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Abstract— This paper introduces a new adaptive distributed routing algorithm based on the Camel Herds 
Algorithm (CHA). It is an intelligent, multi-agent optimization algorithm that is inspired by the behavior of 
camels and how they search for food in their desert environment. We examine its ability to solve the routing 
problem in switched networks: finding the shortest path in the process of transferring data packets between 
networks. The proposed approach is compared with three well-known meta-heuristic algorithms (ACO, GA, 
PSO) on ten datasets (weighted, integer, and not negative graphs) with various sizes of nodes (from 10 
nodes to 297 nodes). Three performance criteria were used to evaluate the performance of the algorithms 
(mean relative error, standard deviation, and number of function evaluations). The results proved that the 
performance of the proposed algorithm is both promising and competitive with other algorithms. 
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I. INTRODUCTION 

The rapid development of networks and communications 
has resulted in networks being the backbone of many 
applications and various fields; with this continuous 
acceleration and progress, the challenges facing the process 
of transferring data and packages also increases, especially 
in packet-switched networks. Routing is the process of 
calculating the route between two nodes in networks—the 
source and the destination—to enable the intermediate 
network between them to be exploited effectively [1]. This 
routing process occurs in the network layer via routing 
protocols. each protocol depends on a specific routing 
strategy that uses an algorithm to build the routing table. 
There are two types of routing, static and dynamic. 

           A non-adaptive or static routing technique is simple 
in implementation, and the path is determined between any 
two nodes in a static routing table. It builds the route 
without taking into consideration current traffic conditions 
[1]. On the contrary, an adaptive routing technique helps 
find an alternative route when the routing node senses that 
the previously determined path is now more difficult to 
route the packet through due to changing network 
conditions. There are many algorithms being used to solve 
the routing problem. each one has a different technique to 
calculate the route. These techniques are based on both 
static and variable network metrics, such as hop count, 
bandwidth, cost, load or congestion, reliability, and routing 
delay [2]. 

Metaheuristic algorithms can be categorized according to 
the fields that inspired them. There are bio-inspired (genetic 
algorithm), swarm intelligence-inspired (ANT colony), and 
physics-inspired (simulated annealing), as well as the new 
promising field of game-inspired (Battle Royale optimization 
algorithm [3]), etc. The algorithm proposed in this paper 
falls under the category of swarm intelligence (SI) 
algorithms, which use an intelligent, multi-agent-based 
system that is inspired by the behaviors of animal groups, 
such as ants, bees, termites, and wasps, as well as flocks of 
birds and schools of fish [4][5]. SI-based algorithms possess 
three important features that greatly contribute to 
supporting the routing process in networks: adaptability, 
robustness, and scalability [6]. Our algorithm is an 
improvement on the Camel Herds Algorithm (CHA). Which is 
derived from the way camel herds search for food in their 
environment and from their ability to sense the humidity in 
the air to reach water [7]. 

Various algorithms and approaches have been proposed 
to find the shortest-path problems in networks routing. Ali 
and Kamoun [8] proposed a method to solve the routing 
problem in packet-switched networks by applying 
computational tools using an improved version of the neural 
networks. their goal was to minimize the average delay time 
with adaptability to changes in costs or change network 
topology. 

Gianni Di Caro [9] produced a mobile agents routing 
algorithm, AntNet. It worked in two stages (forward and 
backward) and was based on the Ant Colony (ACO) 
algorithm. 
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S.Sugden et al.[10] tackled the shortest-path problem by 
choosing a certain portion of pre-calculated paths—those 
restricted to a specific number of hops or capacity—and 
then altering these paths using the simulated annealing 
algorithm. 

Nagib and Ali 11] developed a genetic algorithm to solve 
the network routing protocol problem in a random ten node 
network topology. They compared it with the Dijkstra 
algorithm, which is considered one of the most popular 
algorithms to solve the routing problem. they produced 
similar results.  

Ahn and Ramakrishna [12] introduced variable-length 
genes into the genetic algorithm to solve the routing 
problem. They proposed an equation for population-sizing 
based on the gambler’s ruin model. 

Casali et al. [13] proposed using Tabu Search as a 
metaheuristic algorithm to solve the routing problem. 
Instead of traditional algorithms that require exhaustive 
computational operations, especially in networks with high 
nodes. Still, it is not optimal for finding the shortest path. 

