
International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 1, Issue 1 (2015)

A New Design of Cryptographic Hash Function:
Gear

Abdulaziz M Alkandari1, Khalil Ibrahim Alkandari2, Imad Fakhri Alshaikhli3, Mohammad A.
AlAhmad4

1Public Authority for Applied Education and Training
College of Technology, Science Department, Kuwait City, Kuwait

abdl_alkandari@hotmail.com
2Public Authority for Applied Education and Training

The Higher Institute of Telecommunication &Navigation
Computer Department, Kuwait City, Kuwait

ki.alkandari@paaet.edu.kw
3Department of Computer Science, International Islamic University of Malaysia, 53100 Jalan Gombak

Kuala Lumpur, Malaysia
imadf@iium.edu.my

4Public Authority for Applied Education and Training College of Basic Education,
Computer Science Department, P.O. Box 34567 Adailiyah, 73205, Kuwait City, Kuwait

malahmads@yahoo.com

Abstract— A hash function is any function that can be used to map data of arbitrary size
to data of fixed size. A hash function usually has two main components: a permutation
function or compression function and mode of operation. We will propose a new concrete
novel design of a permutation based hash functions called Gear in this paper. It is a hash
function based on block cipher in Davies-Meyer mode. It uses the patched version of
Merkle-Damgård, i.e. the wide pipe construction as its mode of operation. Thus, the
intermediate chaining value has at least twice larger length than the output hash. And
the permutations functions used in Gear are inspired from the SHA-3 finalist Grøestl hash
function which is originally inspired from Rijndael design (AES). There is a very strong
confusion and diffusion in Gear as a result.

Keywords— WP - permutation –block cipher – AES

I. INTRODUCTION

To understand how to use and retail functions
to verify the integrity and source of information,
you must first examine the characteristics and
the origin of the basic function retail. The
standard hash function serves as a basis for the
discussion of

Cryptographic Hash Functions. Cryptographic
hash functions have indeed proved to be the
workhorses for modern cryptographic hash
functions. Another name given to cryptographic
hash functions is “Swiss knife army” because it
can serve many different purposes such as digital
signatures, conventional message authentication
to secure passwords storage or forensics data
identification. Cryptographic hash functions take
an unfixed size of input and produce a fixed size
of an output.

 A hash function usually built from two main
components: (1) a basic primitive compression
function C and (2) an iterative mode of operation
H, where the symbol HC denotes the hash
function HC based on the compression function C.
Most hash functions in use today are so-called
iterated hash functions, i.e. Merkle-Damgård
(MD), based on iterating a compression function.

Examples of iterated hash functions are MD4,
MD5, SHA and RIPEMD-160. For a cryptographic
hash function HC, if the compression function C is
resistant to the following attacks, then the hash
function considered secure:

• Preimage: given y = H(x), find x’such that
H(x’) = y,

• 2nd preimage: given an x and y=H(x) find
x’≠ x such that H(x’) = y,

• Collision: find x and x’such that x’≠ x and
H(x) =H(x’).

Recently, several collisions were announced
which decreased the security of some of the
existing hash functions. Particularly, collisions
were announced in SHA-0, MD4, MD5, HAVAL-
128, and RIPEMD. French researcher Antoine Joux
et al. [17] presented the collision in SHA-0, and a
group of collisions against MD4, MD5, HAVAL-
128, and RIPEMD were found by the Chinese
researcher Xiaoyun Wang with co-authors
Dengguo Feng, Lai, and Hongbo Yu [30]. After
that, in February 2005, the same Xiaoyun Wang,
Lisa Yiqun Yin, and Hongbo Yu found collisions in
SHA-1 using 269 hash computations [30]. Several
strategies were developed to thwart these

