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Abstract— The most common method used by physicians and pulmonologists to evaluate the state of the 
lung is by listening to the acoustics of the patient's breathing by a stethoscope. Misdiagnosis and eventually, 
mistreatment are rampant if auscultation is not done properly. There have been efforts to address this 
problem using a myriad of Machine Learning algorithms, but little has been done using Deep Learning. A 
Convolutional Neural Network (CNN) model with Mel Frequency Cepstral Coefficient (MFCC) is expected to 
mitigate these problems. The problem has been in the paucity of large enough datasets. Results show 0.76 
and 0.60 for recall for wheeze and crackle respectively and these number are set to increase with 
optimization and larger, more diverse datasets.  
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I. INTRODUCTION 

For many reasons, there exists great disparity when it 
comes to accessibility in medicine. One of which is the lack 
of specialist pulmonologist to accurately identify symptoms 
of lung diseases.  While this research does not aim to solve 
this inequality, it can act as a steppingstone to minimize this 
gap by utilising the latest technologies.  

The most common method used by physicians and 
pulmonologists to evaluate the state of the lung is by 
listening to the acoustics of the patient's breathing using a 
stethoscope. This 100-year-old technique is referred to as 
auscultation. The outcomes and interpretations of these 
examinations are vastly subjective for multiple reasons. 
Humans are less sensitive to low frequency; environmental 
noise exists in rooms and some patterns of lung sounds are 
very similar. For these reasons, misdiagnosis and eventually, 
mistreatment are rampant if auscultation is not done 
properly. There have been efforts to address this problem 
using a myriad of Machine Learning algorithms, but little has 
been done using Deep Learning. While there are no solid 
attempts at completely automating lung sound analysis, 
there has been major progress.  

This research’s aim is to create a model to categorize lung 
sounds with a convolutional neural network approach into 
two categories: wheeze and crackle. This can aid untrained 
doctors and general practitioners to provide diagnosis in 
early stages of lung diseases. 

 

II. SIGNIFICANCE OF PROJECT 

According to the World Health Organization, respiratory 
illness is one of the most common mortality factors  

worldwide [1]. To put the problem into context, it is of 
paramount importance to acknowledge the gap that exists 
when it comes to accessing medical equipment. This is 
especially true in remote regions or in Less Economically 
Developed Countries (LEDC) [1].  

In line with the United Nations Sustainable Development 
Goals, this project supports in realizing goal number 2. By 
making common lung diseases more easily diagnosable, we 
can ensure healthy lives and promote well-being for all at all 
ages.  

Auscultation is a simple technique and generally 
inexpensive that can be performed by almost all doctors. 
Theoretically, the physician listens to breathing sounds in 
multiple locations of the chest - in the front and the back - 
and diagnoses immediately. Less common examinations 
include percussion, whereby the examiner taps on the 
patient's chest wall to produce sounds. It is probable that 
the experience and perceptual skills, or lack thereof, of 
doctors could lead to errors.  

The objectives of this paper can then be split into two:  

 To develop a Convolutional Neural Network (CNN) 
model as a classification tool for respiratory 
acoustics. 

 To investigate the effectiveness of Deep Learning in 
classifying wheeze and crackle sounds. 
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As will be illustrated in subsequent sections, misdiagnosis 
and mistreatment are very common and often lethal. 
Diagnostic delays and misdiagnosis in for instance, 
Interstitial Lung Disease (ILD) at primary healthcare levels 
are relatively high. ILD is an umbrella term used for a large 
group of diseases that cause scarring (fibrosis) of the lungs. 
This is primarily due to reasons such as possible overlap with 
common endemics and lack of proper knowledge and 
diagnostic facilities. 

III. REVIEW OF PREVIOUS WORKS  

Previous studies on automated and computerised 
respiratory sound analysis have been conducted using 
several Machine Learning algorithms. This section provides 
a discussion of the few prominent works on computerised 
respiratory sound analysis [19].  

Earlier attempts to automatically differentiate lung noises 
have wanted to simplify the problem by relying on a single 
type of lung sound or using an average of 5 to 20 patients 
with a small number of patients. Some of these experiments 
have used several sound recordings taken from the same 
individual, which also decreases the amount of variation in 
the data significantly. Working with a limited group of 
patients or concentrating on a specific element of lung 
sound, very high accuracy results can certainly be achieved 
since the algorithm can be handcrafted and carefully 
tailored to fit a limited number of patients' data and features 
collected. However, as the number of patients is extended 
to several dozen or several hundreds, the features learned 
from small datasets could not be generalized. [22]. 