A. W. Mohemmed et al. [14] developed a Particle Swarm 
Optimization (PSO) algorithm that utilized a changed 
priority-based encoding with a heuristic operator. It would 
minimize the probability of looping in route construction. 
The algorithm surpasses the results of the genetic algorithm 
in [12]. 

Verma et al. [15] developed the Omicron Ant Colony 
Algorithm, based on the ACO framework, to provide a 
solution to the routing problem. Their algorithm was built on 
the principle of not updating the value of the pheromone 
per cycle but instead updating it after a specified number of 
iterations to reduce the time required to update the 
pheromone value. The minimum and maximum levels of the 
pheromone is also limited.  

Abdalla et al. [16] utilized neural networks to solve the 
routing problem in computer networks. They proposed two 
strategies: having a neural network with forward-feeding at 
each point for local decision-making, and having one with a 
central point to define the complete path between a pair of 
points (source, target). They included a supervisory 
component in the pathfinding system. 

II. CAMEL HERDS ALGORITHM: A BRIEF OVERVIEW 

The camel herds algorithm (CHA) is a metaheuristic SI 
optimization algorithm and intelligent multi-agent system 
proposed by Ahmed [7]. The CHA is inspired by the behavior 
of camels and how they search for food in their desert 
environment. It was tested for the first time to solve the 
Flexible Job Shop Scheduling Problem (FJSP) to try to 
reduce makespan value. Its results indicate that it is an 
effective approach that depends on exploring 
neighborhoods for the current solution in the problem 
space. 

Camels are divided into herds, and each one has a leader. 
The leader searches for water in the desert by detecting the 
humidity level in the air. Wherever they find water in the 
desert, they also find food. These actions form the core of 
CHA’s ability to find optimal solutions. It needs parameters 
that make it adaptive and scalable to solve many problems. 
The parameters are n (number of camels), Hc (number of 
herds), d (number of neighbors for the current solution), 
and Hum (the rate of humidity). The Hum is the essential 
factor, is set randomly for every herd. This rate directs the 
search and offers an intelligent way of guessing which node 
neighbor leads to a target. It is a decreased/increased value 
that is needed for each step.  

MIN problems are defined using a search area that is a 
graph with vertices and weighted edges. The weight of the 
edge is the operator's cost. A MIN problem is finding a route 
from an origin point to a target point with a total minimum 
edge weight. MAX problems are specified similarly, except 
that operators have rewards rather than costs, and the aim 
is to find a way from source to the target state with a 
maximum amount of boundary weights. 

The first step in CHA identifies the Hc parameter (number 
of herds). Each Hc represents one solution and has a 
specified number of camels n, and one of them is selected 
by the algorithm as the leader for that herd (LHc). Each LHc 
stores an initial starting state. This starting state is randomly 
chosen and allocated to leaders. The leader, LHc, directs the 
other herd members to investigate the search space to find 
the solution. Each herd is separate starting from a different 
point. This strategy provides a diversity in finding solutions. 
The algorithm begins with each herd, Hc, producing a 
neighbor's d (d is the number of the herd camels except the 
leader) for the LHc. All neighbors are checked by the 
equation (1) to achieve the best result and insert it to the LHc 
list. 

III. SHORTEST PATH PROBLEM IN NETWORK ROUTING 

Solving the shortest path (SP) problem means finding the 
optimal route between two pre-defined points. This 
optimum could be the shortest distance, the least time 
spent, or the lowest value of the path between those two 
points. There are many applications that require a solution 
to the shortest path problem, particularly operational ones, 
like the navigation system of vehicles [17], Travelling 
Salesman’s Problem (TSP) [18], robotic systems path 
planning [19], and routing in telecommunication networks 
(MANETs)[20]. This research focuses on the routing 
problem in switched networks. It is the process of 
transferring data packets between networks requires 
finding the shortest path, which may include the shortest 
delivery time, bandwidth link, or less cost. Many well-known 
algorithms have investigated the SP problem, such as the 
Dijkstra algorithm, the Floyd-Warshall algorithm, and the 
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Bellmen-Ford algorithm. Each algorithm has its own 
technique for finding the shortest path. Shaveta Bhatia [21] 
classifies these algorithms into two types based on the 
complexity of the calculations they perform to optimize the 
path. The first is non-intelligent techniques (hard 
computing), such as Dijkstra's Algorithm, A* search 
Algorithm, etc. These techniques are useful for deterministic 
and certainty metrics, optimization with fixed costs, 
distances, and specified restrictions. The second type is 
intelligent techniques (soft computing) such as the ANN 
algorithm, GA algorithm, and ACO algorithm, which are 
useful for dynamic network conditions and situations. This 
type of algorithms uses deferent search strategies to find 
solutions; some of them are population-based, while others 
are based on local searches. The main difference is that the 
large search space in a population-based (it may encompass 
the entire network) algorithm uses a collection of candidate 
solutions rather than a single search point. Therefore, 
population-based approaches require more calculations 
than simple local approaches [22]. 

