
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

Two Improved Cuckoo Search Algorithms
for Solving The Flexible Job-Shop

Scheduling Problem
Ahmed T. Saadeq Al-Obaidi, Samer Alaa Hussein

Computer Science Department, University of Technology, Baghdad, Iraq

Abstract— The Cuckoo Search (CS) is heuristic search algorithm which is inspired from
cuckoo bird behavior. In this paper, we propose two improvements for the cuckoo search
algorithm for solving Flexible Job-Shop Scheduling problem (FJSP); the first one depends
on Best Neighbors Generation (CS-BNG) and the second one is based on Iterative Levy
Flight (CS-ILF). Some adaptation for the key points of CS algorithm has been done to
enhance searching in the discrete state space. The proposed algorithms have increased
the solutions’ quality and convergence rate. The improved algorithms have been tested
on some FJSP benchmark instances for performance examination. The experimental
results demonstrate the effectiveness of the improved algorithms in comparison to the
basic cuckoo search algorithm.

Keywords— Metaheuristic algorithm, Cuckoo Search, Combinatorial Problems, Flexible
Job-shop Scheduling.

I. INTRODUCTION

Scheduling plays an important role in most
manufacturing and production systems as well as
most of the information processing environment,
such as sequencing the jobs in a manufacturing
system to process on a sequence of machines.

Job-shop Scheduling Problem (JSP) is one of the
main scheduling problems, which was classified
as NP-hard problem [1] .In the JSP, there are a
number of jobs that must be processed on a
given collection of machines .Each job is
composed of a fixed sequence of operation. Each
operation has a specified machine to process on.
A machine can only process one operation at a
time [2].

A flexible Job-Shop Scheduling Problem (FJSP) is
a generalization of the job shop [1]. In FJSP, each
job operation can process on a set of machines
with a processing time which made the problem
more difficult to specify a proper machine from a
given set that should process each operation [2].

The FJSP consists of two sub-problems: the
routing and scheduling [3, 4], where the routing
sub-problem means the determination of the
assignment for each operation to a machine from
a given set of the machines and the scheduling
sub-problem is sequencing the assigned
operations on all machines to get a feasible
scheduling with a minimum predefined objective
function. Several objectives have been achieved
with JSP, but makespan minimization is the most
widely studied [5], which is the maximum
completion time for the jobs in the scheduling.

From the NP-harness of the FJSP, there is no
efficient algorithm to find the optimal solution;
therefore, the metaheuristic algorithms are the
important alternative for solving this class of
problems, which give a feasible solution in an
acceptable amount of time [6].

The rest of the paper is organized as follows.
Some related works are reviewed in Section 2.
Section 3 presents a brief description for CS
Algorithm. Discrete Levy Flight and parameters of
Modified CS algorithm are explained in Section 4.
The first improved CS is presented in Section 5
and the second improvement proposed in Section
6. The experimental results are introduced in
Section 7.

Lastly, this paper ends with some conclusion in
Section 8.

II. RELATED WORKS

The robustness and the effectiveness of the
Cuckoo Search algorithm encourage the
researchers to improve its performance for many
optimization problems.

H. Zheng and Y. Zhou [7] implemented a novel
cuckoo search optimization algorithm based on
Gauss Distribution (GCS). The GCS algorithm has
been used to solve standard test function and
engineering design optimization. The algorithm
found a more quality solution than the best
solution obtained by CS, and the GCS had higher
convergence rate.

Y. Zhou et al. [8] proposed modified CS
algorithm for solving the graph coloring problem.

25

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

The improvement consists of the greedy
transform algorithm which has been added to
enhance the traditional CS performance. The map
of China was taken as an example to
demonstrate ICS performance for solving the
problem. The comparison result shows the
efficiency and accuracy of the ICS and high
effectiveness of this algorithm appeared in the
moderate size of the graph coloring problem.

P. Ong [9] proposed Adaptive Cuckoo Search
Algorithm (ACSA) for Unconstrained Optimization.
The step size α is adjusted adaptively in this
method instead of using constant value. From all
considered benchmark optimization functions,
the ability of the ACSA to converge was faster
than CS in less iteration. This modification gave
the preference of the ACSA over the standard CS
in the convergence rate.

