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Abstract— The outbreak of COVID-19 in late 2019 presents a challenging dimension exhibited by its fast and 
high rate of infection, even though its severity on infected patients is somewhat feeble, especially in people 
with strong immunity.  Due to this rapid infection rate and the limited capacity of healthcare infrastructures, 
an optimal allocation of health facilities and resources becomes imperative.  Consequently, forecasting an 
individual’s infection severity is crucial to efficiently determine whether the patient requires hospitalization 
or may be treated as an outpatient to free resources for those desperately deserving. Without such systems, 
health resources would be inefficiently utilized, resulting in needlessly lost lives. This study attempts to 
provide a model to determine the mortality of an infected patient on arrival to the health facilities to 
determine whether or not it is necessary to admit them to intensive care. A Convolutional Neural Networks 
(CNNs) model based on the ResNet-18 architecture was trained on chest X-rays of COVID-19 patients to 
estimate their mortality risk, with the best model achieving a training accuracy of 99.6 percent while the 
validation accuracy achieved 86.7% along with high sensitivity. 

 
Keywords— Deep Learning, Convolutional Neural Networks(CNNs), Image Classification, X-Rays, COVID-19, 
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I. INTRODUCTION 

COVID-19 began in late 2019 and has since decimated the 
planet, its rate of infection and spread is unprecedented due 
to globalization. It is a particularly effective illness due to its 
fast rate of infection even though it has an extremely low 
mortality rate. COVID-19's massive infections have pushed 
the global healthcare facilities and resources to their limits, 
as a large number of people have been infected in a short 
period. Several countries such as China, India, Italy, etc., for 
example, had to convert stadiums or other public spaces 
into makeshift specialized hospitals [1], [2]. 

The severity of the infected patients' symptoms, which 
can range from mild to severe, is an important factor to 
consider [3], and certain co-morbidities, such as age and 
diabetes, have been identified as high-risk while other 
elements are still being determined. This means that not 
everyone needs to be admitted to the hospital. This is 
possibly the most important aspect of the research. 
Consequently, the healthcare system's limited capacity and 
the unidentified requirement for hospitalization motivated 
the need to develop a prioritizing procedure to decide which 
patients should be hospitalized. 

The intensity of the infected individuals' symptoms, which 
can range from moderate to severe, is an important factor 
to consider. This means that not everyone needs to be 
admitted to the hospital, and while some co-morbidities, 
such as age and diabetes, have been identified as high-risk 
[4], other factors have yet to be found. As a result, it's 

impossible to say whether a person has to be admitted to 
the hospital or if they can recover at home. 

These two aspects of the pandemic, namely the 
healthcare system's limited capacity and the unknown 
requirement for hospitalization, have necessitated the 
development of a prioritizing algorithm to decide which 
patients require hospitalization. Unfortunately, in the 
current scenario, some patients are admitted to hospitals, 
wasting valuable resources when they do not require them, 
while others have no access owing to a shortage of 
resources. As a result, doctors had to make some difficult 
but important judgments about who gets to access such 
resources [5]. 

 Chest X-rays (or CXRs) may hold the key to determining 
those who should be admitted. CXRs are routinely used by 
radiologists to visually assess lung abnormalities in both 
emergency and non-emergency situations. COVID-19 is 
diagnosed likewise, having pneumonia as its most common 
symptom. CXRs have been demonstrated to have adequate 
sensitivity and specificity in detecting such lung 
abnormalities [6].  

The challenge of suboptimal hospitalization has provided 
an opportunity for deep learning to spread its wings. By 
serving as an acceptable prioritizing mechanism, a model 
that can estimate the prospective mortality risk of a patient 
infected with COVID-19 based on CXRs would be a great 
contribution to the medical community at large. By 
allocating medical resources optimally to minimize 
unnecessary deaths. 
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The goal of this study is to develop computer vision 
techniques to estimate mortality risk in COVID-19 patients 
using X-ray dataset. The data for the study was gathered 
from reputable sources of COVID-19-related X-ray data, 
which was then transformed into a format suitable for the 
CNNs model.  

It is intended that by using a model that can properly 
estimate mortality risk, unnecessary deaths can be avoided 
by allocating limited medical resources wisely, reducing the 
number of deaths. This should also reduce the number of 
COVID-19 patients admitted to hospitals, limiting future 
exposure by reducing the number of individuals in hospitals 
and ensuring the safety of medical personnel. Finally, this 
lowers the incidence of peak infection, delays the onset of 
the peak, and lowers the total number of infections during 
the pandemic. 

