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abstract− Machine learning plays a key role in many applications such as data mining and image recognition.
Classification is one subcategory under machine learning. In this paper we propose a simple quantum circuit
based on the nearest mean classifier to classified handwriting characters. Our circuit is a simplified circuit from
the quantum support vector machine [Phys. Rev. Lett. 114, 140504 (2015)] which uses quantum matrix inverse
algorithm to find optimal hyperplane that separated two different classes. In our case the hyperplane is found
using projections and rotations on the Bloch sphere.
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I. Introduction

Quantum mechanics is emerging in many disciplines
especially in computer science as natural evolution.
One of the most important goals in computer science,
especially in pattern recognition, is to build a quantum
machine learning [1–3] that will be able to classify ob-
jects in different classes. This is because it has been
demonstrated that quantum algorithms can improve
the complexity of the classical algorithms and also can
be superior to their classical counterparts in term of re-
ducing resource costs. The nearest-mean algorithm [4]
is one of the simplest and accurate algorithms that has
been used in handwriting recognition and as well as in
astronomy [5, 6].

In pattern recognition [7, 8] there are two major
types of classical machine learning [9–11], the super-
vised learning and the unsupervised learning. Super-
vised learning is the type of machine learning where
the training data are labeled in advance, whereas the
unsupervised learning the data are not labeled. The
support vector machine (SVM) is an example of super-
vised model, and it is a decision machine that is used
for classification, regression and detection [9].

The SVM belongs to quadratic programming prob-
lems, which can be solved classically in time propor-
tional to O(poly(N, M)), where N is the dimension
of the feature space and M is the number of training
vectors. Whereas, quantum support vector machine
(QSVM) introduced by Rebentrost et al. [12] can be

implemented with only O(log NM). This is due to
the fact that QSVM is based on the solution of lin-
ear system of equations which can be obtained using
quantum algorithm more efficient than any classical
algorithm [13–15]. Furthermore, the quantum algo-
rithm for solving linear system of equations is based on
quantum matrix inversion algorithm and it is already
available [13]. Recently, an experimental realization of
quantum algorithm for solving linear systems of equa-
tions 2× 2 has been reported [16]. It is implemented
by using four-qubit nuclear magnetic resonance (NMR)
processor and the fidelities obtained are all above 96%.
The setup of this experimental has been adapted to
implement quantum support vector machine using the
same NMR processor [17].

In this paper we propose a simple quantum circuit
based on pattern recognition on the quantum Bloch
sphere and the nearest mean classifier (NMC) [18].
Moreover, this quantum circuit does not require quan-
tum matrix inversion and can be implemented by us-
ing up to three-qubit NMR processor. In this case the
hyperplane which separetes the classes can be found
using projections and rotations on the Bloch sphere.

The paper is organized as follows. Section II re-
views the quantum support vector machine which is
based on quantum inverse matrix algorithm [17], and
the pattern recognition on Bloch sphere proposed by
Sergioli et al. [19]. In section III we propose a simple
quantum circuit and at the end we give a conclusion.
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II. Background

I. Quantum support vector machine circuit

The support vector machine algorithm outputs a sep-
arating hyperplane from given labeled training data
(supervised learning). It is based on linear equations
which can be put in the form A~x = ~b, where A is
a Hermitian matrix. The solution of such system of
equations can be obtained using quantum algorithm
as shown in [13, 16]. Let briefly review this algorithm.

The spectral decomposition of the Hermitian ma-
trix A is given by A = ∑i λi|ui〉〈ui|, where λi are
the eigenvalues of A and |ui〉 are the corresponding
eigenvectors. By writing |b〉 = βi|ui〉, the solution
is obtained using the inverse of the matrix A, i.e.,
|x〉 ∝ A−1|b〉 = ∑i(βi/λi)|ui〉. A quantum circuit
for solving a system of two equations with two vari-
ables has been recently implemented using a four-qubit
NMR quantum information processor [16]. It has three
main subcircuits: phase estimation, rotations with an-
gles λ−1

i , and inverse phase estimation.