One of the most straightforward structures to represent 
the SP problem is a graph. It consisting of multiple vertices 
and arcs. Here, the vertices of the graph represent routers 
(where decisions of packet routing are taken) and the arcs 
(edges in terms of graph theory) that link these nodes are 
the physical connections between these. A connection also 
has a cost value for sending a packet over the link. The cost 
may represent one of the network metrics (time delay, 
bandwidth, etc.). 

IV. PROPOSED ROUTING MODEL 

This paper outlines a new novel strategy to solve the 
routing problem that expands the existing CHA algorithm 
and improves on its approach. It makes a comparison 
between two deference types of metaheuristic optimization 
algorithms (local search and population-based) in 
performance to demonstrate the effect of the size of the 
search space on the accuracy and the speed of finding the 
shortest path. The CHA approach depends on the 
exploration of neighbors for the current position of herd (a 
single search point) to build the path from source to 
destination. This approach can be classified as a local-search 
algorithm. It is different the population-based search 
algorithms that start with a collection of candidate paths 
and operate between them to get the best path [21]. 

A. Parameter Initialization 

The CHA algorithm begins with the initial value of the 
parameters, which are Hum, n, Hc, source node, and 
destination node, to solve the SP problem. 

One of the most important parameters in the CHA 
algorithm is the Humidity Rate (Hum). This rate is 
determined according to the problem to be solved. It is a 
random value assigned to each herd before starting the 
search in the problem space. After several tests and 
experiments, it was found that a rate between (“0.4 to 
0.44”) is the ideal value for finding the best path for the SP 
problem. 

The second important parameter is the number of herds 
(Hc). The algorithm includes a list which stores the path for 
the herds during and after the search process. After running 
the algorithm, the final number of all the solutions is the 
same as the number of herds that were launched from the 
starting point. 

As discussed above, each herd is a group of camels n, one 
of which is assigned as the leader of the herd. The rest of the 
camels explore and determine the best neighbor for the 
leader by applying the cost function to the neighboring 
nodes up to (n -1) times (the number of camels except for 
the leader). In this model, the maximum number of camels 
(n = 10) was used. 

B. Camel Herds Strategy for Routing 

After initializing the parameters, the Hum value is 
randomly determined according to the number of herds (a 
random value between 0.4 and 0.44 for each herd), and then 
the leader of each herd is identified. 

The CHA starts by having each herd move from different 
nodes (initial node) of the neighbor’s source node Fig. 1.a to 
ensure the provision of diversity in solutions. It starts from 
different points in the graph. And then pushes the source 
node and that initial state to the leader list (LHc) for that 
herd. 

The members of the herd start to test the neighbors of 
the current LHc node by spreading camels to these nodes Fig. 
1.b and testing them via the cost function (equation 1). The 
minimum value of cost function between all camels 
determines the best neighbor that will be appended to the 
LHc list for that herd. 

 After determining the best neighbor, the herd moves to 
that neighbor Fig. 1.c. The Hum updates, and the herd start 
over again from the new position, spreading camels and 
testing the neighbors again until the destination node is 
reached. These steps are repeated for each herd, and we get 
various solutions and then pick the best. 

In summarize each herd goes through four basic steps to 
find the shortest path in CHA algorithm: 

•  Determine the camel leader in each herd (LHc). 
• Determine the initial node for each herd (Hc). 
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Fig. 1 An example of artificial herds camel movement

• Spread camels n to test the neighbors. 
• Select the best neighbor and insert it into the path. 
We have improved upon this initial CHA algorithm by 

allowing camels to test two consecutive nodes in the 
network. This improvement can provide a more expansive 
search space to reach the destination. The results show that 
the algorithm is able to achieve the optimal solution, which 
will be discussed below. 

C. Cost Function 

The herd's routes for finding the shortest path depend on 
the output of the equation (1) [7] value for each n in the herd 
(the leader’s neighbors). 

