝑆 ⇒∗ 𝑤. 
If	𝑤 ∈ 𝑇∗, then 𝑤 is called a sentence or a terminal string 
and 𝑆 ⇒∗ 𝑤 is said to be a successful derivation.  

The language generated by 𝐺 denoted by 𝐿 𝐺  is defined 
as 𝐿 𝐺 = 𝑤 ∈ 𝑇∗	 	𝑆 ⇒∗ 𝑤}. 

Two grammars 𝐺Q and 𝐺R are called to be equivalent if 
and only if they generate the same language such 
that	𝐿 𝐺Q = 𝐿(𝐺R). 

The Chomsky hierarchy classifies all grammars into four 
basic categories according to their complexity of 
production rules, i.e., a grammar 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃) is called 

unrestricted or recursively enumerable grammar 
(type-0) if its productions are in the form of 𝐴 → 𝑤 
where 𝐴 ∈ (𝑁 ∪ 𝑇)C , 𝑤 ∈ (𝑁 ∪ 𝑇)∗  and 𝐴  contains 
at least one non-terminal symbol. 
context sensitive grammar (type-1) if its 
productions are in the form of 𝐴 → 𝑤 where |𝐴| ≤
|𝑤|, 𝐴 ∈ 𝑁 ∪ 𝑇 ∗	𝑁C	(𝑁 ∪ 𝑇)∗ and 𝑤 ∈ (𝑁 ∪ 𝑇)C. 
context free grammar (type-2) if its productions are 
in the form of 𝐴 → 𝑤  where 𝐴 ∈ 𝑁  and 𝑤 ∈
(𝑁 ∪ 𝑇)∗. 
linear grammar if its productions are in the form of 
𝐴 → 𝑤 where 𝐴 ∈ 𝑁 and	𝑤 ∈ 𝑇∗ ∪ 𝑇∗𝑁𝑇∗. 
regular grammar (type-3) if its productions are in 
the form of 𝐴 → 𝑤 where 𝑤 ∈ 𝑇∗ ∪ 𝑇∗𝑁 and 𝐴 ∈ 𝑁. 

The families of languages generated by arbitrary, 
unrestricted, context sensitive, context free, regular, linear 
and finite grammars are denoted by 𝐑𝐄, 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆, 𝐋𝐈𝐍 
and 	𝐅𝐈𝐍 , respectively. For these language families, 
Chomsky hierarchy holds: 

𝐅𝐈𝐍 ⊂ 𝐑𝐄𝐆 ⊂ 𝐋𝐈𝐍 ⊂ 𝐂𝐅 ⊂ 𝐂𝐒 ⊂ 𝐑𝐄. 
 
A parallel rewriting system called an 𝐸𝑇𝑂𝐿  system is 

defined as a construct 𝐺 = 𝑁 ∪ 𝑇, 𝑇, 𝑃Q, 𝑃R, … , 𝑃6, 𝑆  where 
𝑁, 𝑇, 𝑆 are defined as normal context-free grammars with 
𝑃W  as a finite subset of 𝑁 ∪ 𝑇 ×(𝑁 ∪ 𝑇)∗ such that for each 
𝛼 ∈ 𝑁 ∪ 𝑇, there is at least one pair (𝛼, 𝛽) take place in 𝑃W. 
The pairs in 𝑃W  are known as productions and written as 
𝛼 → 𝛽. Then, for an arbitrary word 𝑤 = 𝑎Q𝑎R … 𝑎/, 𝑎W ∈ 𝑁 ∪
𝑇  with productions 𝑎Q → 𝛽Q, 𝑎R → 𝛽R, … , 𝑎/ → 𝛽/  of the 
equal set 𝑃m, we write 𝑎Q𝑎R … 𝑎/ ⇒ 𝛽Q𝛽R …𝛽/ and denote 
its reflexive-transitive closure of ⇒ by ⇒∗. The language 
generated by this 𝐺 is defined same as phrase structure 
grammar such 𝐿(𝐺) = {𝑤 ∈ 𝑇	∗	|		𝑆 ⇒∗ 	𝑤}. 

Then, an 𝐸𝑇𝑂𝐿 system that consists of only a single set 
of productions is known an 𝐸𝑂𝐿 system. The languages 
generated by both systems are noted as 𝐸𝑇𝑂𝐿 languages 
and 𝐸𝑂𝐿 languages respectively. 

Henceforth, a retrospect of some definition of regulated 
grammars that will be used in the following sections will be 
defined here and forward. 

A matrix grammar is a quadruple 𝐺6 = (𝑁, 𝑇, 𝑆,𝑀) 
where 𝑁, 𝑇  and 𝑆  are defined exactly as for a normal 
context-free grammar and 𝑀  is a set of matrices, 
sequences of context-free rules over 𝑁 ∪ 𝑇. The language 
generated by 𝐺6 is defined by  

𝐿 𝐺 = 𝑤 ∈ 𝑇∗ 	𝑆
o
𝑤	and	𝜋 ∈ 𝑀∗}. 
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An unordered vector grammar is a quadruple 𝐺 =
𝑁, 𝑇, 𝑆,𝑀  where 𝑁, 𝑇, 𝑆 and 𝑀 are defined as for matrix 

grammars. Then, the language 𝐿 𝐺  generated by a 
derivation such 

𝑆 ⇒t\ 𝑤Q ⇒tu 𝑤R ⇒tv … 	⇒/ 𝑤 
where 𝑝Q𝑝R …	𝑝/ is a permutation of a string in  𝑀∗. 