T. Nguyen and D. Vu [10] present an efficient
CS modification to solve short-term hydrothermal
scheduling (HTS) problem. In this modification,
after sorting the eggs in the descending order
according to their fitness function value, they will
be classified in two groups. The top group is
contains the egg with low fitness value while the
abandoned group is contents the other eggs. This
method proposed changing the step size of the
Levy flight in CS with the number of iteration that
will encourage more localized search in getting
closer to the optimal solution. Furthermore, two
eggs will exchange information in top eggs group
to accelerate the search process of the eggs. The
robustness and the effectiveness of the proposed
method have been validated by comparing with
different test systems.

S. Singh and K. P. Singh [5] proposed a new
hybrid approach for solving makespan objective
in job shop scheduling problem by mixing a set of
assorted individual enhancement with CSO
technique to increase the cuckoo search ability.
Random key encoding was represented to
transform a real-valued vector to discreet one.
The analyzing results show that the hybrid
approach is better than simple CSO.

FJSP attracts many researchers for solving this
problem due to its importance in the many
practical fields.

A. Thammano and A. Phu-ang [11] solved FJSP
problem using hybrid Artificial Bee Colony
algorithm with local search for makespan. The
initial solution was created using several
dispatching rule and harmony search algorithm.
For escaping from the local optimum, the
simulated annealing algorithm will be applied.
Finally, crossover operation was proposed for the
exploration enhancement. The experimental
results show the efficiency of the proposed
algorithm.

 M. Nouiri et al. [12] applied particle swarm
optimization algorithm (PSO) to solve this FJSP

problem. They built an effective algorithm
characterized by reconfigured easily for
embedded system appropriate for an
unpredictable environment. The developed PSO
algorithm tested on several benchmark data and
the effectiveness of the algorithm had been
proven for solving FJSP problem.

W. Zhou et al. [13] combined cultural algorithm
with particle swarm optimization (CPSO) for
minimizing maximum completion time of the FJSP
problem. The belief space and the population
space were modified. Low variability and stability
of the hybrid algorithm CPSO were shown in the
simulation results. From comparison with PSO,
CPSO is more effective to deal with FJSP.

Y. Wang et al. [2] improved Social Spider
Algorithm (SSA) for FJSP. They combined
selection, crossover and mutation operations with
the original SSA for the performance
enhancement. The initial individual was
generated using a combination of rules to have a
quality and diverse solutions. The proposed
algorithm produces better solutions quality in
compression with other algorithms.

III. CUCKOO SEARCH ALGORITHM

CS is a metaheuristic algorithm proposed by
Yang and Deb [14]. The theoretical inspiration of
the algorithm came from the behavior of the
cuckoo bird aggressive reproduction strategy.
Laying cuckoos eggs would be in a different nest
of the host bird even it was for different species.
The cuckoo eggs may be discovered by the host
bird and either it would be destroyed or the host
bird nest would be abandoned and completely
build a new nest. This has resulted in the cuckoo
eggs evolution which mimics the local host bird’s
eggs. Yang and Deb implement this strategy as
an optimization tool using three ideal rules [14,
7]:

1) Each cuckoo lays one egg, which represents
set of solution coordinates, at a time and dumps
it in a randomly chosen nest.

2) A fraction of the nests with high-quality
eggs (best solutions), will carry over to the next
generation.

3) The number of nests is fixed and the host
can discover an outsider eggs with a probability
Pa(0,1), which is the elimination of the egg or
the nest by the host and building a completely
new nest in another area.

In view of these three rules, the main steps of
CS algorithm can be outlined as the pseudocode
appeared in Fig. 1. A new solution x(t+1) for the ith
cuckoo is produced using levy flight as follows

xi(t+1)  xi(t) +   Levy() (1)

26

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

where  > 0 is the step size that ought to be
identified with the problem scales. In most of the
time, we can utilize =1. The product  means
entry-wise multiplication. Levy flights basically
produce a random walk and their random step-
lengths are pulled from the Levy distribution

Levy ~ u = t- (1 <  ≤ 3) (2)

which has an infinite variance. The successive
steps/jumps of a cuckoo basically compose the
process of a random walk which comply a power-
law step-length distribution with a heavy tail. A
fraction Pa of the worst nests can be discarded
and construct new nests at new places using
random walk.

Fig. 1 Basic Cuckoo Search Algorithm

IV. DISCRETE LEVY FLIGHT AND PARAMETERS OF MODIFIED
CS

In the proposed algorithms, Levy flight was
developed to suit the flexible job-shop scheduling
problem and the population size and maximum
generation have been proposed as follows:

A. Modified Levy Flight

Levy Flight applied for continues space.
Therefore, we proposed some modification for the
Levy flight equation to appropriate searching in
discrete space.