 
Xi' = Xi * (1/Hum) 

|Xi+1|= (XLed – Xi') / squirt(XLed + Xi')                                  (1) 

The equation was adapted to suit the SP problem, and it 
became as follows: 

Xi: The cost of the arc from LHc position to each camel (n) 
after spread (neighbors nodes of the leader).  

Hum: The humidity rate for current Hc. 
XLed: The total path cost from the source node to the 

current node of the leader LHc. 
 
For example, we assume the Hum = 0.44 for the herd in 

fig 1.b, the Xi value according to equation (1) for camels will 
be (n1=9.09, n2=4.54, n3=6.81, n4=11.36), and the|Xi+1| will 
be (|Xi+1|n1=1.08, |Xi+1|n2=0.14, |Xi+1|n3=0.52, |Xi+1|n4=1.57); 
according to the calculation of the equation above for each 
camel, the herd moves to the node of camel (n2) that gives 
the minimum value of (|Xi+1|). 

The algorithm is useful, fast, and adaptable to the size of 
the problem. One of the most critical features is its ability to 
control the search space by launching more herds or even by 
increasing the number of camels. These critical features 
provides a broader exploration of the neighbors of the 
current state to ensure more access to the best solutions. 
Fig 2 shows the pseudocode of the CHA for the routing 
problem. 

 

Fig.2 CHA pseudocode 

V. EXPERIMENTAL RESULTS 

To demonstrate the performance of the expanded camel 
herds algorithm, we built it using the Python 3.8 
environment. It is powerful in dealing with lists and has a 
large number of libraries and functions that make building 
the code simple. Ten well-known graphs (weighted, integer, 
not negative) of various sizes (from 10 nodes to 297 nodes) 
with a number of edges (up to19900 edges) were used to 
test the proposed routing algorithm. Three random paths 
for each graph were used. 

We compared the results with the Ant Colony algorithm 
as a non-population based approach (the same improved 
CHA approach). And with two other population-based 
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approaches (Genetic algorithm, particle swarm optimization 
algorithm). It is important to illustration the difference 
between the two approaches in solving the SP problem. We 
especially looked at the effect of search space of these two 
approaches on CPU consumption time and on the quality of 
the solution provided by the four algorithms. 

The CHA parameters are prepared with the same settings 
for the ACO (number of herds = number of ants, with the 
same number of iteration in both) to provide a fair 
comparison as shown in the (CHA) column in Table I; it is the 
first test. In the second test, the settings were reduced to 50% 
(for herd and iteration), as shown in the (CHA reduced) 
column in Table I, since the CHA algorithm does not require 
a high herd count or high iteration. 

The first column in Table I, denotes the name and size of 
the graph. The source and destination for paths and its 
optimal costs are in columns 2 and 3. And the rest of the 
columns display the best cost and execution time for each 
algorithm. The Fig. 3 show the difference between the 
proposed CHA and the others (ACO, GA, PSO algorithms) in 
execution time for each path. 

Fig. 3 Execution Times for All Paths in (sec) 
 
Three criteria were used to check the performance of the 

proposed algorithm in this field: mean relative error (MRE), 
standard deviation (SD), and number of function evaluations 
(NFEs). The MRE was counted according to Equation (2), as 
follows: 

Table I Performance compression between CHA and (ACO,GA,PSO) Shows the costs, CPU consumed time (sec) 

Dataset paths 
Optimal 

 cost 

Methods 

CHA (reduced) CHA ACO GA PSO 

cost time cost time cost time cost time cost time 

1- Random 
(10-nodes) 

(4 , 3) 9 9 0.016 9 0.037 9 0.062 9 0.327 9 0.243 

(8,1) 12 13 0.019 13 0.047 12 0.074 12 0.321 12 0.245 

(3,9) 9 12 0.016 12 0.047 9 0.062 9 0.319 9 0.241 

2- NSFnet 
(14-nodes) 

(0 , 13) 27 27 0.015 27 0.019 27 0.095 27 0.456 27 0.417 

(10,4) 22 22 0.015 22 0.016 22 0.092 22 0.459 22 0.425 

(3,9) 32 32 0.015 32 0.016 32 0.095 36 0.471 32 0.414 

3- st70 
(70-nodes)[23] 