The quantum support vector machine has been
also realized experimentally using four-qubit proces-
sor [17]. The classification is obtained by measuring
the expected value of a coherent term [17]. The quan-
tum circuit for this experiment consists of three main
parts. The first part is a quantum circuit that solve
the linear set of equations using the quantum matrix
inversion. The matrix A is a 2× 2 Hermitian matrix
which has been chosen such that the two eigenvalues
are in the form 2i, i.e., 1 and 2, and the vector ~b is
set to |b〉 = 1√

2
(|0〉+ |1〉). The solution of the set of

linear equations is used to obtain the hyperplane pa-
rameters. The second part of the quantum circuit is
a training-data oracle which is implemented by two
controlled rotation gates with angles depending on the
training data. It is used to realize the kernel matrix
(up to a constant factor) which is crucial in SVM. The
third one introduces the query vector and it is used for
classification. The experiment realization of QSVM has
been implemented to classify handwritten characters
“6” and “9” [17].

We have seen in this section that the quantum cir-
cuit for solving a system of linear equations is used to
classify a query using QSVM. In the next section we
will show that we can simplify the circuit by using the
idea of pattern-recognition in Bloch sphere with the
nearest mean classifier which is the simplest accurate
algorithm for classification.

II. Pattern recognition on Bloch sphere

It is well known that any qubit |ψ〉 can be represented
as a point on the surface of the Bloch sphere. The cor-
responding density matrix of this qubit ρ = |ψ〉〈ψ| can
be written in the general form

ρ =
1
2
(I +~n ·~σ) , (1)

where ~n is a unit vector and ~σ =
(
σx, σy, σz

)
, the well

known Pauli matrices.
Using stereographic projection [20], each point

(x1, x2) in two-dimentional space can be mapped to
a point (r1, r2, r3) on the surface of the Bloch sphere.
This is very important in two-feature patterns recogni-
tion. Recently, G Segioli et al. have investigated pattern
recognition on the quantum Bloch sphere [19]. They
have shown that there is one-to-one correspondence be-
tween two-feature patterns and density matrices. Here
we briefly review their idea.

Let a training data consists of two classes A and B.
Each class contains points in two-dimentional space.
First, let consider the map

(x1, x2) −→ (r1, r2, r3)

=

(
2x1

x2
1 + x2

2 + 1
,

2x2

x2
1 + x2

2 + 1
,

x2
1 + x2

2 − 1
x2

1 + x2
2 + 1

)
,

This map is the stereographic projection of the point
(x1, x2) on the Bloch sphere. It is clear that this projec-
tion is a one-to-one correspondence between the two-
feature patterns and the points on the Bloch sphere.
That is,

(x1, x2) −→ |ψ〉 =
|x|√

1 + |x|2
|0〉+ eiφ√

1 + |x|2
|1〉, (2)

where |x| is the magnitude of the complex number
x = x1 + i x2 and φ its phase. Writing Eq. (2) in the
form of density matrix

(x1, x2) −→ ρ =
1

|x|2 + 1

(
|x|2 |x|e−iφ

|x|eiφ 1

)
. (3)

yields to a one-to-one correspondence between the two-
feature patterns and the density matrices. Second, in
order to use the density matrices in pattern recogni-
tion, a suitable definition of distance is needed. This
can be performed by using a normalized trace distance
between density operators [19] which measures the
distance between two density matrices ρa and ρb. This
distance is defined as follows.

d(ρa, ρb) = K ∑
i
|λi|, (4)
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where λi are the eigenvalues of the matrix ρa − ρb
and K is a normalize factor which is given by K =

1√
(1− ra3)(1− rb3)

