VARDENAFIL MARKEDLY SUPPRESSES TUMOR GROWTH AND ENHANCES IDARUBICIN-INDUCED ANTITUMOR EFFECTS AGAINST GLIOMA IN VIVO

ASHOUR, A.E.^{1,2*}, A. ALZAHRANI², H. ABDEL-HAMIED³, K. ZOHEIR^{2,4}, S. AHMAD², S. ALREJAIE², A. ABD-ALLAH^{2,5}

¹Basic Medical Sciences Department, Kulliyyah of Medicine, International Islamic University Malaysia.

²Pharmacology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

³Pathology Department, College of Medicine for Girls, Al-Azhar University, Cairo, Egypt.

⁴Cell Biology Department, National Research Center, Dokki, Cairo, Egypt.

⁵Pharmacology Department, College of Pharmacy, Al-Azhar University, Cairo, Egypt.

*Corresponding author's email: aeashour@iium.edu.my

Abstract:

Idarubicin (IDA) is highly potent anticancer against glioma *in vitro* but not *in vivo*. Phosphodiesterase (PDE-5) hydrolyses cyclic guanosine monophosphate (cGMP), and is highly expressed in glioma. We proposed that increasing cGMP in the brain by the PDE-5 inhibitor vardenafil (VAR) augments IDA anti-glioma activity. We show that VAR (10 mg/kg) enhanced IDA (0.1mg/kg)-induced tumor growth-inhibitory activity and augmented IDAinduced improvement of survival against rat C6 glioma. Real time PCR results demonstrated that VAR inhibited mRNA expression of PDE-5 in the brains of animals treated with VAR, compared to control-treated group, implicating an important role for the inhibition of PDE-5 in VAR antitumor activity. Animals receiving either VAR alone or VAR+IDA improved survival when compared with control (PBS) or IDA groups. We examined the antiproliferative, pro-apoptotic and anti-invasive activities VAR *in vitro* and showed that VAR inhibited the growth of C6 cell. This suggests that the enhanced antitumor effect of VAR could be due to combined antiproliferative, pro-apoptotic and antiinvasive activities.

Keywords: Idarubicin, vardenafil, glioma, cGMP, apoptosis