The families of languages generated by matrix, 
unordered vector grammars (with erasing rules) are 
denoted by 𝐌𝐀𝐓, 𝐮𝐕	 (𝐌𝐀𝐓}, 𝐮𝐕𝛌	), respectively. 

C. Derivation Tree 

A derivation tree of 𝑆 ⇒∗ 𝑤 is an ordered and directed tree 
whose its nodes are assigned with symbols of 𝑁 ∪ 𝑇 ∪ {𝜆} 
in a manner like 

any nonterminals of 𝑁 are the interior nodes, 
the start symbol 𝑆 is the root and 
𝐴 → 𝑥Q𝑥R … 𝑥/  is a production of 𝑃  if 𝑥Q, 𝑥R, … , 𝑥/  are 
the nodes children of nonterminal 𝐴 which ordered 
from left to right. 

Then, a derivation tree yield is the string over 𝑁 ∪ 𝑇 
constructed by reading the leaves nodes starting from left 
to right. 

III. MULTISET GRAMMARS 

Multiset is defined in [54] as a collection of unordered 
objects (known as elements) that are allowed to have 
repeated occurrences of identical elements and its number 
of times of occurrences is called multiplicity. It is important 
to consider the term multiset since there exist 
circumstances such there are repeated hydrogen and 
oxygen atoms in a sulfuric acid  molecule (𝐻R𝑆𝑂�) , 
repeated roots of polynomial equations, repeated 
observations in statistical samples and so on where those 
repeated elements are needed to be counted in order to 
attain their definiteness and adequacy. On account to its 
aptness [54, 55], multiset has been used interchangeably 
with a variety of term that carrying a synonymy meaning 
with it even in different contexts like “heap”, “bag”, 
“occurrence set”, “fireset”, “weighted set”, “sample”, 
“bunch” and “list”. 

The notion of relating multiset rewriting with Chomsky 
grammars was initiated by Kudlek, Martin and Paun [56] in 
2001 with the name of “multiset grammars” where they 
considered the applicability of rules as multiset in 
restricting the use of productions of grammars. The 
definition of multiset grammar with its computational 
powers and closure properties are demonstrated in the 
following definition and theorems. 

 
Definition 1 [56] A multiset grammar is a quadruple 𝐺 =

(𝑁, 𝑇, 𝑆, 𝑃) where 𝑁  and 𝑇  are alphabets of nonterminals 
and terminals, 𝑆 is the starting multiset and 𝑃 is a finite set 
of multiset rewriting rules in form 𝛼 → 𝛽  with 𝛼, 𝛽  are 
multisets over 𝑁 ∪ 𝑇 and 𝛼(𝐴) ≥ 1.<∈�  For to multisets 

𝑥Q, 𝑥R over 𝑁 ∪ 𝑇, we write 𝑥Q ⇒ 𝑥R if there is a multiset 
rule 𝑟 ∶ 	𝛼 → 𝛽	 ∈ P	such that 𝛼 ⊑ 𝑥Q  and 𝑥R = 	 𝑥Q − 𝛼 + 𝛽. 
Then, the language generated by multiset grammar is 
defined by 𝐿 𝐺 = 𝑤 ∈ 𝑇⊕	 	𝑆 ⇒∗ 𝑤}. 

 
The families of language generated by multiset 

grammars are denoted by 𝑚 𝐗 ,					𝐗 ∈ {𝐑𝐄𝐆, 𝐋𝐈𝐍, 𝐂𝐅, 𝐅𝐈𝐍, 
𝐀𝐑𝐁,𝐌𝐎𝐍,𝐌𝐀𝐓(𝐌𝐀𝐓𝛌 - 	with	erasing	rule, 𝐌𝐀𝐓𝐚𝐜	 - with 
appearance checking), 𝐋𝐎𝐂}  for regular, linear, context-
free, finite, arbitrary, monotone, matrix and local multiset 
grammars respectively. The languages family of matrix, 
Parikh sets of vectors and semilinear which denoted by 
	𝐏𝐬(𝐗) and 𝐒𝐋𝐢𝐧 are also considered. 

The following theorem present the entrenched relations 
of families of language generated by multiset grammars. 

 
Theorem 1 [56] 

𝐦𝐅𝐈𝐍 = 𝐏𝐬𝐅𝐈𝐍.              [𝑎] 
𝐦𝐑𝐄𝐆 = 𝐦𝐋𝐈𝐍 = 𝐦𝐂𝐅 = 𝐏𝐬𝐑𝐄𝐆 = 𝐏𝐬𝐋𝐈𝐍 
= 𝐏𝐬𝐂𝐅 = 𝐒𝐋𝐢𝐧.              [𝑏] 
𝐦𝐌𝐎𝐍 = 𝐦𝐌𝐀𝐓 = 𝐏𝐬𝐌𝐀𝐓.            [𝑐] 
𝐦𝐌𝐀𝐓𝐚𝐜 = 𝐏𝐬𝐌𝐀𝐓𝐚𝐜.             [𝑑] 
𝐦𝐀𝐑𝐁 = 𝐦𝐌𝐀𝐓𝛌 = 𝐏𝐬𝐌𝐀𝐓𝛌.            [𝑒] 
𝐦𝐌𝐀𝐓𝐚𝐜𝛌 = 𝐏𝐬𝐑𝐄 = 𝐏𝐬𝐌𝐀𝐓𝐚𝐜𝛌 .            [𝑓] 

From there, we have 
𝑎 ⊂ 𝐦𝐋𝐎𝐂 ⊂ 𝑏 ⊂ 𝑐 ⊂ 𝑒 ⊂ [𝑓]. 
𝑐 ⊂ 𝑑 ⊂ [𝑓]. 

 
The closure properties of families of language generated 

by multiset grammars are given in the next theorem. 
 
