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I. INTRODUCTION 

In recent years, multi-agent systems MAS consensus 
problem has been an attractive research topic due to the 
prospective applications in unmanned aerial vehicles (UAV), 
sensor networks fields, distributed computing in computer 
science, medicine, environmental monitoring and military 
reconnaissance [1–8]. In general, the motivation of interest 
in distributed system is driven by the coordination and 
manage of various agents in the great information on access 
to large-scale networks to reach an accepted decision 
(value) or consensus on a common convergence. Numerous 
results were found in this area. The consensus problem has 
a long history [9]. For instance, DeGroot model was 
considered in [10]. A distributed computing over networks 
was presented in [11]. Problems with asynchronous parallel 
computing were studied in [12] and [13]. Vicsek [14] studied 
a specific situation model in which all players move at the 
same constant speed and maintain their positions in the 
government closest neighbor. Behavior cohesion and speed 
flocking were established in both cases, and observed 
convergence test was provided [15]. Fax and Murray [16] 
proposed formations Multivehicle control study of the fixity 
of Nyquist with a standard. A theoretical framework to solve 
the consensus problem was introduced in Saber and Murray 
[17]. Cao et al. [18] highlighted a graphical approach of a 
linear model to a consensus in a dynamically changing 
environment. Lin and Ren [19] studied the problem of stress 
MAS consensus to dynamically change the asymmetric 
networks with delays in communication. Shi and Johansson 
[20] discussed a linear time consensus problem with 

stochastic matrix with positive diagonal. Hu et al. [21] 
studied the dynamics of a linear general consensus 
controlled by the required pattern triggered event 
functionality with any distribution. 

However, the above studies were built upon the 
assumption that the dynamic agents of consensus protocols 
are linear. This estimation cannot always be satisfied due to 
the fact that engineering of the physical system is a 
particular type of problem consensus [22] [23].  

Numerous studies have tried to take into account the 
non-linear convergence protocols for the problem of 
consensus in the MAS. The nonlinear system poses 
challenges to investigate the problem of consensus of a 
static graphic for nodes [24]. Early research on the theory of 
nonlinear stability control was considered in [25]. Murray 
[26] introduced a linear and nonlinear protocols for a 
consensus agreement in distributed systems and proposed 
cooperation. The analysis of nonlinear consensus protocols 
is considered in the case of applications such as active 
agents are physical models that consider entry restrictions. 
Nonlinear discrete-time structure was introduced in [27]. 
Meanwhile, Lin et al. [28] showed that the consensus is 
executed nonlinear subsystems only when agents have 
sufficient dynamic interaction relationship. 

The new technique of various nonlinear consensus have 
established by [29–35] for the consensus problem of 
cooperative agents in network.  

Nevertheless, the disadvantage of nonlinear models is 
that they often are more complex and configured with 
restricted conditions. The current concern is to explore 
possible nonlinear models with faster convergence to a still 
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relatively low and more resilient conditions optimal 
complexity consensus. 

In this arterial, a model of the nonlinear quadratic 
operator doubly stochastic (DSQO) with positive 
interactions has been studied to increase control problem 
consensus on lower more flexible terms and complexity for 
specific subclass of DSQO.  

 

II. METHODOLOGY 

The class of DSQO is tracked back to [36].  It called 
bistochastic quadratic operators, where the theorem of a 
necessary and sufficient conditions were peeved for 
bistochastic quadratic operators. These theorems also was 
obtained in [37] [38]. The concept of DSQO are related to 
the majorization notation in [39]. DSQO have applied for the 
problem in population genetics [40]. The matrices by the 
notations of majorization have called the welfare operator. 
The welfare operator was applied for the problem in 
economic [39]. The nonlinear discrete dynamic systems of 
DSQO are defined in  [41], [42]. 
Definition 1: A (m-1)- dimensional simplex is a set 

 
𝑆'() = {𝑥 = (𝑥), 𝑥., … , 𝑥') ∈ 𝑅' ∶ 	 𝑥4 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚,

𝑥4 = 1}
'

4;)

				(1) 