Another important and fundamental obstacle in any work 
on classification of Machine Learning is the need to get data 
classified as "ground facts." In the case of pulmonary data, 
sounds from one single patient can be captured from 
multiple locations, and for analysis each sound file can be 
divided into multiple segments. Finding a qualified 
pulmonologist who can spend hours listening to thousands 
of files and mark them manually is then a logistical challenge. 
By using Machine Learning approaches developed for image 
classification, we can use unlabelled data to improve the 
accuracy of the identification of lung sound.  

In [22] we see a comparative study between two Machine 
Learning algorithms, namely SVM and KNN. The dataset of 
choice for this work was the R.A.L.E database. The R.A.L.E 
database encompasses more than 70 recordings from 
numerous subjects that were recorded on the surface of the 
chest wall using a contact accelerometer (EMT25C, Siemens). 
These recordings were manually categorised into three 
different groups, namely normal pathology, airway 
obstruction pathology, and parenchymal pathology. 
Features were extracted by using MFCC through a one-way 
ANOVA and these were then separately fed into each 
algorithm. In the end, the classification accuracies of the 

SVM and K-nn classifiers were found to be 92.19% and 98.26%, 
respectively. A confusion matrix was also produced for 
analysis. These results are satisfactory; however, the dataset 
used is free from any form of environmental noise which 
makes it very dissimilar from real-life situations.  

The HMM learnt temporal patterns of crackles, wheezes, 
normal sounds and crackles and wheezes. Then, the sounds 
were classified into four categories in of probable lung 
diseases: asthma, COPD, and pneumonia. Unlike other 
works, the feature set in this research was based on wavelet 
packet analysis characterizing data coming from the four 
sound classes. The respiratory audio was obtained from a 
competition, International Conference on Biomedical Health 
Informatics (ICBHI 2017) Challenge [26]. On average, the 
recognition rate was slightly over 50%. This is below the 
acceptable rate for use on real patients. Three possible 
enhancements can be proposed from here onwards, first 
augmenting the scarce ‘wheeze’ and ‘wheeze and crackle’ 
classes. Second, employing an amalgamation of spectral and 
wavelet features and third, to include a discriminative 
classifier, perchance making a synergistic framework. 

In a separate study conducted, a robust Deep Learning 
framework was designed [7]. The experiments evaluated 
the ability for the model to classify sounds obtained from 
ICBHI 2017 Challenge. Pham et al. also highlighted the 
factors affecting the final prediction accuracy such as 
respiratory cycle length, time resolution, and network 
architecture. The novel CNN, called CNN-MoE, uses an array 
of different trained models. For the task of classifying 
respirator anomaly, the model demonstrated an accuracy of 
0.80 and 0.86 for the 4-class and 2-class subtasks, 
respectively. For the second task of predicting respiratory 
disease, the system specificity and sensitivity were 0.83 and 
0.96, respectively. 

A comparison of five Machine Learning algorithms for 2-
class classification (healthy/non-healthy) as well as a multi-
class classification (healthy, COPD: basal lower lobe 
pneumofibrosis, COPD: diffuse pneumofibrosis, another 
pathology) was performed in [8]. In this work, classifiers of 
different types for the detection of lung diseases have been 
investigated and analysed. Namely, the classifier based on 
the K-nn method, based on the decision trees (DT), support 
vector method (SVM), Naive Bayesian (NB) classifier, and 
the logistic regression method were investigated. Poreva et 
al. used dataset containing only 134 patients which was 
divided into training and test subsets in the ratio of 85% and 
15%. Then, a cross-validation method was employed for 
forming the training and test sets for teaching the analytical 
model in situations of inadequate preliminary data or 
irregular representation of classes. Eventually, the SVM 
classifier and the decision tree classifier are turned out as 
optimal with an accuracy rate of 88 and 77, respectively. The 
obvious weakness in this research is the use of an incredibly 
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small dataset and less obvious is the vague classification of 
the classes. 