Theorem 2 [57] 

The language family of 𝐦𝐑𝐄𝐆 is closed under set 
union, set difference, complement, set intersection, 
arbitrary homomorphisms, inverse homomorphism, 
intersection with regular multiset languages, 
multiset addition and arbitrary substitution. 
The language family of 𝐦𝐂𝐅 is closed under set 
union, set intersection, set difference, complement, 
multiset addition, 𝜆-free homomorphisms, arbitrary 
homomorphisms, inverse homomorphisms, 𝜆 -free 
substitution, arbitrary substitution and intersection 
with regular multiset languages. 
The language family of 𝐦𝐀𝐑𝐁 is closed under set 
union, set interaction, 𝜆 -free homomorphisms, 
arbitrary homomorphisms, inverse 
homomorphisms, 𝜆 -free substitution, arbitrary 
substitution, multiset union, multiset intersection, 
multiset difference, multiset addition and 
intersection with regular multiset languages. 
The language family of 𝐦𝐌𝐎𝐍 is closed under set 
union, set intersection, 𝜆 -free homomorphisms, 
multiset union, multiset addition, 𝜆 -free 
homomorphisms,  inverse  homomorphisms, 	𝜆-free  
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substitution, linear erasing, and intersection with 
regular multiset languages. However, it is not closed 
under arbitrary homomorphism, arbitrary substitution 
and multiset difference. 

 
Since then, a plenty of studies have been on multiset 

grammars in various directions with one inclination to 
improve its generative power. Therefore, here we continue 
to review on articles which found federated to multiset 
grammar since its first discovery until the present one. 

In the same year where multiset grammar was 
discovered, Csuhaj-Varju, Martin and Mitrana [58] 
immediately came up with a Chomsky hierarchy 
characterization of multiset grammars in term of multiset 
automata where their working mode is according to the 
addition and subtraction of multiset. In that paper [58], 
they defined three types of multiset automata which are 
multiset finite automata (MFA), multiset linear bounded 
automata (MLBA) and multiset Turing machine (MTM). 

A multiset finite automata is like an input bag for placing 
a multiset and a detecting head which used for detecting 
the existence of a given symbol in that bag. It works as 
follows: it starts with a multiset in its bag in the initial state 
where then depending on the former state and a symbol 
detection in the bag, it will change its current state. A 
symbol will be automatically eliminated from the bag if it 
has been located. The automaton will stop when the bag is 
empty or there are no possible further movement. The 
input multiset will only be accepted if the bag is empty at 
the final state [58]. Formally, a multiset finite automata is 
defined as: 

 
Definition 2 [58] A multiset finite automata is a 

construction of an automaton having a structure 𝐶 =
(𝑄, Σ, δ, 𝑞U, 𝐹) where 𝑄 is a finite set of non-empty of states, 
Σ is the alphabet of input, 𝑞U is the initial (start) state, 𝐹 is 
the final state and δ is the mapping of transition 

𝛿 ∶ 𝑄×Σ → 2¥. 
 
A configuration of  𝐶 is a pair (𝑞, 𝜇) where 𝑞 is the current 

state and 𝜇 is a multiset. Then, the following relation on all 
configuration set is defined as (𝑞, 𝜇) ⇒ (𝑠, 𝜌)  iff there 
exists 𝑎 ∈ Σ such 𝑠 ∈ 𝛿(𝑞, 𝑎) and 𝜇 − 𝜌 = 𝜇©. 

The macroset accepted by 𝐶 is elucidated by 𝑅𝑒𝑐 𝐶 =
	𝜇	 (𝑞U,𝜇) ⇒∗ (𝑞, 𝜆)  for some 𝑞 ∈ 𝐹}  with ⇒∗  is the 

reflexive and transitive closure of the operation. 
Then, there exists family of all macrosets accepted by  

multiset finite automata which denoted by 𝐌𝐅𝐀 
deterministic multiset finite automata which denoted 
by 𝐃𝐌𝐅𝐀. 
multiset finite automata with detection which denoted 
by 𝐌𝐅𝐀𝐃. 
deterministic multiset finite automata with detection 
which denoted by 𝐃𝐌𝐅𝐀𝐃. 

Further, in term of its generative power, some 
propositions have been proved such : 

 
Proposition 1 [58] 

𝐌𝐅𝐀 = 𝐦𝐑𝐄𝐆 = 𝐦𝐂𝐅 = 𝐏𝐬𝐑𝐄𝐆 = 𝐏𝐬𝐂𝐅 = 𝐒𝐋𝐢𝐧. 
𝐃𝐌𝐅𝐀 is incomparable with 𝐋𝐢𝐧 and the finite 
macrosets family respectively to the set inclusion. 
𝐃𝐌𝐅𝐀 ⊂ 𝐌𝐅𝐀. 
𝐌𝐅𝐀 = 𝐌𝐅𝐀𝐃. 
𝐃𝐌𝐅𝐀𝐃 consists of all finite macrosets. 
𝐋𝐢𝐧 and 𝐃𝐌𝐅𝐀𝐃 are incomparable respectively to 
the set inclusion. 

 
Subsequently, a multiset linear bounded automata 

working procedure is the same as multiset finite automata 
except in changes state process, it will not only changes its 
state but it also can add or not a symbol in to the bag 
contents. Formally, it can be defined as follows. 