II. RELATED WORK 

Previous studies, such as [7], acknowledged COVID-19's 
high infection rate and the negative consequences it has in 
terms of limited medical resources and loss of life. The main 
motivation for this research is that early detection of 
patients with a poor prognosis is critical for early prevention 
before serious symptoms appear. The work presents a fully 
autonomous deep learning approach for COVID-19 diagnosis 
and prognostic analysis using commonly used computed 
tomography (or CT). CT was chosen because it is far more 
sensitive than RT-PCR x-rays, even in asymptomatic patients, 
and it can be obtained rapidly and cheaply. COVID-19 was 
distinguished from other types of pneumonia with AUC by 
the model, which performed excellently. The model 
performed considerably well, able to distinguish COVID-19 
from other pneumonia with AUC (area under the ROC Curve) 
of 0.87 and 0.88, respectively, and viral pneumonia with an 
AUC of 0.86.  More crucially, the deep learning system was 
able to classify patients into high-risk and low-risk groups 
depending on the length of their hospital stay. 

In contrast to [7], the study in [8] used the opposite 
approach, utilizing chest X-rays instead of CT scans. The 
study, like the previous one, emphasized the scarcity of 
mechanical ventilators. To that end, the research offers a 
deep learning model for predicting the requirement for 
mechanical ventilation in hospitalized COVID-19 patients 
using chest X-ray images. They contend that X-rays are more 
practical than CT scans because they are more readily 
available and have a lower risk of machine contamination. 
The model performed with high accuracy, sensitivity, and 
specificity of 90.06%, 86.34%, and 84.38%, respectively. The 
authors equally utilized the predictions of two Pulmonary 
and Critical Care experts on the need for mechanical 
ventilation to compare with their models. The model 

outperformed the experts by an incremental accuracy of 
7.24%–13.25%. 

When it comes to COVID-19, the work in [9] points out a 
potential stumbling block for models trained on X-rays: 
accessibility and availability. While the various models that 
have been constructed show promising outcomes, they are 
not computationally efficient, which is a barrier for medical 
practitioners on the ground, according to the report. The 
research provides a strategy for providing an efficient, yet 
effective, model for pattern detection of COVID-19 chest X-
rays in answer to this difficulty. This is accomplished by 
combining the EfficientNet family of ANNs with a 
hierarchical classifier. The study showed promising results, 
with the model having a 93.9 percent accuracy and 5 to 30 
times fewer parameters than other studied models. 

The study in [10] using an exploratory approach 
acknowledges [9] concerns about the lack of efficient and 
effective models to assist physicians, with two additional 
key aspects, the bias that is caused by a lack of quality 
control and biased evaluation of public COVID-19 datasets, in 
particular. The paper recognizes the enormous number of 
machine learning solutions that have been presented to 
address the challenge of COVID-19 diagnosis and prognosis. 
It also recognizes the brief time range during which this 
occurred, as well as the presence of undetected bias, which 
precludes such models from performing well on 
independent test data when compared to training data. The 
study warns against using such public models 
inappropriately and encourages researchers to choose 
better datasets as well as highlight important practices in 
dataset selection.  

III. METHODOLOGY 

Data cleaning, missing label imputation, picture 
augmentation, data pipeline building, image modification, 
model generation, and model evaluation are all part of the 
approach for this study. When it comes to image 
classification, object identification, and recognition, as well 
as computer vision applications using deep neural networks, 
convolutional neural networks (CNNs) are the de facto 
architectural standard. As a result, for this research, a CNN-
based model called Residual Networks (or ResNets) [8] has 
been adopted while chosen ResNet-18 as the preferred 
architecture.  ResNet-18 (18 total number of layers) was 
chosen due to its ability to rapidly converge. The ResNet-18 
CNNs' steps are detailed in the following subsections.   