(3 , 44) 65 66 2.877 66 12.017 66 12.83 66 44.449 65 44.662 

(69,10) 78 79 2.892 78 11.184 79 13.02 86 43.466 79 46.174 

(48,49) 82 82 2.108 82 8.493 83 12.835 83 44.03 83 46.135 

4- lesmis 
(77-nodes)[24] 

(10 , 75) 3 3 0.637 3 2.481 11 17.151 9 44.815 3 47.417 

(26,70) 2 2 0.563 2 2.026 9 17.597 10 47.516 3 47.749 

(44,55) 4 4 0.313 4 1.28 4 14.75 16 46.197 4 50.122 

5- sandi_authors 
(86-nodes)[25] 

(29,76) 5 5 0.564 5 2.396 5 16.565 7 44.869 5 46.886 

(54,84) 5 5 0.57 5 2.162 5 16.868 5 42.837 7 46.637 

(32,2) 3 3 0.101 3 0.392 3 16.184 5 43.158 3 44.816 

6- kroa100 
(100-nodes)[23] 

(8,88) 1827 1828 5.435 1827 22.247 1828 19.973 1828 45.409 1827 46.744 

(21,29) 3473 3474 3.946 3474 15.856 3474 19.204 3474 44.357 3474 47.162 

(99,98) 3759 3760 5.812 3759 23.343 3760 19.366 3769 43.775 3762 47.226 

7- ch130 
(130-nodes)[23] 

(2 , 123) 368 369 12.743 369 57.858 369 49.451 369 72.281 369 72.775 

(65,8) 839 840 12.356 840 49.921 840 39.568 841 69.124 841 71.507 

(96,114) 421 422 11.116 421 45.36 422 39.965 432 69.449 427 72.381 

8- Kroa150 
(150-nodes)[23] 

(1 , 135) 1843 1843 14.943 1843 59.89 1844 44.832 1844 70.46 1843 82.069 

(25,70) 4080 4081 16.24 4081 65.091 4081 45.519 4081 70.738 4081 70.403 

(143,142) 1877 1878 14.651 1877 60.415 1878 45.984 1998 71.509 1922 70.313 

9- Kroa200 
(200-nodes)[23] 

(42 , 176) 2014 2015 39.924 2014 162.8792 2017 112.19 2014 112.862 2026 114.449 

(195,0) 2607 2608 47.766 2607 190.804 2608 114.468 2608 107.541 2614 109.345 

(153,77) 2800 2801 54.358 2801 223.587 2808 115.503 2804 106.818 2801 108.891 

10- 
celegansneural 
(297-nodes)[24] 

(100,279) 7 8 17.319 7 69.002 7 114.355 8 109.546 12 114.186 

(0,250) 4 4 10.239 4 39.955 4 105.639 5 107.445 4 111.921 

(260,6) 4 4 4.431 4 17.341 4 102.389 5 105.735 4 110.637 
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MRE = (algorithm cost - optimal cost) / optimal cost    (2) 
     The results show in Table II and Fig. 4 that the CHA 
outperformed the others with a lower average error rate to 
find the optimal cost; Even in the reduced CHA the average 
is better than that of the others. 

 

 

 

Fig. 4 Average Mean Relative Error 

For standard deviation, in Table III the first and second 
columns denote the graphs and its paths, while the rest of 
columns depict the standard deviation values. Fig. 5 shows 
the average, and the results show that the values are close 
to zero (sometimes zero) for both tests CHA and (CHA 
reduced). 
 

 

   