 
Definition 3 [58] A multiset linear bounded automaton 

(𝑀𝐿𝐵𝐴) is a 6-tuples construct such 𝐶 = (𝑄, Σ, 𝑈, 𝛿, 𝑞U,𝐹) 
where (𝑄, Σ, 𝑞U, 𝐹)  are defined as in MFA, 𝑈  is the bag 
alphabets with Σ ⊆ U and 𝛿	is the the mapping of transition 
from 𝑄×𝑈 into all subsets set of 𝑄×(𝑈 ∪ 𝑒 ). Then, its 
configuration is a also a pair (𝑞, 𝜇) such 𝑞 is the present 
state and 𝜇 is the bag content written as (𝑞, 𝜇) ⇒ (𝑠, 𝜌) if 
and only if there is 𝑎 ∈ Σ such  

𝑠, 𝑏 ∈ 𝛿 𝑞, 𝑎 , 𝑏 ≠ 𝑒, 𝜇 𝑎 ≥ 1, 𝜌 𝑎 = 𝜇 𝑎 − 1, 
	𝜌 𝑏 = 𝜇 𝑏 + 1, and 𝜌 𝑐 = 𝜇(𝑐) for all 𝑐 ∈ Σ, 𝑐 ∉
{𝑎, 𝑏} or 
𝑠, 𝑒 ∈ 𝛿 𝑞, 𝑎 , 𝜇 𝑎 ≥ 1, 𝜌 𝑎 = 𝜇 𝑎  and 𝜌 𝑐 =
𝜇(𝑐) for all 𝑐 ∈ Σ, 𝑐 ≠ 𝑎. 

 
The macroset accepted by 𝐴 is expounded by 𝑅𝑒𝑐 𝐴 =
	𝜇	 (𝑞U,𝜇) ⇒∗ (𝑞, 𝜆)  for some 𝑞 ∈ 𝐹	}  with ⇒∗  is the 

reflexive and transitive closure of the opreration.  
This type of automaton also have provide some 

significance propositions and theorem such 
 
Theorem 3 [58] The macrosets class generated by linear 

bounded grammars is equal to the macrosets class 
generated by monotone grammars. 

 
Proposition 2 [58] 

𝐦𝐌𝐎𝐍  equals to macrosets class accepted by 
𝑀𝐿𝐵𝐴𝑠. 
Deterministic 𝑀𝐿𝐵𝐴𝑠 are strictly less powerful than 
𝑀𝐿𝐵𝐴𝑠. 
Every macroset in multiset random context 
grammars is accepted by a deterministic 𝑀𝐿𝐵𝐴. 

 
Another type of multiset automata is multiset Turing 

machine (MTM) which its working mode is defined 
precisely like multiset linear bounded automata. However, 
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unlike multiset linear bounded automata, it has a bag for 
storing an infinite multiset together with a read-write head 
which allow a symbol to be picked up from the bag and 
added the symbol to the bag content at most one symbol. 
Thus, such machine accepted a multiset if its bag has an 
infinite number of 𝑊’𝑠 with nothing else and also entered a 
final state. By denoting 𝛽 as the multiset 𝛽 𝑊 = ∞ and 
other symbol 𝑎 as 𝛽 𝑎 = 0, a multiset turing machine is 
defined as in the next definition. 

 
Definition 4 [58] A multiset Turing machine is a 7-tuples 

𝑇 = (𝑄, Σ, 𝑈, 𝛿, 𝑞U,𝑊, 𝐹)  where (𝑄, Σ, 𝑈, 𝑞U,𝐹)  are defined 
exactly for 𝑀𝐿𝐵𝐴, 𝑊 is a special symbol occurs in the bag 
in infinitely many times and 𝛿 is the mapping of transition 
from 𝑄×𝑈 into all subsets set of 𝑄×( 𝑈 ∪ 𝑒 {𝑊}). Then, 
a configuration of 𝑀𝑇𝑀 is also written exactly for MLBA 
but the macroset accepted by 𝑇 is defined by 𝑅𝑒𝑐 𝑇 =
	𝜇	  (𝑞U,𝜇) ⇒∗ (𝑞, 𝛽) for some 𝑞 ∈ 𝐹	} where its generative 

powers are demonstrated such 
 
Proposition 3 [58] 

The accepting power of 𝑚𝐴𝑅𝐵 is equal to 𝑀𝑇𝑀𝑠. 
Deterministic 𝑀𝑇𝑀𝑠  are strictly less powerful than 
𝑀𝑇𝑀𝑠. 
𝑀𝑇𝑀𝑠 with detection are powerful than 𝑀𝑇𝑀𝑠. 
𝑃𝑠𝐴𝑅𝐵 is equal to the macrosets accepted by  𝑀𝑇𝑀𝑠 
with detection. 
 

Since then, after a while, the direction of multiset study 
are continuing expanded where in 2007, Cavaliere et al. 
[59] developed a new grammar model known as random 
context multiset grammars which based on relation of 
partial order on the objects the grammars contend with 
together with the multiset random context checkers and 
transducers concept. In that paper [59], they showed how 
those grammars can generate set of recursively 
enumerable of finite multiset and also can be easily 
enhanced to antiport P system. Further, Wang, Yin and Gu 
in [60] made use of fuzzy concept to introduce two new 
extensions of multiset grammars and automata called 
fuzzy multiset grammars and fuzzy multiset finite automata 
with discussion of the relationship between fuzzy multiset 
regular grammars with fuzzy multiset finite automata in 
2013. Besides, they defined some closure properties of 
fuzzy multiset finite languages family under certain regular 
operations [60].  Shortly thereafter, in 2015, Tiwari, Gautam 
and Dubey widened the study done by Wang and his 
friends by associating a deterministic fuzzy multiset finite 
automaton with a given fuzzy multiset finite automaton 
and showing that both automata are equally powerful in 
the sense of fuzzy multiset language acceptance in [61]. 
They as well studied and presented two minimal 
realizations of fuzzy multiset language where they proved 
that both of them are isomorphic [61]. 