 
The DSQOs are related to population evolution. It 

considers a population consisting of 𝑚 species. Let 𝑥< =
(𝑥)<, 𝑥.<, … , 𝑥'< )	be the probability distribution of species in 
the initial generations, and 𝑃4>,?  be the probability that 
individuals in the 𝑖@A and 𝑗@A species interbreed to produce 
an individual 𝑘. This probability is denoted (the heredity 
coefficient) via 𝑃4>,?  and 𝑝4>,? = 1	'

?;)  for all 𝑖, 𝑗, that is, 
𝑥4	and 𝑥>  are the fractions of species 𝑖 and 𝑗 in the 
population. In this case, parent pairs 𝑖 and 𝑗 arise for a fixed 
state 𝑥 = (𝑥), 𝑥., … , 𝑥') ∈ 𝑅' with probability 𝑥4𝑥>  [43]. 
Definition 2: A DSQO V: SH-) → SH-) is defined as ([41]) 

(𝑉𝑥)? = 𝑝4>,?	
'

4,>,?;)

𝑥4𝑥>,				𝑝4>,? ≥ 0,	

                               for all 		𝑖, 𝑗, 𝑘 ∈ 1, … ,𝑚        (2) 
 
where coefficients 𝑝4>,?  satisfy the following conditions 
([44] , [45]): 

𝑝4>,? = 𝑝4>,? > 0, 𝑝4>,? = 1,
'

?;)

										(3) 

 
More strictly, 𝑉: 𝑆'() → 𝑆'() is a DSQO: 

 

𝑉 𝑥4
@N) =

𝑥4@𝑝4>,)
'

4,>;)
𝑥>@, 𝑥4@𝑝4>,.

'

4,>;)
𝑥>@, … ,

𝑥4@𝑝4>,'
'

4,>;)
𝑥>@

 

                                  (4) 
where the 𝑥4@ is a row vectors of the agents’ status and the 
𝑥>@	is a column vectors of the statuses agents, while the 𝑝4>,?  
is the transition matrices where 𝑘 means that for each agent 
there is a separate transition matrix.  

The new notation is included in the proposed work for 
DSQO to achieve the consensus is that the weighted values 
of the distribution matrices are positive. The matrices of 
DSQO must belong to the set 𝑈P where the elements of the 
matrices are positive.  

So in a finite dimensional (𝑛D) will have 𝑛 matrices each 
of size 𝑛×𝑛 and they satisfy the following conditions (set 
𝑈P): 

 

𝑈P = {𝐴 = 𝑎4> : 𝑎4> = 𝑎>4 > 0, | ∝ |, 𝑎4> = 𝑚}
4>∈W4>∈∝

			(5) 

where ∝⊂ 𝐼 = 1,2, …	 , 𝑚 . 
 

 
Fig. 1 The Consensus in Multi-Agent Systems. 

 
As presented in the Fig. 1 the communication in the 
networks of the agents is the interactions which is the 
transition matrix under rules set𝑈P, while the initial statuses 
are belong to Equation 1. 
 

III. RESULT AND SIMULATION 

In this section, we provide some examples of simulation 
for nonlinear protocols proposed lighting efficiency DSQO 
when all elements of the transition matrix are positive 
(meaning that each agent has a positive interaction with all 
agents). 
The simulation of the consensus of DSQO confirms that MAS 
consists of 100, 200 and, 300 converges to average 
consensus ( )

'
) as in the Figures 2, 3 and 4. Moreover, it 

shown that the consensus of DSQO has achieved fast to the 
average value. 
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Fig. 2 The Consensus of 100 agents by DSQO. 

 
 

 
Fig. 3 The Consensus of 200 agents by DSQO. 

 
 

 
Fig. 4 The Consensus of 300 agents by DSQO. 

 
 

IV. CONCLUSIONS 

In this article, a nonlinear protocol for the consensus 
problem in MAS, which generalizes linear and nonlinear 

protocols, had been established. The interaction among 
agents that were proposed here, found to be positive. We 
disclosed that the MAS reaches a consensus in faster time 
from any initial status and from any random weighted values 
of the interaction among agents under DSQO protocol if 
each member of the agent group has positive interactions 
with the others.  
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