, with ra3 and rb3 are the σz Pauli

components of ρa and ρb, respectively. It is worth men-
tioning that this distance given by Eq. (4) preserves
the order, i.e., given three points xa, xb and xc such
that the distances satisfying d(xa, xb) ≤ d(xb, xc), then
the corresponding density matrices satisfy a similar
inequality, d(ρa, ρb) ≤ d(ρb, ρc). Third, in order to
classify an unknown two-feature pattern, a minimum
distance classifier can be used. It is also called the Near-
est Mean Classifier (NMC) [21]. This is the simplest
classification algorithm that can be used to classify a
query into lineary separated classes. Finally, It was
found that the quantum discriminant function based
on NMC is given by [19]

f (~r) = F.r + K̃2 − 1 = 0, (5)

where

F =
(

ra∗1
− K̃2 rb∗1

, ra∗2
− K̃2 rb∗2

, ra∗2
− K̃2 rb∗3

)
, (6)

K̃ =

√
1− ra∗3
1− rb∗3

, (7)

where ri∗ = (ri∗1
, ri∗2

, ri∗3
) is the estimated centroid point

of the class i computed from the training data. If
f (r) > 0 the unknown two-feature pattern belongs to
the class A, otherwise it belongs to the class B. The
quantum discriminant function (5) is a set of linear
equations which can be easily solved. We will show in
the next section how to obtain its solution without the
need of quantum inverse matrix algorithm.

III. Quantum Circuit Based on NMC

In order to use the idea in Sec. II for pattern recogni-
tion, we need to find an approach to reduce the image
to a vector of two-dimension, ~x = (x1, x2). Zhaokai Li
et al. [17] have used a very simple approach to do so.
They used the vertical and horizontal ratios. This will
reduce all the images to vectors of two-dimension. We
will adopt their approach. If the two classes are well
linearly separated one can use NMC to classify them.

As an example, we plot in Fig. 1 the two-feature pat-
terns for the handwriting characters “6” and “9” taken
from Ref. [22]. One can see that the horizontal ratio
and the vertical ratio make the two characters linearly
separated.

Support Vector Machine is a classifier that classi-
fies a query~r0 into one of two classes, fsvm(~r0) = ±1,
depending on the class to which the query belongs.

This means that the classifier finds an optimal hyper-
plane ~w ·~r + b = 0 that divides the two classes. The
classification of a query~r0 is giving by

fsvm(~r0) = sgn (~w ·~r0 + b) ,

= sgn
(
∑ αi (~ri ·~r0) + b

)
, (8)

where the normal vector ~w = ∑ αi~ri. The role of SVM
is to determine the values of αi. Patrick et. al. [12]
implemented the support vector machine quantum me-
chanically using quantum inverse matrix algorithm to
determine the values of αi. We can pass around the
use of the quantum inverse matrix algorithm by using
NMC to determine the values of αi. This is an impor-
tant simplification of the quantum circuit proposed in
Sec. I (see Ref. [17]), and works very well if the centroid
points are well separated and are close enough to their
respective characters. We are now ready to propose an
alternative circuit to the quatum circuit of SVM.

To do so, we use transformations that transfer the
centriod points of the classes A and B to the equator
cicle

(x∗1 , x∗2)
proj.
−−−→ (r∗1 , r∗2 , r∗3)

rot.−−→ (r̄∗1 , r̄∗2), (9)

where (x∗1 , x∗2) is the component of the centroid point.
The projection in (9) is the stereographic projection
that projects the centroid point on the Bloch sphere.
Then we apply a rotation. This rotation is defined
as follows. Let introduce two vectors ~n and ~m. The
first vector is the cross product of the two centroid
vectors ~n = (n1, n2, n3) := ~r∗a × ~r∗b . The second vec-
tor is obtained by rotating the vector ~n about the
Z axis by an angle φ = arctan (−n1/n2), i.e., ~m =
(m1, m2, m3) := RZ(φ)~n. Next we rotate the train-
ing points by the rotation R(θ, φ) = RX(θ)RZ(φ) with
θ = − arccos (m3/|~m|) and RX is the rotation about
the X axis. So, the rotation in (9) can be written in
matrix form