Let Xi
(t) and Xj

(t) are two random solutions from
the population of the problem in the t-th
iteration. The new solution generated by the
equation:

Xi
(t+1) = Xi

(t) + α (Xj
(t)  Xi

(t)) × t-β (3)

where the term α (Xj
(t)  Xi

(t)) represented as the
difference from the current solution Xi

(t) , α =1,
and the (t-β) is the random steps which drown

from Levy Distribution, as in (2). The parameter
(β) is chosen from the formula:

 = min + (max  min / tmax) × t (4)

where βmin and βmax are the minimum and
maximum allowable value from Levy
Distribution. In our proposed algorithms, βmin=1.1
and βmax= 3.

The subtraction, multiplication, and addition
operations in the Levy Light, as in (3), are
modified by some neighborhood structure for the
discrete scheduling problem as the following:

1) Subtraction:

While the solution is a jobs permutation vector
and machine assignable vector, the subtraction
operation presented as a comparison between
two solutions (jobs permutation vector) to
produce a new solution chain Xsub.

Let X1 and X2 are two solutions, for all the
elements if given elements of two solutions are
equal then the element in the new chain is set as
zero. Otherwise, the element in the new solution
chine takes the value of the corresponding
element in X1. See Fig. 2.

X1 1 3 1 2 3 2
X2 2 1 3 2 3 1

Xsub 1 3 1 0 0 2

Fig. 2 The subtraction operation X1-X2

2) Multiplication

The multiplication operation is a product of (σ:
= t-β) and the solution chain (Xsub) which taken
from subtraction operation. A random number
from the uniform interval (0,1) is generated for
each element in the chain (Xsub) then the random
number is compared with σ, if the random
number is equal or more than σ, the element in
the new chain (Xmult) set equal to the (Xsub)
element at the same position. Otherwise, it takes
zero number. Fig. 3 represents the multiplication
process.

σ = 0.25
Xsub 1 3 1 0 0 2
rand(0,
1)

0.8
1

0.1
5

0.3
4

0.9
5

0.0
8

0.7
6

Xmult 1 0 1 0 0 2

Fig. 3 The multiplication operation.

3) Addition

The addition operation is represented as a
number of swap moves. It is the final step to

27

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

generate a new solution Xnew from the Current
Solution X.

For each element Xmult(i) of Xmult, if Xmult(i) is
equal to zero, the Xnew(i) of Xnew takes the same
job of X(i) for the same position. Otherwise, Xnew

takes the job of X(i) in a random position. Means,
The jobs which have positions corresponding to
non-zero elements in Xmult are swapped randomly.
Fig. 4 illustrates the addition operation.

X 2 1 3 2 3 1

Xmult 1 0 1 0 0 2

(a) Select the positions

2 1 3 2 3 1

(b) Randomly swap the jobs

3 1 1 2 3 2

Xnew 3 1 1 2 3 2

Fig. 4 The addition operation.

B. Population Size related with Problem size

The population size of the algorithm is
proposed to be related to the size of the problem
(number of jobs and machines) by the formula:

Population size = 0.5 × (n×m) (5)

where n is the number of jobs and m is the
number of machines. The number of the
population has an impact on the time and
diversity in the algorithm, so this equation gives
a moderate size for the population to find feasible
solutions.

C. Maximum Generation

The iteration number has a role in the levy
flight to find a new solution. Thus, the maximum
generation number and the problem size
suggested to be related as follows:

Max generation = 800, if (n×m) < 50.
Max generation = 900, if (n×m) = 50.
Max generation = 1000, if (n×m) > 50.

V. CS BASED ON BEST NEIGHBORS GENERATION

The first proposed method, CS-BNG improved
the CS algorithm in the step of generating new
solutions to replace the abandoned ones. In basic
CS generating solution, the replacement of the
worst solution was made totally by generating
solutions randomly in state space. That may be
lead to decrease convergence rate to the optimal
solution. Therefore, we proposed to divide a

fraction of abandoned nests into two halves, the
first half will replace by random generating of the
solution and the second will be generated
randomly from the neighborhood of the current
best solution.