Fig. 5 Average Standard Deviation 

Table II  Mean Relative Error for costs D
atase

ts 

paths 

Methods
 

CHA 
reduced 

CHA ACO GA PSO 

1 

(4,3) 0 0 0 0 0 

(8,1) 0.08333 0.08333 0 0 0 

(3,9) 0.33333 0.33333 0 0 0 

2 

(0,13) 0 0 0 0 0 

(10,4) 0 0 0 0 0 

(3,9) 0 0 0 0.125 0 

3 

(3,44) 0.01538 0.01538 0.01538 0.01538 0 

(69,10) 0.01282 0 0.01282 0.10256 0.01282 

(48,49) 0 0 0.01220 0.01220 0.01220 

4 

(10,75) 0 0 2.66667 2 0 

(26,70) 0 0 3.5 4 0.5 

(44,55) 0 0 0 3 0 

5 

(29,76) 0 0 0 0.4 0 

(54,84) 0 0 0 0 0.4 

(32,2) 0 0 0 0.66667 0 

6 

(8,88) 0.00055 0 0.00055 0.00055 0 

(21,29) 0.00029 0.00029 0.00029 0.00029 0.00029 

(99,98) 0.00027 0 0.00027 0.00266 0.00080 

7 

(2,123) 0.00272 0.00272 0.00272 0.00272 0.00272 

(65,8) 0.00119 0.00119 0.00119 0.00238 0.00238 

(96,114) 0.00238 0 0.00238 0.02613 0.01425 

8 

(1 ,135) 0 0 0.00054 0.00054 0 

(25,70) 0.00025 0.00025 0.00025 0.00025 0.00025 

(143,142) 0.00053 0 0.00053 0.06446 0.02397 

9 

(42,176) 0.00050 0 0.00149 0 0.00596 

(195,0) 0.00038 0 0.00038 0.00038 0.00269 

(153,77) 0.00036 0.00036 0.00286 0.00143 0.00036 

10 

(100,279) 0.14286 0 0 0.14286 0.14286 

(0,250) 0 0 0 0.25 0.25 

(260,6) 0 0 0 0.25 0.25 

Average MRE 0.01990 0.0145 0.20735 0.3688 0.05405 

Table III  Standard Deviation for Costs D
atase

ts 

paths 

Methods
 

CHA 
reduced 

CHA ACO GA PSO 

1 

(4,3) 0.223 0 0.444 0 2.459 

(8,1) 0 0 0 0 0 

(3,9) 0 0 0 0 0 

2 

(0,13) 0 0 3.332 0 6.626 

(10,4) 0 0 0 0 4.021 

(3,9) 0 0 1.231 3.071 3.360 

3 

(3,44) 0 0 2.087 4.701 0 

(69,10) 0.223 0.410 2.125 1.231 0.315 

(48,49) 0.444 0 7.090 0 2.593 

4 

(10,75) 0 0 0 4.363 0 

(26,70) 0 0 0 13.180 1.551 

(44,55) 0 0 0 6.830 0.638 

5 

(29,76) 0 0 0 2.190 0.816 

(54,84) 0 0 0.410 0 1.032 

(32,2) 0 0 0.447 0 2.133 

6 

(8,88) 0.502 0.366 48.03 0 230.29 

(21,29) 0 0 151.97 0 91.001 

(99,98) 0.223 0.410 93.996 0 55.982 

7 

(2,123) 0.223 0.366 28.009 38.070 47.854 

(65,8) 0 0 8.801 83.042 23.958 

(96,114) 0.512 0.366 12.330 79.593 68.122 

8 

(1 ,135) 0.366 0.444 27.831 0 207.193 

(25,70) 0.502 0.223 60.305 0 48.389 

(143,142) 0.410 0.410 30.203 0 297.896 

9 

(42,176) 0.307 0.366 50.793 0 51.240 

(195,0) 0.470 0.307 131.137 0 77.292 

(153,77) 0 0 71.428 0.223 135.198 

10 

(100,279) 0.510 0.223 0.615 0.75 1.974 

(0,250) 0.223 0 0.510 0 7.932 

(260,6) 0 0 0 0 2.229 

Average SD 0.1715 0.129 24.437 7.908 45.736 
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As discussed above, the herd moves according to the 
lowest value determined by the camels after examining the 
leader's neighbors, so the number of function evaluations of 
the cost function depends directly on the number of camels, 
which raises the CHA’s NFEs, as shown in Fig. 6. However, 
the number of camels offers the advantage of a wider 
exploration of the nodes. (CHA reduced) still provides 
promising results compared to other algorithms. 
 

 

Fig. 6 Number of Function Evaluations 

VI. CONCLUSION 

Many routing algorithms have been developed to reach 
the best path. In this paper, a new routing algorithm was 
proposed that expands the camel herds algorithm, which 
relies on examining the best neighbors of the current 
solution. The algorithm can be easily adapted to the 
problem space, as the search space can be controlled 
according to the size and type of the network. In contrast to 
population-based algorithms, in which the search space is 
large and time-consuming. The CHA is a fast algorithm and 
offers more diversity because each herd can provide an 
independent path. The algorithm was run to solve the 
shortest path problem for ten networks of different sizes. 
The obtained results show that the algorithm is efficient 
compared to other algorithms (ACO, GA, PSO). In the future, 
the algorithm will be used to solve a k-shortest path problem. 
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