29

mailto:abdl_alkandari@hotmail.com

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 1, Issue 1 (2015)

attacks. Stefan lucks et al. [23] introduced the
Wide Pipe (WP) hash construction as an
intermediate version of Merkle-Damgård to
improve the structural weaknesses of Merkle-
Damgård design. The process is similar to Merkle-
Damgård algorithm steps except of having a
larger internal state size, which means the final
hash digest is smaller than the internal state size
of bit length. For example, the final compression
function compresses the internal state length (for
ex, 2n-bits) to output a hash digest of n-bit. This
simply can be achieved by discarding the last half
of 2n-bit output. WP is used in this paper to
construct Gearhash function. It is used as an
operation of mode for Gear. Mridul Nandi and
Souradyauti Paul et al. [31] proposed the fast
wide pipe (FWP) construction to overcome these
attacks. It is twice faster than the wide pipe
construction. HAsh Iterated FrAmework (HAIFA) is
also a patched version Merkle-Damgård
construction [32]. HAIFA design solves many of
the internal collision problems associated with
the classic MD construction design by adding a
fixed (optional) salt of s-bits along with a
(mandatory) counter Ci of t-bits to every
message block in the iteration i of the hash
function. Wide-pipe and HAIFA are very similar
designs. Where, sponge construction is an
iterative construction designed by Guido Bertoni,
Joan Daemen, MichealPeeter and Gilles Van
Assche to replace Merkle-Damgård construction
[2]. It is a construction that maps a variable
length input to a variable length output. Keccak
(SHA-3 winner) hash function uses sponge
construction. In the next section, we demonstrate
our new proposal Gear hash function in more
details.

II. OUR PROPOSAL

We propose a new hash function called Gear
that supports 256-512 bits digests. The basic
building block of our hash is a block cipher. By
applying standard design approaches next we
create a compression function (based on the
cipher), and finally a hash function. We use the
following design techniques:

• The block cipher applies the wide trail
strategy.

• A compression function based on the
block cipher in Davies-Meyer mode.

• A hash built upon an iterative compression
function with the Merkle-Damgård construction.

• A wide pipe construction, i.e. the
intermediate chaining value has at least twice
larger length than the output hash.

III. DESIGN GOALS

In the last several years, the notion of security
has expanded to include not only the basic
requirements on collisions and second preimage
resistance, but also a wide variety of
distinguishers. So, the main design goal of any
modern hash function is the security of the
construction. In fact, non-formally a hash
function is supposed to behave as a random
oracle. Although in this model, trivial
distinguishers do exist for every hash function,
the designers aim to construct hash function that
will be resistant against all possible non-trivial
distinguishers, i.e. the hash does not exhibit any
structural distinguishers, and, in a line of notation
from the Sponge design [2], it is a hermetic
design.

We aim to achieve this high security requirement
with our proposal as well. More precisely, we
would like to achieve the standard security
margin against the following attacks and
structural distinguishers:

 No collisions can be found in n-bit Gear
with significantly less than 2n hash
function invocations

 No (second) preimage can be found in n-
bit Gear with significantly less then 2n
invocations

 No non-trivial structural distinguishers can
be found for Gear with a complexity
significantly lower than the complexity
required to find (or confirm) such property
in a secure hash function (such as SHA-2,
SHA-3, etc.)Here, we would like to point
out that the deviation “significantly lower”
from “lower” is introduced to annulate the
analysis based on the recently discovered
bicliques[7] – the latest results suggest
that such analytical results are most likely
applicable to all cryptographic primitives,
thus one cannot expect the achieve the
ideal security level. On the other hand,
the complexity of the attacks not based
on granulation of the compression
function (i.e. all other analysis except
bicliques), should always exceed our
claimed security bound.

IV. DESCRIPTION OF GEAR

Our proposal Gearis a wide pipe hash function
with an internal state of 1024 bits. It supports
digests of 1 to 512 bits. For security reasons, we
suggest a minimal output of 256 bits – further we
describe the two main versions Gear- 256 and
Gear-512, with an output length of 256 and 512

30

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 1, Issue 1 (2015)

bits, respectively. We emphasize that these two
versions, as well as all the possible versions with
a hash output between 256 and 512 bits, are
based on the same primitive, and differ only in
the number of bits that are truncated at the
output of the primitive. Our hash function is
based on a cipher C-Gear used in the Davies-
Meyer mode to build a compression function. We
use Merkle-Damgård to construct the hash upon
this compression function. Further we describe in
details the cipher and give a brief recall of the
mode.