We kept random generation for the solutions
which replace the abandon ones to maintain the
power of the randomization in an exploration of
the state space and using the BNG to increase
the exploitation of the best location which has
been reached in the generation at a time. A
balance between diversification and convergence
has been made to enhance the CS-BNG algorithm
ability for finding the solutions.

Fig. 5, which shows the first improved CS
algorithm based on BNG. The improvement step
proposed to increase the convergence rate to the
optimal solution and decreased time to get
optimal or near to the optimal solution.

Cuckoo Search based on BNG Algorithm
Input: Population of the problem, pa

Output: Best Solution
Begin
 Objective function F(x), x=(x1, …, xd)T

 Generate initial population of n host nests xi
(i = 1, 2, …, n)
 While (t <Max Generation) or (not stop
criterion)
 Generate new solution by levy flight say i
 Evaluate its quality/fitness Fi

 Choose a nest among n (say, j) randomly
 if (Fi > Fj)
 replace j by the new solution;
 A fraction (pa)/2 of worse nests are
abandoned and new
 ones are built randomly;
 A fraction (pa)/2 of worse nests are
abandoned and new
 ones are built by call BNG ((pa)/2, current
best);
 Keep the best solutions (or nests with
quality solutions);
 Rank the solutions and find the current best
 end while
 Post process results and visualization
End

Fig. 5 Improved Cuckoo Search Algorithm based on CBN
generation.

Best Neighbor Generation Algorithm
Input: A : (pa)/2, CB : current best;
Output: New Nests.
Begin
 for i=1 to A
 Generate a random neighbor Ni from CB by 3-
opt
 End for
End

Fig. 6 Current Best Neighbor Generation Algorithm.

28

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

VI. CS BASED ON ITERATIVE LEVY FLIGHT

Levy Flight gives robustness for CS algorithm
for finding a new position in the state space
which means generating a new solution from the
current solution. Thus, we proposed to repeat the
levy flight step which includes (individual
selection, new solution generation, and survival
of the better solution) multiple times in the
iteration, instead of once in basic CS, for more
exploitation. This improvement combined with
the first improvement to present the second
improvement CS-ILF.

A number of repetitions affect the time, thus, a
small number of repeated Levy Flight step must
be chosen for a reasonable time, and we suggest
this number related to the population size of the
problem. Iterative Ratio (IR) presented as the
ratio of the population size for the repetition
times of the Levy flight. This improvement
enhances exploration of the CS-ILF algorithm in
an acceptable time. Fig. 7 shows the second
improved CS algorithm based on iterative Levy
flight.

This method increased the solution quality to
reach the optimal or near to the optimal solution.

Cuckoo Search based on ILF Algorithm
Input: Population of the problem, pa , IR
Output: Best Solution
Begin
 Objective function F(x), x=(x1, …, xd)T

 Generate initial population of n host nests xi (i
= 1, 2, …, n)
 While (t <Max Generation) or (not stop
criterion)
 For I = 1 to k (k=IR*nest no.)
 Generate new solution by levy flight say i
 Evaluate its quality/fitness Fi

 Choose a nest among n (say, j) randomly
 if (Fi > Fj)
 replace j by the new solution;
 next I
 A fraction (pa)/2 of worse nests are
abandoned and new
 ones are built randomly;
 A fraction (pa)/2 of worse nests are
abandoned and new
 ones are built by call BNG ((pa)/2, current
best);
 Keep the best solutions (or nests with quality
solutions);
 Rank the solutions and find the current best
 end while
 Post process results and visualization
End

Fig. 7 Improved Cuckoo Search Algorithm based on iterative
Levy flight.

VII. EXPERIMENTAL RESULTS

FJSSP is a combinatorial problem that used as a
tool to measure the performance of the two
improved methods.

Cuckoo Search is an efficient and robust
optimization method in continues state space.
Therefore, some adaptation proposed for
applying its efficiency in the discrete state space.

CS and its improvements were implemented in
MATLAB on a computer that has Intel Core2 Duo
P7350, 2.0 GHz processor with 4 GB Memory
(RAM) and 300 GB hard drive. The algorithms
have been applied on Hurink et al.[15,16]
instances with three different instance sets
“edata”, “rdata”, and “vdata” which the set of
assignable machines with a particular probability
distribution has been expanded . Ten
independents run have been performed on each
algorithm and the outcomes appeared in Table I.

The difference between CS and its two
improvements for finding better makespan was
clearly shown in Fig. 8.