A research team in Turkey, used SVM and CNN to classify 
lung sounds into numerous classes by building their own 
stethoscope and recorded their own patients [9]. The 
recording consisted of 17,930 sounds from 1630 subjects. 
From a total of 8 datasets, 4 for SVM and 4 for CNN; 17,930 
audio clips were split into two classes (normal or 
pathological), 14,453 audio clips into 13 classes (normal, 
rhonchus, squeak, stridor, wheeze, rales, bronchovesicular, 
friction rub, bronchial, absent, decreased, aggravation, or 
Long Expirium Duration (LED)), 15,328 audio clips into 3 
classes (rale, rhonchus, or normal) and lastly, 17,930 audio 
clips were categorised into 78 classes. Feature extraction 
was done using MFCC enhanced with Short Time Fourier 
Transform (STFT) to find base value for accuracy. A 
spectrogram (800x600 RGBA then 28x28) was built using 
open source software and Pylab. Aykanat et al. concluded 
that spectrogram image classification with CNN works 
as well as SVM does. CNN and SVM algorithms were run 
comparatively to classify respiratory audio: (1) healthy 
versus pathological classification, (2) rale, rhonchus, and 
normal sound classification, (3) singular respiratory sound 
type classification, and (4) audio type classification with all 
sound types. Accuracy results of the experiments were 
found as (1) CNN 86%, SVM 86%, (2) CNN 76%, SVM 75%, (3) 
CNN 80%, SVM 80%, and (4) CNN 62%, SVM 62%, respectively 
[9]. Technically speaking, a few matters arise from this 
paper, downsizing of spectrogram might have affected 
results and duration of sounds were 8s to 16s, which causes 
too much variance. Another matter is that the researchers 
here used recording software and hardware that are 
different from well know online repos such as RALE and 
ASTRA. The data gathered, however, had little or no noise 
pollution, but it was gathered from a real world situation. 

In the sixth paper, the authors applied CNN in attempting 
to detect asphyxia in infants [10]. The crying audio was 
obtained from Instituto Nacional de Astrofísica, Óptica and 
the asphyxia dataset from University of Milano-Bicocca. 
Features were extracted by MFCC and were fed into a CNN 
architecture consisting of a convolution layer, Rectified 
Linear Units (ReLU), max pooling layer, fully connected layer 
and softmax layer. I. M. Yassin et al. achieved a 94.3% 
accuracy in training set and 92.8% accuracy in testing set. 
Again, we see that the sound dataset is from controlled 
environment, making them unfit for real life practic  

[11] compared Backpropagation (BP) and Learning Vector 
Quantization (LVQ) for lung sound recognition. The audio 
was attained from Linmann Repository. However, the 
dataset only contained 32 lung sounds which were divided 
into 8 tracheal sounds, 8 vesicular sounds, 8 crackle sounds 
and 8 wheeze sounds. After segmentation of audio and 
MFCC being used from feature extraction, BP had a 93.17% 

accuracy rate and 86.88% for LVQ. All five stages of MFCC 
were performed namely, frame blocking, windowing, Fast 
Fourier Transform (FST), Mel frequency wrapping and 
cepstrum coefficient using Discrete Cosine Transform (DCT). 

Here, the researchers use hidden Markov models fed with 
Mel-frequency cepstral coefficients [12]. The reason out 
forward by the authors for choosing HMM is that it is used 
in speech which has variations just like lung sounds. The 
authors propose a methodology to classify the respiratory 
sounds into wheezes, crackles, both wheezes and crackles, 
and normal using the same dataset as some of the other 
literatures discussed, the ICBHI. The procedure consists of a 
noise suppression step using spectral subtraction followed 
by a feature extraction process. The input of the model 
consists of MFCCs extracted in the range between 50 Hz and 
2,000 Hz in combination with their first derivatives. The 
method achieves performance results up to 39.37%, in 
compliance with the ICBHI score. Best official score of 39.56 
achieved by class ensemble. Second best result with 6 states 
and full covariance matrix type yielded 0.4232 sensitivity, 
0.5669 specificity and 39.37 official score. Sensitivity is 
decreasing, indicating that the classifier could not resolve 
adventitious sound types. Advanced noise suppression 
techniques can improve the overall score [12]. 

[13] applied a Semi-Supervised Deep Learning model to 
lung sounds. Along with that, 2 SVM classifiers were 
deployed, one to identify wheezes and one to identify 
crackles. Greedy forward feature selection to identify the 
best subset of autoencoder features. Performance was 
evaluated by computing ROC curve and associated AUC for 
50 randomly generated sets of 5-fold cross-validation splits. 
As a result, ROC curves with AUCs of 0.86 and 0.74 for 
wheezes and crackles, respectively. The data was collected 
from 284 pulmonary patients from clinical sites in 
Maharashtra, India. They were labelled by specialists. 