IV. VALENCE GRAMMARS 

Valence grammars which is a combination of a grammar 
with a blind multicounter machine have been 
acknowledged as one of the favourable controlled 
grammars in formal language studies area due to their 
naturalness and simplicity besides having a possession in 
nice properties concerning closure under operations and 
problems of decidability. It was independently introduced 
by Gheorghe Paun in [42] in 1980. His notion was to assign 
each production with an integer from a given monoid so 
called valence and then all valences will be added along the 
applied productions. A derivation is said to be valid if and 
only if the sum of all valences evaluates to zero or the 
product of all valences results in one. The formal definition 
of a valence grammar is defined as follows. 

 
Definition 5 [42] An additive (multiplicative) valence 

grammar is a 5-tuples 𝐺 = (𝑁, 𝑇, 𝑆, 𝑃, 𝑣) where (𝑁, 𝑇, 𝑆, 𝑃) 
are defined as for a context-free grammar and 𝑣  is a 
mapping from 𝑃 into ℤ	(ℚ). The language generated by the 
additive (multiplicative) grammar 𝐺  consists of all string 

𝑤 ∈ 𝑇∗ such that there is a derivation 𝑆
	Z\Zu…Ẑ 		

𝑤 where  

𝑣 𝑟m = 0
/

m³Q

	 𝑣 𝑟m = 1
/

m³Q

. 

The family of languages generated by additive valence 
and multiplicative valence grammar are denoted by 
𝒂𝐕𝐀𝐋,𝒎𝐕𝐀𝐋  (𝒂𝐕𝐀𝐋𝝀,𝒎𝐕𝐀𝐋𝝀	 – with erasing rule) 
respectively. 

Here, the examples to differentiate between additive 
valence and multiplicative valence grammar. 

 
Example 1 [53] Let 𝐺 = (	 𝑆, 𝐴, 𝐵 , 𝑎, 𝑏, 𝑐 , {𝑝Q, 𝑝R, 𝑝·, 𝑝�,	 

𝑝¸}, 𝑆, 𝑣} be an additive valence grammar with 𝑝Q ∶ 𝑆 → 𝐴𝐵,	 
𝑝R ∶ 𝐴 → 𝑎𝐴𝑏,   𝑝· ∶ 𝐵 → 𝑐𝐵,   𝑝� ∶ 𝐴 → 𝑎𝑏,   𝑝¸ ∶ 𝐵 → 𝑐, and 
𝑣 𝑝Q = 𝑣 𝑝� = 𝑣 𝑝¸ = 0,   𝑣 𝑝R = 1,   𝑣 𝑝· = −1. 

Thus, the grammar generates the language 	𝐿 𝐺 =
{𝑎/𝑏/𝑐/ ∶ 𝑛 ≥ 1}.  

 
Example 2 [53] Let 𝐺 = ( 𝑆, 𝐴, 𝐵 , 𝑎, 𝑏, 𝑐 , {𝑝Q, 𝑝R, 𝑝·, 𝑝�, 

𝑝¸}, 𝑆, 𝑣} be a multiplicative valence grammar with  
𝑝Q ∶ 𝑆 → 𝐴𝐵,      𝑝R ∶ 𝐴 → 𝑎𝐴𝑏,     𝑝· ∶ 𝐵 → 𝑐𝐵,     𝑝� ∶ 𝐴 → 𝑎𝑏,  
𝑝¸ ∶ 𝐵 → 𝑐,  and 𝑣 𝑝Q = 𝑣 𝑝� = 𝑣 𝑝¸ = 1,  𝑣 𝑝R = 2,   
𝑣 𝑝· = Q

R
. 

Hence, the grammar also generated the same language 
𝐿 𝐺 = {𝑎/𝑏/𝑐/ ∶ 𝑛 ≥ 1}. 

 
The coming theorems convey the existing of well- 

established relations of families of languages generated by 
valence grammars. 

 
Theorem 4 [53,62] 
𝐂𝐅 ⊂ 𝒂𝐕𝐀𝐋 = 𝒂𝐕𝐀𝐋𝝀 and 𝐂𝐅 ⊂ 𝒎𝐕𝐀𝐋 = 𝒎𝐕𝐀𝐋𝝀. 
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𝒂𝐕𝐀𝐋, 𝐗 ⊂ 𝒎𝐕𝐀𝐋, 𝐗 = (𝒖𝐕, 𝐗) where 
𝐗 ∈ {𝐑𝐄𝐆, 𝐂𝐅, 𝐂𝐅𝛌, 𝐂𝐒}. 

 
The closure properties and decidability problems of 

valence grammars are given in the following theorems. 
 
Theorem 5 [53, 62] 

The family of language of 𝒂𝐕𝐀𝐋 is closed under union, 
intersection by regular sets, arbitrary morphisms, 𝜆-
free morphisms, inverse morphisms, 𝜆 -free gsm-
mappings, gsm-mappings, quotient by regular sets and 
quotient by letters but it is not closed under 
intersection, complementation, concatenation and 
kleene-closure. 
The family of language of 𝒎𝐕𝐀𝐋 is closed under union, 
concatenation, intersection by regular sets, gsm-
mappings, 𝜆-free gsm-mappings, arbitrary morphisms, 
𝜆 -free morphisms, inverse morphisms, quotient by 
regular sets and quotient by letters. However, it is not 
closed under intersection, complementation and 
Kleene-closure. 

 
Theorem 6 [53] The membership, emptiness and 

finiteness problems can be decided in both families of 
languages of 𝒂𝐕𝐀𝐋 and 𝒎𝐕𝐀𝐋. 