A. The Cipher C-Gear

The block cipher C-Gear(P, K) is an SP network
with 16 rounds and designed according to the
wide trail strategy. It has a state of 1024 bits and
supports 1024-bit keys. The state as well as the
key is seen as 8x16 matrix of bytes – with
ai,j,bi,j,i = 0,...,7,j = 0,...,15 we denote the
individual bytes of the state and key matrices,
respectively.

In each of the 16 rounds, the state S undergoes
four byte-oriented transformations, i.e. round R
can be represented as:

R = AK ◦ MC ◦ SR ◦ SB
Where AK, MC, SR, SB are acronyms for

AddRoundKey, MixColumns, ShiftRows, and
SubBytes, respectively. An additional
AddRoundKey is perform at the beginning of the
state update transformations (known as key
prewhitening).

The 1024-bitsubkeyKiused in the i-th round is
produced from the previous subkeyKi−1 with
similar operations:

Ki =AC◦MC◦SR◦SB(Ki−1)
Where AC stands for AddRound Constant. The

prewhitening key K0 is the initial master key. The
round and key schedule transformations are the
standard operations used in most of the Rijndael-
based primitives. For completeness of the
description, in the sequel we give a brief
definition. The superscripts new, old are used to
denote the updated, previous values for the
bytes (or the columns).

SubBytes (SB). This transformation is the
only non-linear part of the cipher. It consists of
independent application of 8x8 bit S-box to all
the bytes of the state (or the subkey), etc.

We use the invertible AES S-box S(•) for this
purpose which is a composition of a finite field
inversion and an affine transformation. The

precise definition of the S-box is given in Table 1
in the form S(X1X2) = Y.

ShiftRows (SR). It performs a cyclic shift of
the rows of the matrix on different offsets that
depend on the row index. The value of the offsets
ria, rib, i = 0, . . . , 7 is different for the state and
the key schedule:

The precise values are given in Table 2.
MixColumns (MC). The diffusion among the

bytes is achieved with this transformation. It is a
multiplication of the columns aj,bj of the
state/subkeys by a matrix M:

Where M is defined as:

Table 1: The S-box used in Gear

Table 2: The offsets used in ShiftRows

We emphasize that the same matrix is used for
both the state and key schedule. The

31

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 1, Issue 1 (2015)

multiplication is performed in GF(28) defined with
the irreducible polynomial x8 +x4 +x3 +x+1.

AddRoundKey (AK). The 1024-bitsubkey is
xored to the state. The XOR can be seen as byte-
wise, i.e.:

AddRoundConstant (AC). A constant Ci is
xored to the subkey Ki – in a similar fashion, it
can be represented as a byte-wise operation. The
value of the constants is dependent on the index
i. It is defined as:

A. The Hash Function Gear
Once we have defined C-Gear, we use a

standard approach to build a hash function based
on this cipher. First, we define the compression
function CF. It takes two inputs: 1024-bit chaining
value Hi and 1024-bit message Mi, and produces
1024-bit chaining value Hi+1 with Davies-Meyer
mode of C-Gear, i.e.:

Hi+1 = CF(Hi, Mi) = C-Gear(Hi, Mi) ⊕ Hi
Further, we use this compression function to

build a hash function with the Merkle-
Damgårdconstruction. Briefly, we fix an initial
chaining value H0 equal to the first 128 bytes of
the fractional part of π (see Table 3). We pad the
message M (see below how the padding is
performed), and split the expanded message into
1024-bits chunks Mi. Next, we iterate all the
message blocks using the compression function
based on the Merkle-Damgård construction:

H0 = IV
Hi+1 = CF(Hi, Mi)

When the expanded message contains l blocks,
the output Hl+1 is used to produce the final hash
based on truncation, i.e. the hash of M is
tr(Hl+1), there tr(X) truncates the leftmost bits of
X, depending on the hash size.