In [14] we see the use of a classification system based on 
a boosted decisional tree algorithm. The monoclass 
approach is a succession of two monoclass model, where 
each tree has two leaves: crackles and no crackles for the 
first one, then wheezes and no wheezes for the second one. 
The second kind of model is a multiclass model, were a 
unique tree have 4 leaves for the 4 different classes: normal, 
crackles, wheezes or both. the final decision is taken by 
keeping the highest prediction of the four, one for each 
possible class. Parameters of the boosted decisional tree 
model were empirically set, the maximum depth of trees is 
3, the maximum of boosting iterations is 100 and the 
learning rate is 0.1. The model proved to not be good enough 
to classify adventitious sounds.  

The literature review revealed that both the feature 
extraction method and the Machine Learning algorithm play 
major roles in the recognition of respiratory sounds. The 
common issue that arises is the lack of a reasonably large 
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dataset size in addition to absence of natural, environmental 
noises that exist. It also appears that the sound content in 
the ICBHI dataset seems to be difficult for a classification as 
pointed out by et al. Furthermore, the unbalanced data 
could also be a cause of bad predictions, because it affects 
the model training. Lastly, like some studies attempt, the 
records could be pre-processed to avoid noise and 
interference. This could give better result for the respiratory 
cycles classification, but it is necessary to prove that the 
symptom information is not modified by the filtering step. 

Although supplementary studies are desired to improve 
the accuracy, sensitivity and specificity of this method 
before it can be efficiently realized in clinical and healthcare 
settings, the analysis of breath sound intensity and airflow 
can reveal the real physiological conditions of the airway 
system. Additional investigation into the changes in the 
behaviour and breathing patterns between breath phases 
would be advantageous for respiratory rate monitoring and 
could improve the diagnosis of respiratory illnesses in both 
clinical and research environments. 

IV. THEORETICAL BACKGROUND  

A. Sound Analysis and Classification 

Sound data is classified as an unstructured data, and 
unstructured data is by far the most suitable data for Deep 
Learning. Things like Self-driving Cars and face recognition 
are the by-product of Deep Learning systems on image data. 
Unstructured data means a lot of data points, with no mean 
significance to evaluate statistically. Well, any sort of 
standard pixel deviation is unlikely, so that images are 
unstructured. Audio data is a series of sequenced wave 
signals one after the other. Possibly the mean effect on the 
chart will not be evaluated.  

B. Deep Learning and CNN 

The training procedure for a CNN is comparable to a 
standard Neural Network using backpropagation. More 
specifically, Lecun et al. introduced error gradient to train 
the CNNs. In the first stage, information is propagated in the 
feed-forward direction through different layers. Salient 
features are obtained by applying digital filters at each layer. 
The values of the output are then computed. During the 
second stage, the error between the expected and actual 
values of the output is calculated. Backpropagating and 
minimizing this error, the weight matrix is further adjusted, 
and network is thus fine-tuned. Unlike other standard 
algorithms in image classification, the pre-processing is not 
frequently performed in CNNs. Instead of setting 
parameters, as is the case with traditional NNs, we just need 
to train the filters in CNNs. Moreover, in feature extraction, 
CNNs are independent of prior knowledge and human 
interference. 

Deep learning is modelled after the anatomy of the brain. 
As shown in the figure above, the human neuron has 
Dendrites, Axon, cellular structures, and Synaptic holes in 
our brain. With the aid of synapse, the signal is transferred 
from the axon to dendrite. When dendrites receive the 
signals, the cell body will do some processing and then sends 
the signal back to the axon, the updated signal will be sent 
back to some other neuron and this cycle continues again 
and again 

 
Fig. 1 A Human Neuron [23] 

Inputs, weights, outputs, and activation functions are 
introduced, to replicate the magic in an artificial neural 
network. A single neuron is useless, but you can recreate the 
phenomenal operation when we have a bunch of them. The 
artificial neural network simply imitates the human brain's 
workings. Weighted inputs are fed to the neural layer, 
several processing is performed at the very same site that 
generates the output and is then fed to the next layer and 
this occurs recursively until the last layer is reached. 

