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Abstract

This technical note illustrates the estimation of a simple simultaneous
equation model using Gibbs sampling. The results of the estimation show that
Gibbs sampling can be an alternative approach for estimating the parameters

of the model in a Bayesian setting.
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1. Introduction

This note is concerned with the estimation of Haavelmo’s well-
known simultaneous equation model using Gibbs sampling. Our
purpose is two-fold. First, we illustrate the Gibbs sampling estimation
approach, which could be a viable alternative estimation technique.
Thus, we are not concerned with the comparative performance of
alternative estimation methods. Second, we show how we can apply
the Metropolis-Hasting algorithm in the Gibbs iteration process.

The model investigated consists of a consumption equation

and an identity, namely,

(1) c, =P+ay +u,

(2) y,=¢+z, (t=1,2,...,T)

where c; is consumers’ expenditure per capita, y; is disposable income
per capita, and 2, is exogenous investment expenditure per capita. All
variables are in constant dollars. f is the constant term and « is the
marginal propensity to consume assumed to be between 0 and 1. 4, is
an error term normally distributed with mean zero and variance o>
Chetty (1974) has estimated the above model using the
Bayesian approach based on a numerical integration method (Simpson’s
rule). The cumbersome task of deriving marginal posterior
distributions, however, may be avoided by applying the Gibbs sampling
approach to the model. Specifically, the estimation is based on
simulating samples from full conditional distributions, which are
generally easy to derive and simulate from. Also, the method possesses
very appealing theoretical properties and the joint density of the draws
will converge to the true density as the number of draws becomes large
(Gelfand and Smith, 1990). Lastly, the method can be readily épplied
to different specifications of the models, for example, models with
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autoregressive error terms (Chetty, 1974) and with random coefficients
(Tsurumi and Shiba, 1982).

The plan of the paper is as follows. In the next section, we
briefly discuss the Gibbs Sampling estimation technique. In section 3,
the full conditional distributions of the model are derived. Section 4
presents the results of the estimation using both simulated and
empirical data. For the purpose of comparison, we also estimate the
model using Full Information Maximum Likelihood Estimation (FIML).
Finally, section 5 contains our concluding remarks.

2. Gibbs Sampling: A Brief Overview

Gibbs sampling is a technique that allows us to indirectly
generate a sample of parameters of interest from a distribution, without
having to calculate the density which may be very complicated. The
central idea is quite simple. Let f(6;, 6,,..., O, y) be a joint posterior
density function of the parameters of interest 8, i =1,...,N, where y
denotes the data. The Gibbs sampler then generates samples from the
joint density of all parameters in the model. To begin the process,
starting values 6, are assigned to each parameter i. Then, the algorithm

iterates as follows:
(a) Sett=1
(b) Sample 6;; from f(6116,4.1,..., Onp1, Y)-
(c) Sample 6,; from f(6,16y,,..., Oye1, Y).

(d) Samiple 6y, from fiOy!6s,..., Ongp Y)-
(e) Sett=t+1and return to (b)

where f(6;1.),i=1,...,N, are full conditional density functions.
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Under very mild regularity conditions, the joint distribution

of (6y 4,..., Oy, converges in distribution to the joint distributions of the
parameters. The samples of the parameters can be obtained by
independently repeating the cycle above M times. Alternatively, we
may simulate the parameters iteratively for T + M cycles, where T is a
large enough number. The last M draws are then used as a basis for
inference. That is, based on the M generated draws, posterior moments
of any function, g(6), as well as the marginal density of a component of
0 can be calculated easily (see Casella and George, 1992; Gelfand et al.
1990; and Chib, 1992).

3. Full Conditional Distributions

Given a diffuse prior, p(a, B, o) o a7, the posterior density

function of the model specified in (1) and (2) is:

1-of 1 2
@  pep.o’ey)= HF1 P -QZ(C.—B—ay,)

where T is the total number of observations. The full conditional
distribution can be easily shown to be:

p(ap.c’c,y) < |i- ol (@A)

4) __Mﬁ, A=a’() )™

a= Zytz

and
p(Bla. %c,5) ~ N(B,B)
2

— _ o = g -
(5) b=c-ay,3=—;,c=2
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and lastly

(6) p(o Iaﬁcy)~IG[ Z(C ﬂ ) ]

In Gibbs sampling (4)-(6) are used for simulating the
parameters of the simultaneous model (1)~(2). Note that (5) and (6)

are easily simulated. However, in (4), we have an additional term
attached to a standard normal distribution. Since the marginal
propensity to consume, ¢, is theoretically between zero and one, an
acceptance-rejection approach may be applied. In the estimation stage,
however, we do not enforce & to be between 0 and 1. In this method, o
is generated from N(a, A) and u from U(0,1). Thenifu< {1-al T ais
accepted as a value generated from (4). If not, ¥ and rare rejected and
another sample of (1, @) is generated and tested for acceptance.
Unfortunately, the acceptance-rejection method applied to this case is
very inefficient. The draw is rarely accepted. Indeed, because s less
than unity but greater than zero, |1-c! T will become very small and
draws are rejected too often.