Table 3: The initial chaining value H0

 Thus, for256-bit digests, tr(X) outputs the
256lefttmost (most significant) bits of X, while for
512-bit digest this number is 512. In general, for
Gear−n, tr(X) outputs the n most significant bits
of the last produced chaining value Hl+1.

The padding. This procedure produces
expanded message Me from the original input
message M. It assures that the length (in bits) of
M is properly encoded into the expanded
message Me, and the length of Me is divisible by
1024. To achieve this we use a trivial padding by
attaching a required number of 0’s to make the
last message block1024 bits, and always
introduce an addition message block at the end
that contains the length of M only.

Let M has t bits. Then from M, first we produce
Me ̃ = M00...0, where the number of 0’s is 1024−
(t mod 1024) when t is not divisible by 1024 –
otherwise we do not attach any 0’s. Next, we
attach an additional 1024-bit block that contains
1024 − 64 = 940 zeros, while the last 64 bits are
equal to t, i.e. the expanded message is defined
as Me = Me ̃00...0tbinary.

Endian and mappings. Our hash function is
little endian oriented – it regards 64-bit words as
8 bytes in reverse order (with the least significant
byte coming first). Furthermore, the mapping of
byte sequence to matrix of the state (or the key
schedule) is from left to right, and top row to
bottom row. For example, the 128-byte sequence
a1, . . . , a128 is mapped to the matrix as follows:

V. PSEUDO CODE AND TEST VECTORS

The pseudo codes of state round, keyschedule
round, C-Gear and Gear is given in Algorithm 1-4
respectively

Algorithm 1 State Round(S, Ki)
S ← SubBytes(S)
S ← ShiftRows(S)
S ← MixColumns(S)

32

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 1, Issue 1 (2015)

S ← AddRoundKey(S, Ki)
end

Algorithm 2 KeySchedule Round(Ki, i)
Ki+1 ← SubBytes(Ki)
Ki+1 ← ShiftRows(Ki+1)
Ki+1 ← MixColumns(Ki+1)
Ki+1 ← AddRoundConstant(Ki+1, i)
end

Algorithm 3 C−Gear(P, K)
S ← AddRoundKey(P, K) K0 ← K
fori = 0 to 15 do
Ki+1 ← KeyScheduleRound(Ki, i)
S ← State Round(S) end for
end

Algorithm 4 Gear(M)
M0|M1|...|Ml←padded(M) H0 = IV
fori= 0 to l do
Hi+1 =C−Gear(Hi,Mi)⊕Hi
end for
output truncated(Hl)
end
A list of test vectors in given in Table 4.

Table 4: Test vectors for Gear-512
Gear (“ ”)

8798dbba48ffd3b62e239b549499c09b
3d4637273489f9061f5e1d8d214e31ae
1dc13d88a561c5594c9937ee864140e9
7f7b93ffd27e79251d4755a20eca60a4

Gear ("The quick brown fox jumps over the lazy dog")
9b182c6da0010a92e6df1dd67515764b
53a909aecc9be8dbf1c47bf876b4be42
7b96491fbf8e2e90453b4ac9cabf4b5d

73394019ca7801d11307e8d000eed3e2
Gear ("The quick brown fox jumps over the lazy dag")

257269675f2d432ba8dbece0b25d4ac9
a95450c9788a6ef65cee1d1e349b7ed4
a13e0302d0d8204f17832933896ac7e4
4b9709fd6ddb0f86732200955b51648e

VI. CONCLUSION

In this paper, we have presented a new
cryptographic hash function Gear that supports
digests of up to 512 bits. Our proposal is based
on the wide trail strategy and uses an underlying
block cipher with 1024 bit key and state. We use
mode and construction with longstanding
security analysis. Future research might include
Hash Function Gear in different constructions as
its mode of operation.