A) ResNet-18 

In this study, the ResNet-18 CNNs were utilized on a 
dataset of COVID-19 chest X-rays (CXR) images that had been 
preprocessed. The steps involved in preparing the dataset 
to be used by the ResNet-18 CNNs for classification are 
detailed in the dataset subsection. The COVID-19 chest X-

34 

https://doi.org/10.31436/ijpcc.v9i1.333


International Journal on Perceptive and Cognitive Computing (IJPCC)  Vol 9, Issue 1 (2023) 
https://doi.org/10.31436/ijpcc.v9i1.333   

 

3 

 

rays (CXR) images are first processed through a 7x7, 64-
channel convolutional layer. The convolutional layer is in 
charge of extracting features. While performing 
convolutional operations on the chest X-ray, a kernel (or 
filter) of a specific size is dragged across the image resulting 
in a feature map. The convolutional operation is represented 
thus:  

 
 C(i, j) = (𝐶𝑋𝑅  ∗ 𝐾)(𝑖, 𝑗)  =  ∑ 𝐶𝑋𝑅(𝑖 +  𝑛, 𝑗 + 𝑚)𝐾(𝑚, 𝑛)

𝑚,𝑛

 (1) 

where 𝐾 is the kernel operating on the X-Ray 𝐶𝑋𝑅. 
 

Several convolutional layers are piled in series, as seen in 
the modules, where one layer's output becomes the input 
to the next. This is done so that higher-level features can be 
extracted. Hyper-parameters like kernel dimensions and 
stride (the number of steps taken by the kernel) are also 
taken into account. The kernel dimensions in this example 
are 7x7 and the stride value is 2. 

Because pictures are inherently non-linear, the Rectified 
Linear Activation function (ReLU) is applied after each 
convolutional layer to infuse non-linearity into the model. 
When compared to other non-linear functions, this 
enhances the performance of the model, to converge 
faster[11]. The ReLU as seen in fig. 1, is defined as 

 
 ReLU(𝑥)  =  max (0, 𝑥) (2) 

 

 

Fig. 1  The ReLU Graph 

B) Pooling Layer 

Following the initial convolution, the chest X-ray feature 
map tensor is subjected to a 3x3 max pooling procedure. The 
pooling layer performs the critical function of subsampling, 
which is to lower the dimensionality of the convolutional 
layer's feature maps. This is crucial to reduce the network's 
parameters and, as a result, the amount of processing 
required. Pooling can be done in a variety of ways, including 
max, average, and min pooling, which yields the maximum, 
average, and minimum values of the pixels of the chest X-ray 
corresponding to the size of the kernel, respectively. Like 
the convolutional layer before it, the pooling layer takes into 
account characteristics like layer size and stride. This initial 
max-pooling operation is 3x3 in size and has a stride of 2. 

C) Residual Connections 

When compared to regular CNN design, the ResNet-18 
model's layers reveal unconventionality in the form of 
residual connections. Because of vanishing gradients, 
deeper networks perform worse. Instead of learning 
functions that do not reference the input, residual 
connections are employed to learn functions that do. These 
are referred to as residual functions. 

 

 

Fig. 2  Residual Building Block [12]. 

The desired output is represented by H(x), while the input 
value is represented by x in the diagram above. In terms of 
x, the aforementioned residual function is defined as   

 
 𝐹(𝑥)  =  𝐻(𝑥) − 𝑥 (3) 

 
As a result, the targeted output is renamed as 

𝐻(𝑥)  =  𝐹(𝑥)  +  𝑥 
(4) 

The residual connection, which acts as a shortcut 
connection, and element-wise addition are used to produce 
F(x) + x (equal to H(x)) at the output. The residual function 
in this two-layer example is calculated as follows: 

 
 𝐹(𝑥, {𝑊i})  =  𝑊2 𝜎(𝑊1𝑥) 

 
(5) 

Where 𝜎 is the ReLU activation function. 
The reasoning behind this redefining of the intended 

output H(x) in terms of the input x is that the referenced 
residual mapping (H(x)-x) is easier for the stacked non-linear 
layers to optimize than the unreferenced H(x). The residual 
F(x) naturally tends to 0 in the (extreme) circumstance 
when the optimal desired output is the identity mapping, 
where the output is the same as the input (which is x). 
Fitting the stacked non-linear layers to the identity mapping 
directly is substantially more difficult. 

Residual connections can be divided into two categories: 
When the input and output dimensions are the same, the 

identity shortcut is used. It is symbolized by 
 

 𝑦 =  𝐹(𝑥, {𝑊𝑖})  +  𝑥 
 

(6) 
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When the dimensions of the input and output are not the 
same due to a change in the number of channels between 
layers, the projection shortcut is used. To ensure dimension 
parity, a linear transformation is used in this example. This 
has the unintended consequence of adding more 
parameters, which are represented by 𝑊𝑠. 