 
In 1997, Fernau and Stiebe [43] continued investigating 

the closure properties of languages of valence and 
simultaneously they showed that valence grammars over 
arbitrary monoids can stimulate equivalent matrix 
grammars. They also demonstrated that by constructing 
valence grammars over 	(ℚC,×	, 1) , there exist normal 
forms for unordered vector grammars. In the meantime, 
they have examined the use of valences in parallel systems 
[43].  

Shortly thereafter, the same authors in [45] extended 
the concept of valence grammar by the notion like a valid 
derivation value is acceptable to be a part of a given target 
set. In that paper, they also have studied the closure 
properties of those grammars together with their 
generative power with target sets over the groups	ℤm , 
monoids ℕm, and finite monoid. Furthermore, they proved 
that grammars with permutations of regular languages as a 
controller can characterize the unordered vector languages 
and at the same time, demonstrated that valence 
grammars with finite monoids as target sets can be 
constructed into an equivalent matrix language [45]. 
Interestingly, in the same year, Stiebe alone in [47] came 
out with a notion such by assessing the productions of 
grammar with integer vectors, we can generate an 
equivalent matrix grammar as well as Parikh languages. 
Those grammar is called positive valence grammar.  

Then, one year later, Fernau and Stiebe together again 
studied the power of use of valence in sequential grammar 

and automata in [44] where then they showed a procedure 
on how to construct the Chomsky and Greibach normal 
form for those grammars. Besides, in that paper, they also 
proved that context free valence grammars over 
commutative or finite monoids have an equivalent power 
as valence grammars over commutative groups or finite 
group respectively. Later, after a few years which is in 2008, 
Render and Kambites [41] continued  the study done by 
[45], where they investigate the languages class 
recognized by polycyclic and bicyclic valence automata (or 
identically regular valence grammar) with rational target as 
well as together with the closure properties and rational 
subset membership decidability problem of those grammar 
where as their main results they showed that such 
automata have accepted exactly the languages of context-
free for the case polycyclic monoids of rank two or more 
and the languages class which including the languages of 
partially blind one counter for the case bicyclic monoids 
(polycyclic monoid of rank 1) [41]. 

The study concerning with the accepting power of 
valence automata does not standstill there where in 2013, 
Buckheister and his Zetzsche in [46] persisted to study 
which monoids valence automata can recognize only the 
languages of context-free and also the languages in the 
company of semilinear Parikh image, respectively. In those 
[46], they demonstrated a characterization of monoids 
graph products for valence automata to accept only the 
languages of context-free and also for the bicyclic monoids 
and integers graph product to yield only the languages 
which with semilinear Parikh image. They also proved that 
all languages acknowledged by valence automata over 
torsion groups will possess a semilinear Parikh image [46]. 

V. TREE CONTROLLED GRAMMARS 

The idea of imposing restrictions upon the derivation 
trees of context-free grammars was originated by Culik and 
Maurer in [30] where they introduced a new regulated 
grammar called tree controlled grammars (for short TC 
grammars) in 1977. In this section, we present an 
indigenous definition of a tree controlled grammar defined 
in [30] together with an example and its well-proven 
generative power in [53] [63] [31] as well as along with a 
review on a continued studies done which found 
concomitant with it.  

 
Definition 6 [30] A tree controlled grammar is a 

quintuple 𝐺 = 𝑁, 𝑇, 𝑃, 𝑆, 𝑅  where 𝑁, 𝑇, 𝑃, 𝑆  is defined 
exactly as a context-free grammar and 𝑅 ⊆ 𝑁 ∪ 	𝑇 ∗ is a 
regular set. It can also be considered as a pair 𝐺º = (𝐺, 𝑅). 
Then, the language 𝐿 𝐺  consists of all words 𝑤 generated 
by the underlying grammar 𝐺 in such a way that there 
exists a derivation tree 𝑡 of 𝑤 with respect to 𝐺, where the 
concatenating of words at any level of tree from left to 
right excluding the last one are in 𝑅. The families of all tree 



International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 2, Issue 2 (2016)  

 32 

controlled grammars without or with erasing rules are 
denoted by a symbol 𝐓𝐂 and 𝐓𝐂𝝀. 

 
To demonstrate the working principle of a tree 

controlled grammar, we consider the following example. 
 
Example 3 [30] Let 𝐺º = 𝐺, 𝑅   where   𝐺 = ( 𝑆 , 𝑎 ,  

𝑆 → 𝑆𝑆 𝑎 , 𝑆}) and 𝑅 = {𝑆}∗. For the control language 𝑅 
consists of sequences of symbol of nonterminal 𝑆 known as 
word 𝑤 with 𝑤 ∈ 𝐿(𝐺º) where all the nodes in every level 
of the derivation tree except the last one are labelled by 𝑆. 
This means, at every level of tree which not including the 
last one, we applied the production rule as 𝑆 → 𝑆𝑆 in all 
cases and then 𝑆 → 𝑎 at the last level since 𝑤 is the word 
contains terminal symbols only. Hence, 𝐺º generated the 
language	𝐿(𝐺º) = {𝑎R^|𝑎 ≥ 0}. 
 

There are numerous of momentous theorems proved in 
TC grammars such in term of its  

characteristics, we have the theorems like 
Theorem 7 [30] There is an algorithm for TC grammars 

which working in time Ο(𝑛R) for any word 𝑤 with 𝑤 = 𝑛 if 
𝑤 ∈ 𝐿(𝐺, 𝑅) and 𝐺 is unambiguous. 