R(θ, φ) =

 cos φ sin φ 0
− cos θ sin φ cos θ cos φ sin θ

sin θ sin φ − sin θ cos φ cos θ

 . (10)

This rotation given by Eq. (10) leads to r∗a3
= r∗b3

= 0,
and therefore, the parameter in Eq. (7) becomes K̃ = 1.
So, the quantum discrimination function Eq. (5) will be
reduced simply to the form

f (~r) = F.r = 0

=
(

r̄a∗1
− r̄b∗1

)
r1 +

(
r̄a∗2
− r̄b∗2

)
r2 = 0. (11)

Thus, from Eq. (11) we obtain the values of αi, that is,
α1 = 1 and α2 = −1. This is our main result. Thus,
we have found the values of αi without the need of
quantum matrix inversion algorithm.
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Figure 1: The handwritten characters images from Ref. [22] are given in portable bitmap format. They are cropped and then converted to
two-dimentional vectors. The red(blue) color is for the handwritten characters “6(9)”. The upper(lower) black square represents
the centroid point of the handwritten characters “6(9)”.

Let write the centroid points as

(r̄a∗1
, r̄a∗2

) := (cos(θ1/2), sin(θ1/2)), for class A

(r̄b∗1
, r̄b∗2

) := (cos(θ2/2), sin(θ2/2)), for class B

These vectors represent the training points for the quan-
tum circuit where θi = arccot

[
(r̄∗i )1/(r̄∗i )2

]
.

In general the query vector has three components
it is a three-dimensional vector. In order to convert it
to two-dimensional vector we can use the following
transformation

(r1, r2, r3)
proj.
−−−→ 1√

r2
1 + r2

2

(r1, r2), (12)

and the query point can also be written in the form

(r̄1, r̄2) := (cos(θ0/2), sin(θ0/2)).

Finally, The quantum discriminant function Eq. (11)
becomes

f (~r0) = cos
(

θ1 − θ0

2

)
− cos

(
θ2 − θ0

2

)
. (13)

Since we do not need quantum inverse matrix algo-
rithm the implementation of quantum circuit based on
NMC can be simplified from QSVM and it is shown
in Fig. 2. It consists only of two parts. The first
part (dashed) is a training data oracle quantum cir-
cuit that is used in Ref. [17] to obtain the kernel matrix
up to a constant factor. It consists of two controlled
rotation gates about the y-axis with two angles de-
pending on the training data and they are given by
θi = arccot

[
(r∗i )1/(r∗i )2

]
. If the initial state is written

as

|ψ0〉 = |0〉 ⊗
(
|0〉 − |1〉√

2

)
⊗
(

cos
θa

2
|0〉+ sin

θa

2
|1〉
)

,

where θa ∈ [0, π]. the state of the system becomes after
the oracle quantum circuit

|ψ〉 =
1√
2

cos
θa

2
(|000〉 − |010〉)

+
1√
2

cos
θ1

2
sin

θa

2
|001〉

− 1√
2

cos
θ2

2
sin

θa

2
|100〉 (14)

+
1√
2

sin
θ1

2
sin

θa

2
|101〉

− 1√
2

sin
θ2

2
sin

θa

2
|111〉.