TABLE 1
AVERAGE OPTIMALITY FOR CS AND ITS IMPROVEMENTS

Instance
s

Lower
Boun
d
[15]

Average
Makespa
n
of CS

Average
Makespan
of
Proposed
CS -BNG

Average
Makespa
n of
Proposed
CS-ILF

edata-
mt06 55 56 55 55

edata-
mt10 871 1191 986 979

edata-la1 609 729 636 634
edata-la2 655 783 707 694
edata-la3 550 667 593 588
edata-la4 568 709 620 619
edata-la5 503 605 525 526
edata-la6 833 976 864 861
edata-la7 762 960 818 819
edata-la8 845 1001 880 868
rdata-
mt06 47 55 50 50

rdata-
mt10 679 1067 802 801

rdata-la1 570 723 607 609
rdata-la2 529 680 573 567
rdata-la3 477 621 518 512
rdata-la4 502 646 542 538
rdata-la5 457 577 484 480
rdata-la6 799 974 832 821
rdata-la7 749 917 779 776
rdata-la8 765 938 793 790
vdata-
mt06 47 55 49 48

vdata-
mt10 655 1000 746 729

vdata-la1 570 728 613 609
vdata-la2 529 675 565 564
vdata-la3 477 627 515 520
vdata-la4 502 652 534 531
vdata-la5 457 587 485 499
vdata-la6 799 981 826 821
vdata-la7 749 941 774 773
vdata-la8 765 952 779 787

29

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

In our experiment, many tests have been
applied for the algorithms to determine the
suitable values of the algorithms parameters. The
fraction of the worst nest Pa=0.4, IR=0.2.

0
200
400
600
800

1000
1200
1400

LB CS
BNG-CS ILF-CS

Fig. 8 Difference between CS and Its improvements.

Table II shows the difference between the
algorithm and its improvements in the iteration
number that formatted in bold text.

To see clearly the difference in iteration
number between CS and its improvement see Fig.
9. The two improved methods are better than the
pure CS in finding higher quality solutions in less
number of iteration for most instances.

From Table II, we see the two improvement
speed up the convergence rate of the basic CS
algorithm to find better solutions.

TABLE 2
COMPARISON OF CS AND ITS IMPROVEMENTS FOR AVERAGE NUMBER OF

ITERATION

instances

Average
of
iteration
number
in CS

Average of
iteration
number
in CS- BNG

Average of
iteration
number
in CS-ILF

edata-mt06 444 39 69
edata-mt10 452 718 466
edata-la1 475 352 369
edata-la2 540 316 293
edata-la3 507 399 477
edata-la4 584 432 433
edata-la5 653 370 199
edata-la6 498 519 460
edata-la7 546 674 490
edata-la8 488 576 550
rdata-mt06 482 136 406
rdata-mt10 569 726 792
rdata-la1 676 532 437
rdata-la2 528 498 638
rdata-la3 503 527 615
rdata-la4 397 538 596
rdata-la5 387 577 651
rdata-la6 591 393 601
rdata-la7 458 440 692
rdata-la8 595 402 482
vdata-mt06 449 86 132

vdata-mt10 648 713 678
vdata-la1 425 497 643
vdata-la2 510 656 581
vdata-la3 468 586 450
vdata-la4 412 529 577
vdata-la5 540 592 363
vdata-la6 425 769 650
vdata-la7 692 606 681
vdata-la8 479 650 520

Fig 9, illustrate the difference between CS and Its
improvements in the number of iteration. Most of
the result which gets from the second
improvement obtained more quality solution
comparing with the first one. In terms of the
speed, a third of the benchmark instances results
from the second improvement are slower than
the first one with a slightly increased the iteration
number.

0
100
200
300
400
500
600
700
800
900

CS BNG-CS ILF-CS

Fig. 9 Average of iteration in CS and Its improvements.

VIII. CONCLUSION

This paper presented two improved CS
algorithms. In the first improvement, the division
of the generating solutions instead of the deleted
ones speeds up the convergence rate and
maintaining a good amount of diversification.
Levy Fight gives the effectiveness of CS
algorithm, therefore, we proposed, in the second
improvement, to repeat it multiple times in an
acceptable ratio (IR). From the experiments, we
found (0.2) of the iterated Levy flight is a suitable
ratio for obtaining feasible solutions and
increasing this ratio has a time consuming for
finding better solutions.
The Experimental results show that the two
improvements have higher quality solutions and
speed up the convergence rate in most instances
in comparison with the basic cuckoo search
algorithm.