 𝑦 =  𝐹(𝑥, {𝑊𝑖})  +  𝑊𝑠 𝑥 
 

(7) 

D) Modules 1-4 

The chest X-ray tensor travels through four separate 
modules connected in series after max pooling. Before 
reaching the fully connected layer, CNNs typically consist of 
repeated modules that include the convolutional layer, the 
ReLU, and the pooling layers. Each module has four 3x3 
convolutional layers with the same number of channels, as 
well as ReLU activation functions and residual connections. 
Each module's convolutional layers have 64 channels in the 
first, 128 channels in the second, 256 channels in the third, 
and 512 channels in the fourth. The projection shortcut 
indicated in equation 7 is used since the number of channels 
varies between modules. The stride value of 2 is used by all 
of the levels described. 

E) Fully Connected Layer 

After passing through the last module and before 
reaching the fully connected layer of 1000 neurons, the 
chest X-ray feature map tensor encounters the global 
average pooling procedure. The completely connected layer, 
which appears at the network's end, is in charge of 
classification. It resembles the typical neural network 
architecture, in which every neuron in one layer is connected 
to every neuron in the next, resulting in a dense network. 
Because fully linked layers cannot directly act on the chest X-
ray tensors, the tensor of feature mappings is retrieved from 
the layers before being turned into a vector via a method 
known as flattening. The layer is sometimes known as the 
flattening layer for this reason. The completely connected 
layer identifies the patient as likely surviving or not surviving 
based on features collected from the chest X-ray. The 
softmax operation must be completed before the 
classification may begin. It assures that the probability of the 
output classes totals up to one. and is defined as 

 
Softmax(𝑥𝑖)  =  

exp (𝑥𝑖)

∑ exp (𝑥𝑗)𝑗

 
(8) 

The output of each neuron in the fully connected layer is 
obtained by 

 𝑓(𝒙, 𝒘, 𝑏) = 𝒙𝑇𝒘 + 𝑏 (9) 

 
Which is typical of artificial neural networks. Here, 𝒙 

represents the tensor of feature maps derived from the 
chest X-ray, 𝒘 is the weight associated with the particular 
neuron, and 𝑏 is the bias value. 

F) Dataset 

For the experiment with deep neural networks, it is 
important to gather a lot of data for each labeled class. This 
paper intended to predict the mortality risk of a COVID-19 
patient using chest X-rays. Obtaining a public COVID-19 chest 
X-ray dataset with a label indicating mortality was difficult 
due to the nature of the study within the ongoing pandemic 
situation. The dataset finally utilized was discovered on The 
Cancer Imaging Archive (TCIA) [12] from Stony Brook 
University and collected by [13] with the necessary labels. 
The Stony Brook University (SBU) dataset on TCIA was much 
richer compared to the IEEE8023 dataset utilized previously 
in [14], containing only 169 usable COVID-19 chest X-rays 
images. The SBU dataset had 562,376 radiography images of 
1384 COVID-19-positive patients collected over 15 months 
including X-rays, CT scans, MRIs of the chest, abdomen, 
kidney, pelvis, and more with different modalities. However, 
the images in the dataset were in DICOM medical imaging 
format, which is the standard format used in many hospitals 
and laboratories to store and process medical images. Due 
to the high resolution and amount of metadata information 
found in DICOM image files, the file sizes often end up being 
much larger than other common imaging formats. In the 
case of the SBU dataset, each image was around 15MB in 
size, and as a consequence the whole dataset was over 
500GB in size. Fortunately, not all of the images in the 
dataset were relevant to this study because, as mentioned 
above, it also had radiography images of organs other than 
the chest. Nonetheless, even with those images filtered out 
and only the chest X-rays selected, the dataset still 
amounted to over 192GB. 

To further shrink the dataset to a manageable size, the 
download was divided into seven chunks. At the completion 
of each chunk of downloads, the images that have been 
downloaded were converted to PNG format with a 
maximum width restriction of 512 pixels and then uploaded 
to Kaggle as a dataset. This process was repeated for all the  
seven chunks until all of the images were uploaded to 
Kaggle. This significantly reduced the size of the dataset to 
just over 2GBs. 