The second part of the quantum circuit (dotted) is
also used to implement quantum support vector ma-
chine [17] and it is used to introduce the query vector
~r0. It consists of rotation about the y-axis and Hadamrd
gate. At the output of the simplified quantum circuit
the state of the system is given by

|ψ〉 =
1√
2

cos
θa

2
(|000〉 − |010〉)

+
1
2

(
cos

θ1 − θ0

2
− cos

θ2 − θ0

2

)
sin

θa

2
|001〉

+
1
2

(
cos

θ1 − θ0

2
+ cos

θ2 − θ0

2

)
sin

θa

2
|011〉

−1
2

(
sin

θ1 − θ0

2
− sin

θ2 − θ0

2

)
sin

θa

2
|101〉

−1
2

(
sin

θ1 − θ0

2
+ sin

θ2 − θ0

2

)
sin

θa

2
|111〉

(15)

One can see from the last equation that the quan-
tum discriminant function appears as coefficient to the
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Figure 2: Simplified quantum circuit based on NMC. The state |b〉 = (|0〉 − |1〉)/
√

2 and |anc〉 = cos θa/2|0〉+ sin θa/2|1〉. The
rotation angles are θi = arccot

[
(r∗i )1/(r∗i )2

]
with i = 0, 1, 2.

state |001〉. So, the expected value of the coherence
operator O = |001〉〈000| which is given by

〈ψ|O|ψ〉 = 1
4
√

2
f (~r0) sin θa, (16)

can be used to classify the query vector. If sin θa is
chosen to be positive, the sign of expected value of the
coherent operator gives the classification of the query
vector.

It is worth mentioning that if there is no ancilla,
cos (θa/2) = 0, i.e., |anc〉 = |1〉, we have

|ψ〉 =
1
2

(
cos

θ1 − θ0

2
− cos

θ2 − θ0

2

)
|00〉

+
1
2

(
cos

θ1 − θ0

2
+ cos

θ2 − θ0

2

)
|01〉

−1
2

(
sin

θ1 − θ0

2
− sin

θ2 − θ0

2

)
|10〉

−1
2

(
sin

θ1 − θ0

2
+ sin

θ2 − θ0

2

)
|11〉.(17)

The last equation can be used if the coefficients of |01〉
does not change its sign. In this case we can use temog-
raphy to determine the final state Eq. (17), and then
classify the query accordingly. In other way, it is im-
portant to check the sign of the coefficients |00〉 and
|01〉. From Fig. 1 we can show that the coefficient of
|01〉 is always positive. In this case we need only two
qubits to classify the query, i.e., the ancilla state is not
needed in this case.

In the next section we will show explicitly how to
apply the transformations and the NMC to classify a
query.

IV. Classifying handwritten characters

“6” and “9”

In this section we implement the simple quantum cir-
cuit for pattern recognition based on NMC for the
two handwriting characters “6” and “9”. We follow

Zhaokai Li et al. [17] and convert each handwriting
characters from Ref. [22] to vectors of two dimension.
This has been done by considering the horizontal and
vertical ratios of these handwriting characters.

Figure 1 shows the horizontal and vertical ratios
of the two classes, the handwriting characters “6” and
“9”. One can see that they are linearly separated. Us-
ing the stereographic projection describe in section II
we map each point on Fig. 1 to a point on the Bloch
sphere. This is shown in Fig. 3. The points on the Bloch
sphere remain linearly separated. Applying the rota-
tion given by Eq. (10) to all points on the Bloch sphere
we obtain the left figure in Fig. 4. This rotation brings
the two centroid points on the xy-plane which leads
to the simplification of the quantum circuit proposed
in Ref. [17]. Only the centroid points are transformed
to two-dimensional vectors. These points are used as
training points. The query point is on the Bloch sphere
and it is a three-dimensional vector. One can see that
the discriminant function Eq. (11) does not depend on
r3. So, to convert it to a two-dimensional vector, we
apply the projection (12) This transformation is shown
in right figure of Fig. 4 and eventually it does not effect
the separation of the two classes.

Finally, the training and the query points are now
represented by two-dimension vectors. The centroids
points for “6” and “9” are

"6"∗ : (0.884, 1.814)
rot. and proj.
−−−−−−−−−→ (0.583,−0.812)

"9"∗ : (1.039, 0.631)
rot. and proj.
−−−−−−−−−→ (0.966,−0.258)

Let for example take the ancilla state to be in the
state |anc〉 = (|0〉+ |1〉)/

√
2. If the query chosen is “6”

(see Fig. 5), the final state would be given by

|ψ〉 = 0.653 |000〉+ 0.0155 |001〉 − 0.653 |010〉
+0.366 |011〉 − 0.0635 |101〉+ 0.0895 |111〉 .