REFERENCES

[1] K. Aoki and Y. Sasaki. Preimage attacks on one-block
MD4, 63-step MD5 and more. In R. M. Avanzi, L. Keliher,
and F. Sica, editors, Selected Areas in Cryptography,
volume 5381 of Lecture Notes in Computer Science,
pages 103–119. Springer, 2008.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On
the indifferentiability of the Sponge construction. In N. P.

Smart, editor, EURO- CRYPT, volume 4965 of Lecture
Notes in Computer Science, pages 181– 197. Springer,
2008.

[3] Biham and A. Shamir. Differential cryptanalysis of DES-
like cryptosystems. J. Cryptology, 4(1):3–72, 1991.

[4] A. Biryukov and D. Wagner. Slide attacks. In L. R.
Knudsen, editor, FSE, volume 1636 of Lecture Notes in
Computer Science, pages 245–259. Springer, 1999.

[5] A. Biryukov and D. Wagner. Advanced slide attacks. In B.
Preneel, editor, EUROCRYPT, volume 1807 of Lecture
Notes in Computer Science, pages 589–606. Springer,
2000.

[6] J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis
of the block- cipher-based hash-function constructions
from PGV. In M. Yung, editor, CRYPTO, volume 2442 of
Lecture Notes in Computer Science, pages 320– 335.
Springer, 2002.

[7] A. Bogdanov, D. Khovratovich, and C. Rechberger.
Biclique cryptanalysis of the full AES. In D. H. Lee and X.
Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes
in Computer Science, pages 344–371. Springer, 2011.

[8] G. Brassard, editor. Advances in Cryptology - CRYPTO ’89,
9th Annual International Cryptology Conference, Santa
Barbara, California, USA, Au- gust 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer
Science. Springer, 1990.

[9] A. Canteaut, editor. Fast Software Encryption - 19th
International Work- shop, FSE 2012, Washington, DC,
USA, March 19-21, 2012. Revised Selected Papers,
volume 7549 of Lecture Notes in Computer Science.
Springer, 2012.

[10] J. Daemen, L. R. Knudsen, and V. Rijmen. The block cipher
Square. In E. Biham, editor, FSE, volume 1267 of Lecture
Notes in Computer Science, pages 149–165. Springer,
1997.

[11] J. Daemen and V. Rijmen. The wide trail design strategy.
In B. Honary, editor, IMA Int. Conf., volume 2260 of
Lecture Notes in Computer Science, pages 222–238.
Springer, 2001.

[12] I. Damg ̊ ard. A design principle for hash functions. In
Brassard [8], pages 416–427.

[13] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel,
C. Rechberger, M. Schlaffer, and S. S. Thomsen. Grøstl–a
sha-3 candidate. Submission to NIST, 2008.

[14] H. Gilbert and T. Peyrin. Super-Sbox cryptanalysis:
Improved attacks for AES-like permutations. In Hong and
Iwata [15], pages 365–383.

[15] S. Hong and T. Iwata, editors. Fast Software Encryption,
17th International Workshop, FSE 2010, Seoul, Korea,
February 7-10, 2010, Revised Selected Papers, volume
6147 of Lecture Notes in Computer Science. Springer,
2010.

[16] J. Jean, M. Naya-Plasencia, and T. Peyrin. Improved
rebound attack on the finalist grøstl. In Canteaut [9],
pages 110–126.

[17] A. Joux. Multicollisions in iterated hash functions.
Application to cascaded constructions. In M. K. Franklin,
editor, CRYPTO, volume 3152 of Lecture Notes in
Computer Science, pages 306–316. Springer, 2004.

[18] J. Kelsey and T. Kohno. Herding hash functions and the
Nostradamus attack. In S.Vaudenay, editor, EUROCRYPT,
volume 4004 of Lecture Notes in Computer Science,
pages 183–200. Springer, 2006.