The filtered dataset had 13638 images, which was still 
large, a lot more than the IEEE8023 dataset. However, upon 
inspecting the dataset, it was noticed that many of the X-ray 
images had duplicates that were an enhanced version of an 
already existing image. This posed a problem as it made it 
difficult to split the dataset into training and testing sets 
without causing the duplicate images from the former to 
outflow into the latter. To overcome this, a new label was 
added to distinguish between the original and the enhanced 
X-ray images in the dataset. The images in the dataset were 
taken in series, each series consisting of 1 to 6 images. For a 
series that had only 2 X-ray images, it was easy to find and 
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mark the enhanced version of the X-ray images as they were 
in folders with a larger starting number as the name. 
However, the series with more than 2 images had no such 
clear distinguishing features, so over 1600 images that were 
in this series had to be labeled manually. The labels were 
stored in a new metadata file. After having the duplicate 
images labeled and filtered, the number of unique images in 
the dataset was found to be 7681, barring the images that 
were in lateral view, of which 4803 were of surviving 
patients and 2878 were of deceased patients. 

G) Model Training and Evaluation 

Since the study was based on the previously developed 
model utilizing IEEE8023 dataset in [14], the best model from 
the previous study and the corresponding class-balancing 
technique were then utilized in the training and testing with 
the SBU dataset.  This is done with a view to getting the final 
model whose performance metrics on the test set were then 
compared with the best model of the previous study based 
on IEEE8023 dataset to demonstrate the improvements. 

H) Creating the Test Set 

The test set was created from the SBU dataset by carrying 
out a 90-10 split. The first part consisting of 90% of the data 
was set aside for training and testing, while the second part 

consisting of 10% of the data was used as the test set for both 
the first model from [14] and the second phase of training, 
utilized the best training model from the SBU dataset. Using 
the same test set allowed us to compare the performance 
metrics of the best model from the first dataset (IEEE8023 
dataset) and the model from the second dataset (SBU) 
directly. 

I) Algorithm  

Training a convolutional neural network on images 
requires them to be of the same size. A 224x224 cropped 
resize was chosen to be applied to all the X-rays as that 
resolution was the standard in image classification. Besides 
that, the images were normalized. Image normalization is 
like the normalization of numerical data. The idea is to 
center a range of data around 0. Images are represented as 
tensors, which are three-dimensional arrays of numbers 
representing the three-color channels Red, Green, and Blue 
for each pixel. These numbers can also be normalized and 
that is what happens during image normalization. Each of 
the channels is normalized based on the values of all the 
pixels in that channel. So, in total, there would be three 
separate normalizations happening, one for each dimension 
of the tensor. 

 

 
Fig. 3  Sample demonstrating x-ray variety. 

 
For this paper, a ResNet-18 convolutional neural network 

pre-trained model which consists of 18 layers was used as 
the base model. The standard practice is to normalize 
images based on the mean and standard deviation of 
ImageNet, which is a database consisting of millions of 
images on which pre-trained models such as ResNet-18 were 
trained. Furthermore, the images in the training set would 
also be augmented to create more variations. This is done by 
manipulating certain features of the existing images with 
image transformation and then using the newly generated 
images for training. The image transformations applied 
include zoom, warp, brightness adjustment, and rotation. 
Additionally, training a convolutional neural network one 
image at a time is very slow and time-consuming. The 

alternative is to train using a batch of images at every epoch 
and GPUs are fast and efficient in carrying out batch 
processing of this nature. Images can be resized, normalized, 
augmented, and batched by using the DataBlock API of 
FastAI.  

Additionally, a pre-trained model already has weight 
assignments at each of the layers based on what the model 
has been previously trained to recognize. But the last layer 
of the pre-trained model is very specific to the classification 
task that it has been originally designed to do, which is why 
it is removed and replaced with a new layer with random 
weight assignments so that the model can be used for the 
specific tasks relevant to this paper. Besides that, the cross-
entropy loss was used as the loss function, and the learning 
rate optimizer used was the popular Adam optimizer. 
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Moreover, for the training, a stratified K-Fold cross-
validation technique with a 5-fold split was used. This means 
the data was split and evaluated 5 times while also 
maintaining the ratio of the target classes in each split, and 
each time a different portion of the data was chosen to be 
the validation set such that at the end of the 5 iterations, the 
model was trained and evaluated on all of the available data. 
This was appropriate in the case of this paper because the 
amount of training data was small, and hence testing the 
methodology on the whole dataset and getting the average 
performance metrics provided a better representation of 
the efficacy of the proposed techniques. 