REFERENCES

[1] M. L. Pinedo, Scheduling: Theory, Algorithms, and
Systems, 4th ed., Springer-Verlag, 2012.

[2] Yao Wang, LinBo Zhu, Jiwen Wang, and Jianfeng Qiu, “An
Improved Social Spider Algorithm for the Flexible Job-
Shop Scheduling Problem,” Estimation, Detection and

30

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 2, Issue 2 (2016)

Information Fusion (ICEDIF) International Conference on.
IEEE, pp. 157-162, 2015.

[3] Ling Wang, Gang Zhou, Ye Xu, Shengyao Wang, and Min
Liu, “An effective artificial bee colony algorithm for the
flexible job-shop scheduling problem”, The International
Journal of Advanced Manufacturing Technology,
Springer-Verlag, vol. 60, Issue 1, pp. 303-315, 2012.

[4] Jin Feng Wang, Bi Qiang Du, and Hai Min Ding, “A
Genetic Algorithm for the Flexible Job-Shop Scheduling
Problem” Advanced Research on Computer Science and
Information Engineering International Conference (CSIE)
Part I, pp. 332-339, 2011.

[5] Shekhar Singh and Krishna Pratap Singh, “Cuckoo
Search Optimization for Job Shop Scheduling Problem”,
Advances in Intelligent Systems and Computing,
Proceedings of Fourth International Conference on Soft

Computing for Problem Solving, Springer, pp. 99-111,
2015.

[6] El-Ghazali Talbi, Metaheuristics from Design to
Implementation, John Wiley & Sons, 2009.

[7] Hongqing Zheng and Yongquan Zhou, “A Novel Cuckoo
Search Optimization Algorithm Base on Gauss
Distribution”, Journal of Computational Information
Systems, vol. 8, no. 10, pp. 4193- 4200, 2012.

[8] Yongquan Zhou, Hongqing Zheng, Qifang Luo, and
Jinzhao Wu, “An improved Cuckoo Search Algorithm for
Solving Planar Graph Coloring Problem”, Applied
Mathematics & Information Sciences, vol. 7, no. 2, pp.
785-792, 2013.

[9] Pauline Ong, “Adaptive Cuckoo Search Algorithm for
Unconstrained Optimization”, the Scientific World
Journal, vol. 2014, 2014.

[10] Thang Trung Nguyena and Dieu Ngoc Vo, “Modified
cuckoo search algorithm for short-term hydrothermal
scheduling”, International Journal of Electrical Power &
Energy Systems, Elsevier, vol. 65, pp. 271–281, 2015.

[11] Arit Thammano and Ajchara Phu-ang, “A Hybrid Artificial
Bee Colony Algorithm with Local Search for Flexible Job-
Shop Scheduling Problem”, Procedia Computer Science
20, Elsevier, pp. 96-101, 2013.

[12] Nouiri M., Jemai A., Ammari A. C., Bekrar A., and Niar S.,
“An effective particle swarm optimization algorithm for
flexible job-shop scheduling problem”, Industrial
Engineering and Systems Management (IESM),
Proceedings of 2013 International Conference on. IEEE,
pp. 1-6, 2013.

[13] Wei Zhou, Yan-ping Bu, and Ye-qing Zhou, “Combining
CA and PSO to solve flexible job shop scheduling

problem”, Control and Decision Conference (2014
CCDC), The 26th Chinese. IEEE, pp. 1031-1036, 2014.

[14] X. S. Yang and S. Deb, “Cuckoo search via Lévy flights”,
World Congress on Nature & Biologically Inspired
Computing (NaBIC 2009).IEEE Publications, pp. 210–214,
2009.

[15] Behnke, D., Geiger, M.J, “Test instances for the flexible
job shop scheduling problem with work centers,”
Helmut-SchmidtUniversit¨at, Hamburg, Germany. Rep.
RR-12-01-01, 2012.

[16] M. Mastrolilli, “Flexible Job Shop Problem”, Dalle Molle
Institute for Artificial Intelligence (IDSIA), The University
of Applied Sciences and Arts of Southern Switzerland
(SUPSI). [Online]. Available:
http://www.idsia.ch/~monaldo/fjsp.html

31