C. Adversarial Lung Sounds and Auscultation 

The stethoscope was invented in 1816 and is used by 
physicians and pulmonologists to assess the lung function 
by listening to breath sounds using a method called 
auscultation. Using acoustic tests, specialist professionals in 
patients suffering from diseases such as Pneumonia, Pleural 
Effusion, pneumothorax, Chronic Obstructive Pulmonary 
Disease (COPD), and asthma can distinguish between 
normal and pathologic lungs. Auscultation is a fairly simple 
technique and generally inexpensive. Theoretically, the 
physician listens to breathing sounds in multiple locations of 
the chest - in the front and the back - and diagnoses 
immediately. Less common examinations include 
percussion, whereby the examiner taps on the patient's 
chest wall to produce sounds. 

However, the outcomes and interpretations of these 
examinations are highly subjective, as humans are less 
sensitive to low frequency, environmental noise and pattern 
of lung sounds that are very similar. There is a direct 
correlation to the experience and perceptual skills of 
doctors and are hence prone to large errors. 
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1)  Crackle sounds:  Crackles are less commonly referred to 
as “crepitations” or “rales”. They are short, discontinuous, 
and nonstationary sounds that can be detected at 
inspiratory and expiratory cycles. It is usually a sign of too 
much fluid in the lung. Some of the decisive features of 
crackles to be extracted include their duration, waveform, 
and timing. Its corresponding pathologies such as COPD, 
pneumonia, fibrosis, or bronchiectasis can be identified. 

2)  Wheeze sound:  Wheezes are commonly referred to as 
adventitious continuous sounds and are heard towards the 
end of the inspiratory phase or in the early expiratory phase. 
They are often detected in patients affected with conditions 
that narrow the small airways in the lungs, such as asthma 
and COPD. Wheezes are drastically louder than crackles, 
they even can be heard without a stethoscope. 

D. Mistreatment and Misdiagnosis of Lung Diseases 

Auscultation is a fairly simple technique and generally 
inexpensive. Theoretically, the physician listens to breathing 
sounds in multiple locations of the chest - in the front and 
the back - and diagnoses immediately. Less common 
examinations include percussion, whereby the examiner 
taps on the patient's chest wall to produce sounds. There is 
a direct correlation [2] to the experience and perceptual 
skills of doctors and are hence prone to large errors. 

Together with improvements in the stethoscope and its 
ability to record sounds there have been several attempts at 
slowly introducing them into the healthcare field. 

Idiopathic Pulmonary Fibrosis (IPF) is a type of lung 
disease which causes chronic scarring. Among other 
symptoms, IPF can present itself as a wheeze and/or a 
productive cough [3]. A study examining the risk factors 
involved in delayed diagnosis found that community 
hospitals attributed to diagnostic delays in IPF and that 
patients were often misdiagnosed and treated before a final 
diagnosis of IPF was made. For reasons not mentioned in the 
study, male sex and older age were risk factors for patient 
delay and healthcare delay respectively [4]. 

Setting the problem of accessibility aside, there are 
financial implications of late-stage diagnosis of lung diseases. 
This problem manifests itself in two ways: when a patient 
has a delayed diagnosis and when they are misdiagnosed. 
Patients are subject to excessive substantial use of 
healthcare resources and costly and unnecessary diagnostic 
tests in repeated misdiagnosis situations, which could 
otherwise be used to treat patients who genuinely needed 
such a course of action. [17].  

There also exist cases of overtreatment and 
overdiagnosis. A study looking at the economic impact of 
under and overdiagnosis of Chronic Obstructive Pulmonary 
Disease (COPD) in primary care, showed that over 50% of the 
present financial burden of the inhaled drugs is wasted to 
overtreatment and overdiagnosis, which could cover the 

cost for all underdiagnosed patients. This finding is 
astonishing given COPD is generally easily identifiable in 
computerised sound waves of patients’ coarse crackles and 
expiratory wheezes (Jacome, 2015). 

When it comes to the economic impact of over and 
underdiagnosing COPD patients in primary care, we find that 
overtreatment increases the financial burden of the disease 
as well as adverse events due to inhaled drugs overuse [5] . 
An observational study in Italy showed that 37.9% of COPD 
patients were receiving appropriate treatment, in 54.9% 
there was over-prescription. Over and above that, 66.8% 
were prescribed Inhaled corticosteroids (ICS) along with 
long-acting bronchodilators and 15.2% used ICS alone [19]. 
The evidence of benefit of ICS in COPD is limited by 
methodological problems and have not shown any survival 
benefit independent of the effect of long-acting 
bronchodilator. In another example of resource waste, a 
real-world study in the United Kingdom came to similar 
conclusions about primary cares in the region. It found that 
53.7% of the total COPD population was receiving ICS [20]. 