After creating the model learner, the optimal learning 
rate is found using a learning rate finder and the model is 

first fine-tuned with all but its last layer frozen for 5 epochs. 
Then, all the layers were unfrozen, and the learning rate 
finder is again used to find the optimal learning rate, which 
then is used to train the model for another 30 epochs. This 
is done for every split of data, so in total for each of the three 
intended models, the algorithm ran 5 times and stored the 
accuracy and predictions at each run. The models are then 
evaluated by averaging the performance metrics on the 
validation set for all the splits and a cumulative confusion 
matrix was generated to determine the true positivity rate, 
true negativity rate, false positivity rate, and false negativity 
rate of each of the models on the whole data. Additional 
performance metrics are also obtained by evaluating the 
model on the test set. 

 
Fig. 4  Model generation algorithm. 

J) Training and Testing the Model with SBU Dataset 

The best model from the first dataset (IEEE8023 dataset) 
of the training and testing was then fine-tuned on the SBU 

dataset using the same algorithm as described before 
maintaining the same class balancing technique associated 
with the best model. The fine-tuned model was then 
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evaluated to get the required set of metrics that would be 
used to compare it with the model from the first dataset 
(IEEE8023 dataset) in [14]. 

K) Evaluation 

Since K-Fold cross-validation essentially trains a new 
model at each iteration, the performance metrics had to be 
calculated each time a new model was generated during the 
cross-validation. As a result, at end of the cross-validation, 
there were five sets of performance metrics, one for each 
model. To get the overall performance metrics, the scores 
were averaged over the five sets. The scores that were 
calculated were the balanced accuracy, precision, recall, F1-
score, and AUC-ROC score. Besides this, a cumulative 
confusion matrix was generated by summing up the 
confusion matrix of each of the models on the validation set. 
From this confusion matrix, the true positive, true negative, 
false positive, and false-negative rates for the overall model 
were derived. 

 The complete algorithm for model generation is shown 
in Fig. 4. 

IV. RESULTS AND DISCUSSION 

The second phase of training and testing used the model 
trained on the original unimputed data with class weight 
adjustment, which was determined to be the best model 
from the results of the first dataset (IEEE8023 Dataset) 
Model, as the base model which was then fine-tuned on the 

SBU dataset. Table I summarizes the performance results 
from this iteration of training averaged over five folds. 

On the validation set, the model achieves an accuracy of 
86.7% with a ROC AUC score of 0.94 and an F1-Score of 0.832. 
The true positive rate was found to be decent, around 91.2% 
while the false negative rate was still not quite low, standing 
at 18.4% 

TABLE I 

PERFORMANCE METRICS OF THE SBU DATASET MODEL 
 

Metrics Training Validation 

Balanced Accuracy 0.996 0.867 

ROC AUC Score 1.000 0.938 

Average Precision 0.992 0.849 

Average Recall 0.996 0.816 

F1 Score 0.994 0.832 

True Positive Rate - 0.919 

True Negative Rate - 0.816 

False Positive Rate - 0.081 

False Negative Rate - 0.184 

 
The ROC Curve and Precision-Recall curves are shown in 

Fig. 5 and Fig. 6 respectively. As observable, there is a 
significant improvement in the smoothness and stability of 
the curves of the second model based on the SBU dataset, 
compared to the curves of the first dataset. This is due to a 
large number of images in the validation set of the SBU 
dataset compared to the first dataset model (IEEE8023 
Dataset[14].

 

 
  

 Fig. 5  ROC curve of the second phase (SBU dataset) model.  
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Fig. 6  Precision-Recall curve of the second phase (SBU dataset)  model. 

 
 

L) First IEEE8023 Dataset Model vs. Second Model (SBU 
Dataset) Performance Comparison. 

The performance metrics discussed so far were from the 
models’ evaluation on the validation set of the respective 
datasets. However, as noted before, a test set was also set 
aside for making a comparison between the performance of 
the best model from the first phase (IEEE8023 Dataset) and 
the model from the second dataset (SBU dataset). The table 
below summarized the model’s performance metrics on the 
test set. 
 