It is clear that the coefficient of |001〉 is positive. So,
the character represents “6”. So, the simple quantum
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Figure 3: The handwriting characters “6” and “9” are linearly separated in the Bloch sphere.

Figure 4: Applying the rotation, Eq. (10), to the Fig. 3, the handwriting characters “6” and “9” are linearly separated in the Bloch sphere.
The two centroid points are now in the xy-plane (green dots) (left figure). Applying the projection , Eq. (12), to the left figure the
handwriting characters are linearly separated and all the points are now in the xy-plane (right figure).

circuit recognizes the handwriting character. Similarly,
if we use the query "9" from Fig. 5 we obtain

|ψ〉 = 0.653 |000〉 − 0.0104 |001〉 − 0.653 |010〉
+0.372 |011〉 − 0.0646 |101〉 − 0.0602 |111〉 .

In this case the coefficient of |001〉 is negative which
indicates that the simple quantum circuit recognizes it
as “9”.

It is worth mentioning that if the normalized two-

feature patterns,
~x
|~x| , are well linearly separated we can

dispense the rotation Eq. (10). Thus, the normalized

process is enough since the centroid points are now lo-
cated on the equator circle (see Fig. 6). In this case, the
handwriting charachtern “6” from Fig.5 is represented
by the normalized vector (0.316, 0.949) which leads to
the final state

|ψ〉 = 0.653 |000〉+ 0.0113 |001〉 − 0.653 |010〉
+0.371 |011〉+ 0.0533 |101〉 − 0.0784 |111〉 .

The coefficient of |001〉 is positive. Similarly, for the
handwriting character “9”represented by the normal-

character (x1, x2) (x̄1, x̄2)

(0.725, 2.175) (0.468,−0.884)

(1.027, 0.663) (0.960,−0.280)

Figure 5: The two characters used for pattern recognition taken from Ref. [22]. The vector (x1, x2) represents the two-feature, x1 is the
horizontal ratio and x2 is the vertical ratio of the pixels of the image. the vector (x̄1, x̄2) is obtained by using the rotation and the
projection defined in the text.
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Figure 6: The handwriting characters are still linearly separated after normalization. The equation of line is given by the quantum
discriminant function Eq. (11).

ized vector (0.907, 0.422) leads to the final state

|ψ〉 = 0.653 |000〉 − 0.007 |001〉 − 0.653 |010〉
+0.376 |011〉+ 0.0541 |101〉+ 0.0488 |111〉 ,

and the coefficient in this case is negative. Therefore,
if the two-feature patterns represented by normalized
vectors are linearly separated we can skip the rotation
and projection. The quantum discrimination function
is already in its simplest form given by Eq. (11) where
the values of αi are ±1.

We have proposed a simplified quantum circuit
based on pattern recognition on the quantum Bloch
sphere and the nearest mean classifier (NMC) to clas-
sify the handwritting characters. This quantum circuit
does not need quantum matrix inversion and can be
implemented by using three-qubit NMR processor. The
hyperplane can be found using projection and rotation
on the Bloch sphere. The rotation R(θ, φ) transforms
the two centroid points to the equator circle, so that
the values of αi are ±1. As a result of this, the quan-
tum matrix inversion is not needed. The projection
is used to transform the query from three-dimention
to two-dimention since the quantum discrimination
function does not depend on the third component of
the query vector. It is also worth to mention that if the
normalized two-feature patterns are linearly separable
then the rotation of the training data are not needed.
In some cases we can extend two-feature patterns to a
three-feature patterns if the normalized three-feature
patterns can leads to linearly separated classes.
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