E. Mel Frequency Cepstral Coefficient 

Machine Learning ML extracts characteristics from the 
raw data and produces a rich content representation. 
Without the noise this allows one to know the key 
knowledge to draw inferences. One common method of 
extraction of audio features is the Mel-frequency cepstral 
coefficients (MFCC) that have 39 functions. The count of 
features is small enough to force us to know the audio 
content. 12 Parameters are in addition to the frequency 
amplitude. It provides us with sufficient frequency canals to 
analyse the audio. The diagram below is the flow of 
extracting the MFCC features. 

 
Fig. 2 Flow of extracting the MFCC features [24] 
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V. METHODOLOGY 

 
Fig. 1  Summary of methodology 

 

A. Research Design 

There are several parts to the initial stages of the data 
manipulation. First is labelling, a one-hot labelling scheme 
was used plus annotations were extracted followed by data 
pre-processing. Here the audio files were each cut into sub 
slices which is defined by the .txt files that accompanied the 
dataset. This was followed by Exploratory Data Analysis 
(EDA) and minimal processing. Feature extraction by 
utilising the MFCC.  

Finally, the model was built and trained. In training, the 
Mel-Spectrograms were transposed and wrapped around 
the time-axis to allow the network to learn to identify 
features occurring at arbitrary times within the recording.   

B. Data Description 

The chosen dataset titled ‘The Respiratory Sound 
Database’ was used for this project. It was built as part of 
efforts to make large respiratory sound data sets accessible. 
Two research institutions in Portugal and in Greece 
developed the database. It consists of 920 recordings 
collected from 126 patients. The patients span all age groups 
- children, adults and the elderly. A total of 6898 respiration 
cycles were recorded making the total recording 5.5 hours. 
Of them, 1864 contain crackles, 886 contain wheezes and 
506 contain both crackles and wheezes as shown in the 
diagram below in Table 1 [24]. 

 

TABLE I 
SUMMARY OF DATASET LABELS 

No label  3642 

Crackles only 1864 

Wheezes only 886 

Crackles and Wheezes 506 

 

The cycles were annotated by respiratory experts as 
including crackles, wheezes, a combination of them, or no 
adventitious respiratory sounds. The recordings were 
collected using heterogeneous equipment and their 
duration varied from 10 to 90 s. The chest locations (Fig. 4) 
from which the recordings were acquired, also provided and 
were indicated by the numbers in the figure. Noise levels in 
some respiration cycles were high, which simulated real life 
conditions [24]. 

 

Fig. 4 Chest locations for the recording of respiratory sounds [25] 

C. Exploratory Data Analysis 

The data was visualised to explore and learn more about 
the relationships between attributes and observe trends. 
EDA also provides an overall image as to what the dataset 
constitutes. In the figure below (Fig. 5), it can be observed 
that respiratory cycles are generally between 2 to 5.  

 

Fig. 5 Distribution of respiratory cycle lengths 

It can be seen in the distribution below (Fig. 6) that 
Chronic Obstructive Pulmonary Disease (COPD) is the 
leading disease in this dataset while Asthma and Lower 
Respiratory Tract Infection (LRTI) are the least common.  

 

 
Fig. 6 Distribution of labelled diseases from dataset 
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D. Data Preparation 

The dataset was relatively clean and required minimal 
edits. The labelling format of choice was one-hot encoding, 
other methods caused the learning rate to skyrocket and 
therefore produced undesirable divergent behaviour in the 
loss function. 

The audio files were sliced as illustrated by the diagram 
below in Figure 7. This was done to ensure that essential 
features such as change in pitch or volume were not missed. 
Every deviation from normal sound projection is important 
in classifying the sounds.  

 

Fig. 7 Illustration of sound signal segmentation [11] 

E. Convolutional Neural Network (CNN) 

CNNs are one form of discriminative deep architecture 
and theses models have shown pleasing performance in 
processing two-dimensional data with grid-like topology, 
such as images and videos. The inspiration for this 
architecture comes from the animal visual cortex 
organization. Sometime in the 1960s, (Hubel and Wisel, 1962) 
proposed a concept called receptive fields. They found that 
the complex arrangements of cells were contained in the 
animal visual cortex responsible for light detection in 
overlapping and small sub-regions of the visual field. 