 
Theorem 8 [30] In every TC grammars, the language 

𝐿(𝐺, 𝑅) is recursive when there is no empty word at all on 
the right side of its production. 

 
computational power, we have the theorem such 

Theorem 9 [30] The families of languages 𝐑𝐄𝐆, 𝐋𝐈𝐍, 𝐂𝐅,
𝐑𝐄, 𝐄𝐎𝐋 and 𝐄𝐓𝐎𝐋 can be generated by TC grammars in an 
innate manner. 

 
Since the TC grammar was properly defined, a great 

extent of researches have been done on it in variety 
directions with a desire to further empower its generative 
capacity where soon after which is in 1979, Paun in [63] 
thoroughly examined the generative power of a TC 
grammar by not only considering the context-free grammar 
controlled by regular languages but by considering all 
possible variants of the TC grammar with varying the 
grammars and its control language its. Thus, he extends 
the definition of TC grammars as in Definition 7. 

 
Definition 7 [63] A tree controlled grammar is 

considered a pair (𝐺,𝑀) instead of 𝐺, 𝑅 	as in [30] where 
𝐺	is a grammar of type-𝑖 such 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) and 𝑀 is a 
language type-𝑗  such 𝑀 ⊂ (𝑁 ∪ 𝑇)∗  with 𝑖 = 𝐂𝐅, 𝐂𝐅𝛌, 𝐑𝐄𝐆 
and 𝑗 = 𝐑𝐄, 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆, 𝐅𝐈𝐍.	  Then, the language 
generated by 𝐺,𝑀  is written as 𝐿 𝐺,𝑀  with condition 
such there exists a derivation tree 𝑡  of words 𝑤  with 
respect to 𝐺, where the concatenating of the words from 
left to right at any level of tree excluding the last one are in 
𝑀. The families of languages of TC grammars without or 

with erasing rules are denoted by a symbol 𝐓𝐂(𝐢, 𝐣) and 
𝐓𝐂𝛌(𝐢, 𝐣). 

 
From those definition, the following theorems are 

obtained. 
 
Theorem 10 [63] 

𝐓𝐂 𝐑𝐄𝐆, 𝐣 = 𝐑𝐄𝐆 for 𝐣 = 𝐑𝐄, 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆, 𝐅𝐈𝐍. 
𝐓𝐂 𝐂𝐅𝛌, 𝐣 = 𝐑𝐄,	for 𝐣 = 𝐑𝐄, 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆. 
𝐓𝐂 𝐂𝐅, 𝐑𝐄 = 𝐑𝐄. 
𝐓𝐂 𝐂𝐅, 𝐣 = 𝐂𝐒,	for 𝐣 = 𝐂𝐒, 𝐂𝐅, 𝐑𝐄𝐆. 
𝐓𝐂 𝐢, 𝐅𝐈𝐍 = 𝐌𝐀𝐓, 𝐢 = 𝐂𝐅, 𝐂𝐅𝛌. 

 
Then, after around twenty years elapsed, there has 

arisen an issue whether there is a possibility for a TC 
grammar to possess the same power as it is if its derivation 
tree level is controlled by subregular languages. This 
problem has been investigated by Dassow and Truthe in [31] 
in 2008 where they considered several different types of 
subregular languages such as finite, combinational, 
monoids, regular suffix-closed, nilpotent, non-counting, 
regular commutative and circular languages. Those 
grammars are called “subregularly tree controlled 
grammars” and were defined as in the next theorem.   

 
Definition 8 [31] A subregularly tree controlled 

grammars is a quintuple 𝐺 = 𝑁, 𝑇, 𝑃, 𝑆, 𝑅  where 
𝑁, 𝑇, 𝑃, 𝑆  is defined as a context-free grammar and 𝑅 

belongs to some special subfamily of regular languages 
family such regular circular, combinational, regular suffix-
closed, definite, regular commutative, regular power-
separating, regular non-counting, nilpotent and ordered 
which denoted by 𝐂𝐈𝐑𝐂, 𝐂𝐎𝐌𝐁, 𝐒𝐔𝐅, 𝐃𝐄𝐅, 𝐂𝐎𝐌𝐌, 𝐏𝐒, 𝐍𝐂, 
𝐍𝐈𝐋,  and 𝐎𝐑𝐃 . The language 𝐿 𝐺  contains all words 𝑤 
generated by the underlying grammar 𝐺  in such a way 
there exists a derivation tree 𝑡  of 𝑤  with respect to 𝐺 , 
where the words of all levels (except the last one) are in 𝑅. 
The families of all subregularly tree controlled grammars 
are denoted by 𝐓𝐂 𝐗 , 𝐗 ∈ {𝐂𝐈𝐑𝐂, 𝐂𝐎𝐌𝐁, 𝐒𝐔𝐅, 𝐃𝐄𝐅, 𝐎𝐑𝐃, 
𝐂𝐎𝐌𝐌, 𝐏𝐒, 𝐍𝐂, 𝐍𝐈𝐋}  (𝐓𝐂𝛌 𝐗 − with erasing rule). 

 
The subregularly TC grammars have achieved a good 

result in generative power as showed in subsequent 
theorems. 