TABLE II 

COMPARISON OF PERFORMANCE METRICS BETWEEN THE FIRST IEEE8023 DATASET 

MODELS & THE SBU DATASET MODEL 
 

Metrics First 
Model 
(IEEE8023 
dataset) 

Second 
Model (SBU 
dataset) 

Balanced Accuracy 0.512 0.860 

ROC AUC Score 0.534 0.928 

Average Precision 0.444 0.829 

Average Recall 0.080 0.815 

F1 Score 0.136 0.822 

True Positive Rate 0.080 0.815 

True Negative Rate 0.944 0.906 

False Positive Rate 0.056 0.094 

False Negative Rate 0.920 0.185 

 
The discrepancy in the performance between the models 

from the two stages can be easily noticed. The best model 

from the first stage achieves an accuracy of just 51.2%, 
significantly down from the 92% accuracy seen earlier on the 
validation set metrics. But it’s not just the accuracy, every 
metric shows a huge decrease in performance here 
compared to the metrics seen earlier using the validation set. 
This could be attributed to the model’s failure to generalize 
to unseen data, as expected, due to the limited number of 
images in the IEEE8023 dataset [14]. On the other hand, the 
model from the second stage still maintains high accuracy of 
86%, down by just 0.7% from the accuracy seen on the 
validation set. This shows that the second model managed 
to generalize well to the unseen test data, which again could 
be attributed to the size of the dataset, in this case, the large 
size of the SBU dataset. 

The confusion matrices on the test set are also shown 
below for both models. 

 
Fig. 7  Test set confusion matrix of the second phase (SBU dataset)  

model.  
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This second model does much better with 81.5% of high-
risk patients classified correctly and only 18.5% of high-risk 
patients classified incorrectly as low risk. 

From the above, it can easily be seen that the model from 
the second dataset achieved a very significant and clear 
improvement in performance over the best model from the 
first stage with the IEEE8023 dataset [14]. 

M) Model Deployment 

The model was deployed for the purpose of 
demonstration and external testing. Gradio was used for the 

front-end interface, while Heroku was used for hosting and 
deployment. Gradio is a Python-based library that allows one 
to easily create a web interface for machine learning models. 
Heroku is a platform as a service (PaaS) that facilitates the 
convenient development and operation of applications on 
the cloud. The interface provides the user with the ability to 
upload their image to get predictions from the model(Fig. 8). 
Besides that, one can also visualize the activation layer as an 
overlay to see which features of the image led to the 
prediction (Fig. 9). It can be accessed here at https://covid-
mortality.herokuapp.com/ 

 

 
Fig. 8  Gradio interface with prediction.  
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Fig. 9  Gradio interface with activations visualized. 
 

V. CONCLUSION 

In this paper, a COVID-19 mortality risk prediction deep 
learning model was trained using the Stony Brook University 
(SBU) dataset,  retrieved and transformed from The Cancer 
Imaging Archive (TCIA) repository. The first stage of the 
study reported [14] utilized the IEEE8023 dataset –  obtained 
from a public GitHub repository. The model using the 
original unimputed data with class weight adjustment 
achieved the best performance among the six models 
tested. This model was utilized in this current study using the 
Stony Brook University (SBU) dataset. Afterward, the first 
model i.e., the best model from the first phase of training, 
and the second model i.e., the model that was finetuned on 
the SBU dataset, were compared using a test set created 
from a portion of the SBU dataset. 

The result showed that the second model trained on the 
SBU dataset performed much better in terms of accuracy, 
significantly outperforming the first model trained on just 
the IEEE8023 dataset, with an accuracy of 86%. This was 
despite the chest X-rays were not discriminated against 

based on the patients’ duration of infection at the time of X-
ray. The model also achieved a high recall value of 81.5% with 
a false negative rate of 18.4% on the test set. 

It may be possible to further enhance the model by trying 
other pre-trained models with different architectures, 
collecting more X-ray images of COVID-19 cases and filtering 
the cases based on the duration of infection, and then fine-
tuning the existing model on the new data. Firstly, larger 
models tend to be suitable for data that have a large number 
of variations and patterns to be learned, so they may 
produce a better accuracy when it comes to modeling X-ray 
images, although this need not be the case. Secondly, since 
the infection worsens gradually for the first few days, the 
chest X-rays that were taken a few days after the infection 
could be more indicative of the patient’s condition and 
mortality risk, and hence may be more suitable to be used 
for training. Lastly, the limited number of data, especially X-
ray images of non-survival cases, required us to use 
oversampling methods such as image augmentation to 
bring up the number of images in the minority class. 
Although image augmentation is a decent technique to 
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create more variations in the dataset, it still does not 
adequately account for the variations that may be seen in 
the real world, hence collecting more X-ray images of non-
survival cases and fine-tuning the model on them could 
potentially yield better results. 
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