A CNN is a multi-layer neural network that comprises of 
two different types of layers, i.e., convolution layers (c-
layers) and sub-sampling layers (s-layers). C-layers and s-
layers are connected alternately and form the middle part of 
the network. 

VI. ANALYSIS OF RESULTS 

The CNN model was implemented on Keras on a 
TensorFlow backend with a batch size of 128 and an epoch 
of 15.  

When analysing statistical model, the goal is to always 
create the most “accurate” model and increase the 
“accuracy”. However, there are a myriad of metrics to 
choose from that can state different things about the model. 
Each metric has its pros and cons depending on the 
application. For this work, the planned use is for medical 
application. Therefore, the error, especially False Negatives, 
should be minimised. In short, if a patient’s lung produces an 
irregular sound, it is vital that the model flags it as such and 
avoids classifying it wrongly as a healthy lung sound. On the 
contrary, if a patient’s lung has no sign of irregularity, we 

would also like the model to classify it as healthy. The 
formula of all the metrics are shown below. 

For this experimental work, the efficacy of the model was 
quantified by precision, recall, f1-score and the number of 
true values (support). Precision is the ratio of the True 
Positive to all the Positive results. Recall, occasionally 
referred to as Sensitivity or True Positive Rate, gives a 
measure of just how accurately the model can identify the 
relevant data. F1-scores are just the weighted average 
between precision and recall. Table 2 shows the confusion 
matrix of the model run on the scikit-learn library. For this 
study, a higher recall is desired because we would like to 
detect as many irregular sounds as possible. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                 (1)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                    (2) 

    𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                      (3) 

TABLE 2 
SUMMARY OF RESULTS 

 Precision Recall F1-score Support 

None 0.84 0.79 0.81 756 

Crackle 0.65 0.76 0.70 379 

Wheeze 0.63 0.60 0.62 178 

Both 0.61 0.54 0.57 108 

 
The first category identified by the model is the healthy 

lung sound labelled ‘None’. The precision value gives an 
insight to the model's accuracy in classifying a sample as 
positive. An 84% precision means that the model was able to 
accurately classify most of the positive samples, i.e., normal 
breathing as such, and not misclassify an unhealthy lung 
sound sample as healthy. The high recall value indicates that 
the model accurately identifies healthy lung sounds. The 
harmonic mean of the recall and precision, or the F1-score of 
this class is relatively high. Support is simply the total 
number of audio samples that have been classified as true 
for that class. Thus, we observe that 756 files were classified 
as having normal breathing sounds, the highest among the 
classes.  

If class has a low precision, but a very high recall, this is a 
sign that the algorithm is biased towards a positive class. 
That is the case for the ‘Crackle’ class. This is not necessarily 
harmful for our use case; further tests can confirm or deny 
the preliminary diagnosis. The main reason for this is 
because the dataset is imbalanced, the number of positive 
samples are not equal to the negative samples. There are 
several negative cases like wheeze sounds that might turn 
into false positives. On the other hand, there are fewer 
positive cases, which may become false negatives.  

For the ‘Wheeze’ class, it has a similar precision and recall 
rate. Because F1-score scores are just the weighted average 
between precision and recall, it is also similar.  This indicates 
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that the model is weary about classifying sounds as wheezes. 
A possible explanation for this is that there are only 886 
labelled audio clips of wheezes compared to the 1864 
crackle sounds. 

In general, the produced results are still unfavourable for 
our use case. With further tuning, precision and overall 
accuracy are set to increase. It is observed, from the results 
that the ‘Both’ class has the worst overall performance and 
is more misclassified than the other classes. This indicates 
that the patterns revealed by the data coming from the 
‘Normal’ class are comparable to all other classes. A possible 
solution to this problem is collecting more data form the 
other three classes, in a manner such that the differences 
are emphasized. 

VII. CONCLUSIONS 

Wheezes and crackle provide insight into the state of 
one’s lungs in a non-invasive and nonspecialised way. These 
two acoustics plus a combination of these two can be useful 
in detecting early-stage lung disease. CNNs have shown 
great potential in classifying images, by creating visual 
representations of audio. The application can be expanded 
to sound classification as well. We have seen from the past 
works that CNN outperforms all other Machine Learning 
algorithms by a huge margin.  
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