However, the Metropolis-Hasting algorithm can be applied to
(4) (see Hasting, 1970, and Tierney, 1991, for details on this algorithm).
In this case we specify g( o, )= N(@,A). a is the current value of @,
and a  is the candidate for the next value generated from N (c—l',X ).
The acceptance probability P( oo ) can then be written as:

(7) P(a*,a“)=min{w(at ),1}

w(a )

In our case, w(a) reduces to | 1-a! T Thus, the acceptance probability
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becomes:

ttT
Il—a

ar
o]

(8) P(e’, ") =min 1

This means that we set the next value of o, &'*' = with
probability Pand o' = & with probability (1 - P). The only problem
that this approach might have is that o will persistently stay at the
same value. However, in our case, we do not encounter this problem
when we perform the simulations, the results of which are reported in

the next section.
4, Estimation Results

We estimate the simultaneous equation above using simulated
as well as empirical data. We iteratively draw the parameters from
(4)(6) for 2500 cycles and keep the values of the last 2000 cycles as
draws of the parameters. OLS estimation of (1) is used to initialize the
values of the parameters.

Table 1 reports the estimation results using simulated data.’
Specifically, z; is simulated independently from a normal distribution
with mean and standard deviation equal to 5 and 2 respectively. The
parameters of the model, {8, o, 0'2], are {5, 0.6, 1}. The results of the
estimation are presented in Table 1, where we compare the Gibbs
estimates to the FIML estimates.” Note that Gibbs sampling performs
well in estimating the coefficient estimates, especially when the sample
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Table 1: Parameter Estimates Using Simulated Data
(Actual values: B=5, a=0.6,0° =1, and n = sample size)

n=20 =200 n = 500

Parameters | GS FIML GS  FIML GS FIML

o 05503 05647 05992 05964 0.6001  0.5994

(0.0412) (0.0589) (0.0130) (0.0179) (0.0077) (0.0094)

B 6.6527 62504 50397 51083 49583  4.9763

(1.1699) (1.6112) (0.3356) (0.4544) (0.1997) (0.2333)

& 06901 05680 13555 13604 1.0107 1.0101
(0.3138 (0.1637) (0.1755)

Note: The point estimates of the parameters for Gibbs sampling (GS) are
the sample mean. The numbers in parentheses are the standard
deviations of the sample draws for GS and standard errors for FIML.

size is large. As the sample size becomes larger, the estimated
coefficients are closer to the actual values. The same also holds true
for FIML. Thus, Gibbs sampling may provide a useful alternative for
the estimation of the model.

We also estimate the model using a data set from Chetty (1974,
362, Table 1). The estimation results, using Gibbs sampling as well as
FIML, are reported in Table 2. For the purpose of comparison, we also
present the results obtained by Chetty (1974). Note that the marginal
propensity to consume out of income, &, is of the same order of
magnitude. The point estimates of czare 0.688 (Gibbs sampling), 0.6767
(FIML), and 0.660 (Chetty). The standard deviations of the estimated

as are also small. In addition, Gibbs sampling seems to be relatively
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Table 2: Parameter Estimates

Parameters Chetty, 1974 Gibbs Sampling FIML
o 0.660 0.668 0.6767
(0.0632 (0.0361) (0.0348)
B 111.589 115.920 111.665
(11.386) (17.239) (16.994)
o - 93.762 73.87

Note:  Seenoteof Table 1. For comparison, we took the squareroot of Chetty’s

estimated variances of the parameters.

efficient in estimating b. In Chetty’s, the mean value of 8 is 111.589
while FIML estimation of f is 111.665. Similarly, Gibbs sampling’s
estimated value of 8 is 115.720.

Overall, it may be concluded from this technical exercise that
Gibbs sampling is capable of providing relatively efficient estimates of
the parameters in the model, especially when the number of
observations is large. Also, use of this method may be possible when
dealing with much larger models than can be done by numerical
integration.

5. Conclusion

In this note, we estimated a simple simultaneous model using
the Gibbs sampling estimation. The model was first formulated by
Haavelmo (1947) and analyzed in a Bayesian setting, using numerical
integration methods, by Chetty (1974). The results of estimation using
Gibbs sampling show that it can be an alternative approach for
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estimating the parameters of the model in a Bayesian setting. The Gibbs
sampling algorithm is easy to code and thereby avoids the difficulty of
deriving marginal posterior distributions directly. Therefore, it provides
a useful alternative to the maximum likelihood estimation methods.
The method should prove useful for more elaborate simultaneous

equation models.
Endnotes

1. The estimation results for Gibbs are estimated as follows: E(x) = (1/
T)Xx and standard deviation s, = [(1/T)X(x - E(x))zlm. In this case, x is a
simulated sample of the parameters.

2. Since our focus is technically on the applicability of the Gibbs sampling,
we do not go into details as to the question of which method of estimation is
efficient. In fact, it may not be fair to compare Gibbs sampling with FIML, as
noted by an anonymous referee. For comparative analyses of different

alternative estimation methods, see Zellner (1997).
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