[19] J. Kelsey and B. Schneier. Second preimages on n-bit hash
functions for much less than 2n work. In R. Cramer,
editor, EUROCRYPT, volume 3494 of Lecture Notes in
Computer Science, pages 474–490. Springer, 2005.

[20] D. Khovratovich and I. Nikolic. Rotational cryptanalysis of
ARX. In Hong and Iwata, pages 333–346.

33

International Journal on Perceptive and Cognitive Computing (IJPCC) Vol 1, Issue 1 (2015)

[21] L. R. Knudsen. Truncated and higher order differentials. In
B. Preneel, editor, FSE, volume 1008 of Lecture Notes in
Computer Science, pages 196–211. Springer, 1994.

[22] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and
M. Schla ̈ffer. Rebound distinguishers: Results on the full
Whirlpool compression func- tion. In M. Matsui, editor,
ASIACRYPT, volume 5912 of Lecture Notes in Computer
Science, pages 126–143. Springer, 2009.

[23] S. Lucks. A failure-friendly design principle for hash
functions. In B. K. Roy, editor, ASIACRYPT, volume 3788 of
Lecture Notes in Computer Science, pages 474–494.
Springer, 2005.

[24] M. Matsui. Linear cryptoanalysis method for DES cipher.
In T. Helleseth, editor, EUROCRYPT, volume 765 of
Lecture Notes in Computer Science, pages 386–397.
Springer, 1993.

[25] F. Mendel, C. Rechberger, M. Schla ̈ ffer, and S. S.
Thomsen. The Rebound attack: Cryptanalysis of reduced
Whirlpool and Grøstl. In O. Dunkelman, editor, FSE,
volume 5665 of Lecture Notes in Computer Science,
pages 260–276. Springer, 2009.

[26] R. C. Merkle. One way hash functions and DES. In
Brassard [8], pages 428–446.

[27] National Institute of Standards and Technology.
Cryptographic hash al- gorithm competition.
http://csrc.nist.gov/groups/ST/hash/sha-3/ index.html.

[28] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions
based on block ciphers: A synthetic approach. In D. R.
Stinson, editor, CRYPTO, volume 773 of Lecture Notes in
Computer Science, pages 368–378. Springer, 1993.

[29] S. Wu, D. Feng, W. Wu, J. Guo, L. Dong, and J. Zou.
(Pseudo) preimage attack on round-reduced Grøstl hash
function and others. In Canteaut [9], pages 127–145.

[30] Wang, Xiaoyun, Hongbo Yu, and Yiqun Lisa Yin. "Efficient
collision search attacks on SHA-0." Advances in
Cryptology–CRYPTO 2005. Springer Berlin Heidelberg,
2005.

[31] Nandi, M. and S. Paul (2010). "Speeding up the wide-pipe:
Secure and fast hashing." Progress in Cryptology-
INDOCRYPT 2010: 144-162.

[32] Eli Biham and Orr Dunkelman, "A Framework for Iterative
Hash Functions - HAIFA," Cryptology ePrint Archive, 2007.
[Online]. http://eprint.iacr.org/2007/278

[33] Alahmad, M. A., I. Al-shaikhli, et al. (2013).
“Jouxmulticollisions attack in sponge construction”. The
6th International Conference on Security of Information
and Networks (SIN), 2013 6th International Conference
on, ACM.

[34] Alahmad, M. A., I. Al-shaikhli, Jumaa, Bashayer (2013).
“Protection of the digital Holy Quran PDF file using
Combination between AES and RSA Cryptography
Algorithms (CARCA)”. Advanced Computer Science
Applications and Technologies (ACSAT), 2013
International Conference on, IEEE Xplore.

[35] Alahmad, M. A., I. Al-shaikhli, Duwaikh, Amal (2013). “A
New Fragile Digital Watermarking Technique for a PDF
digital Holy Quran”. Advanced Computer Science
Applications and Technologies (ACSAT), 2013
International Conference on, IEEE Xplore.

34