 
Theorem 11 [31]  

𝐑𝐄 = 𝐓𝐂𝛌(𝐑𝐄𝐆) = 𝐓𝐂𝛌 𝐒𝐔𝐅 = 𝐓𝐂𝛌 𝐎𝐑𝐃 =
𝐓𝐂𝛌 𝐍𝐂 = 𝐓𝐂𝛌 𝐏𝐒 = 𝐓𝐂𝛌 𝐂𝐎𝐌𝐌 = 𝐓𝐂𝛌 𝐂𝐈𝐑𝐂 .    
𝐓𝐂 𝐂𝐎𝐌𝐌 = 𝐌𝐀𝐓. 
𝐄𝐎𝐋 = 𝐓𝐂(𝐌𝐎𝐍) ⊆ 𝐓𝐂(𝐂𝐎𝐌𝐁) ⊆ 𝐓𝐂(𝐃𝐄𝐅). 
𝐄𝐎𝐋 ⊂ 𝐓𝐂(𝐃𝐄𝐅). 
𝐓𝐂(𝐅𝐈𝐍) ⊂ 𝐓𝐂 𝐍𝐈𝐋  and 𝐓𝐂(𝐌𝐎𝐍) ⊂ 𝐓𝐂(𝐍𝐈𝐋). 
𝐌𝐀𝐓𝐅𝐈𝐍 = 𝐓𝐂𝛌 𝐅𝐈𝐍 ⊂ 𝐓𝐂𝛌 𝐍𝐈𝐋 ⊆	 and 
𝐓𝐂𝛌(𝐌𝐎𝐍) ⊂ 𝐓𝐂𝛌(𝐍𝐈𝐋). 
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𝐂𝐅 ⊂ 𝐄𝐎𝐋 = 𝐓𝐂𝛌(𝐌𝐎𝐍) ⊆ 𝐓𝐂𝛌(𝐂𝐎𝐌𝐁) ⊆
𝐓𝐂𝛌(𝐃𝐄𝐅) ⊆ 𝐑𝐄 and 𝐓𝐂𝛌(𝐌𝐎𝐍) ⊂ 𝐓𝐂𝛌(𝐃𝐄𝐅). 

 
The investigation of subregularly TC grammars does not 

stop there where in the same year in [32]  by Dassow and 
Truthe again continued to study on the hierarchy of 
subregularly TC languages. In that paper, they presented 
several ideas of controlling derivation trees levels of 
context-free grammar by the regular languages with 
restricted complexity, by finite union of monoids and by 
languages accepting deterministic finite automata with 
mostly prescribed number of states. This is the starting 
where the complexity of tree controlled grammars are 
being investigated. 

Then, in the same year as [31] also, [35] validated that 
every linearly bounded queue automaton has a TC 
grammar. He also showed that context-sensitive languages 
can be generated by a TC context-free grammar that has a 
control language accepted by deterministic finite 
automaton with at most five states and if erasing 
productions are allowed in the grammar, it can generate 
the recursively enumerable languages [35]. Subsequently, 
Turaev, Dassow and Selamat in [37] recommenced 
investigating the TC grammars in the company of bounded 
nonterminal complexity in 2011. They proved that without 
erasing rules, the nonterminals number in TC grammars can 
lead to an infinite hierarchy of TC languages families and 
with erasing rules, any recursively enumerable languages 
can be generated with no more than nine nonterminals [37]. 
The same authors, Turaev et al. in another paper in [36] 
demonstrated that any recursively enumerable language 
can be generated by a TC grammar with at most seven 
nonterminals only. They also established that a TC grammar 
with three nonterminals is already sufficient to generate 
any regular simple matrix and linear languages [36]. 

Later on, in 2012, by using the same technique as in [36] 
but with different version of the Geffert normal form, 
Vaszil presented that the complexity of nonterminal of TC 
grammars can be reduced from seven to six in [34]. 
Interestingly, in the same year, Koutny and Meduna in [33] 
came out with a new different idea of generating TC 
grammars where instead of placing the restrictions on tree 
levels, they placed them on tree paths and cuts. They 
restricted the derivation tree cuts by an advocated regular 
language with the notion that in every derivation tree in 
the grammar, there exists a set X of tree cuts which 
specified by regular language and cover all the tree. They 
showed that these grammars can characterize the family of 
languages of recursively enumerable. Not only that, they as 
well introduced a binary relation over those grammars 
together with the proof that it also can generate the 
identical family of languages of recursively enumerable [33]. 

 

VI. CONCLUSION AND FUTURE WORK 

In a nut shell, we have designated a review on the topics 
related to arithmetically controlled grammars and tree 
controlled grammars, such as multiset grammars, valence 
grammars and tree controlled grammars. From the original 
definition of those three controlled grammars, we can see 
that all of them have a simple procedure in term of 
generating the languages yet they are powerful grammars 
since they have achieved many remarkable result in formal 
language theory. 

However, there are still some captivating topics in this 
direction to look for future study. First, if we notice, in the 
multiset grammar review, there is no research done in 
using multiset on terminal symbols which can be based on 
an operation namely “counter” where in every production 
in the grammar, a multiset value will be given to it 
depending on the number of terminal alphabet existed in 
the right hand side of that production as a control 
mechanism. For example, if a production has one terminal 
symbol “a” and two terminal symbol “b”, its multiset will 
be counting as “1” for “a” and “2” for “b” in vector form. 
Then, a derivation in the grammar is called successful when 
it satisfied certain function. 

Other than that, it will be more interesting if we combine 
the valence and tree concepts to control the derivation of 
grammar like in tree controlled grammars. In this way, we 
can replace the regular sets with valences where every 
main production with certain integer value will be derived 
into sub-productions with the value of combination of zero 
and one or zero and minus one represented in matrices 
form in which the sum of those values given in the value of 
main production. Then, a derivation in grammar is called a 
successful one if and only if there are such permutations in 
each row yield a value of zero. This idea also can be 
combined with multiset rather than valence by replacing 
the regular set with certain summation of natural number. 
Besides, rather than checking the production rules with 
regular set, we can implement regular sets of production 
rules of the grammars. 
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