THE STRATEGIES FOR IMPROVING PHOTOTHERMAL CONVERSION CAPABILITIES IN HYDROGEL POLYMER MATERIALS FOR SOLAR VAPOR GENERATION

Authors

Keywords:

Hydrogels, polymer, solar vapor generation

Abstract

Solar evaporation is a promising technology that has garnered attention due to the renewable nature of the sun as an energy source, which can facilitate the sustainable advancement of human society. This technology relies on easily obtainable water sources and uncomplicated structures, while also benefiting from significant enhancements in conversion efficiency through the utilization of advanced photothermal materials and effective thermal management techniques. This review provides a brief summary of recent research conducted on hydrogel polymers utilized in solar vapor generation. The primary goal of this review is to explore multiple strategies aimed at optimizing light absorption, hence enhancing the overall efficiency of the design. We present the photothermal management in hydrogel polymer with proper solar absorber selection, tuning the thermal conductivity via porosity of hydrogel and the incorporation of a layered structural design that leads to a greater photothermal conversion efficiency.

References

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3245–3250

Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., & Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560. https://doi.org/10.1016/j.jhydrol.2011.05.002

Buros, O. K. (2000). The ABCs of desalting (p. 30). Topsfield, MA: International Desalination Association.

M. El Haj Assad, M. Nooman AlMallahi, M. A. Abdelsalam, M. AlShabi and W. N. AlMallahi, "Desalination Technologies: Overview," 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 2022, pp. 1-4, doi: 10.1109/ASET53988.2022.9734991.

Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105-121. https://doi.org/10.1016/j.jare.2013.07.006

Ozay, Ozgur & Aktas, Nahit & Sahiner, Nurettin. (2011). Hydrogels as a Potential Chromatographic System: Absorption, Speciation, and Separation of Chromium Species from Aqueous Media. Separation Science and Technology. 46. 1450-1461. 10.1080/01496395.2011.560918

Qiblawey, H. M., & Banat, F. (2008). Solar thermal desalination technologies. Desalination, 220(1-3), 633-644. https://doi.org/10.1016/j.desal.2007.01.059

Zhao, F., Zhou, X., Shi, Y. (2018) Highly efficient solar vapour generation via hierarchically nanostructured gels. _Nature Nanotech_ 13, 489–495

Wang J, Li Y, Deng L, Wei N, Weng Y, Dong S, Qi D, Qiu J, Chen X, Wu T. (2017) High-Performance Photothermal Conversion of Narrow-Bandgap Ti2 O3 Nanoparticles. Adv Mater. ;29(3)

Zhou, L., Tan, Y., Wang, J., Xu, W., Yuan, Y., Cai, W., Zhu, S., & Zhu, J. (2016). 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 10(6), 393-398. https://doi.org/10.1038/nphoton.2016.75

Ni, George, Gabriel Li, Svetlana V. Boriskina, Hongxia Li, Weilin Yang, TieJun Zhang, and Gang Chen. “Steam Generation Under One Sun Enabled by a Floating Structure with Thermal Concentration.” Nature Energy 1, no. 9 (August 22, 2016): 16126

Kabeel, A., & El-Agouz, S. (2011). Review of researches and developments on solar stills. Desalination, 276(1-3), 1-12. https://doi.org/10.1016/j.desal.2011.03.042

Zhang, C., Yan, C., Xue, Z., Yu, W., Xie, Y., & Wang, T. (2016). Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation. Small (Weinheim an der Bergstrasse, Germany), 12(38), 5320–5328. https://doi.org/10.1002/smll.201601723

Ye, M., Jia, J., Wu, Z., Qian, C., Chen, R., Sun, W., Dong, Y., & Ozin, G. A. (2017). Synthesis of Black TiOx Nanoparticles by Mg Reduction of TiO2 Nanocrystals and their Application for Solar Water Evaporation. Advanced Energy Materials, 7(4), 1601811. https://doi.org/10.1002/aenm.201601811

Zhu, M., Liu, X., Tian, Y., Caratenuto, A., Chen, F., & Zheng, Y. (2022). Dome-arrayed chitosan/PVA hydrogel-based solar evaporator for steam generation. Scientific Reports, 12(1), 1-8. https://doi.org/10.1038/s41598-022-08589-z

Ghasemi, H., Ni, G., Marconnet, A. M., Loomis, J., Yerci, S., Miljkovic, N., & Chen, G. (2014). Solar steam generation by heat localization. Nature Communications, 5(1), 1-7. https://doi.org/10.1038/ncomms5449

Gao, Zhu, L., Peh, C. K., & Ho, G. W. (2019). Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 12(3), 841–864. https://doi.org/10.1039/c8ee01146j

Chen, Qiaomei & Pei, Zhiqiang & Xu, Yanshuang & Li, Zhen & Yang, Yang & Wei, Yen & Ji, Yan. (2017). A durable monolithic polymer foam for efficient solar steam generation. Chemical Science. 9. 10.1039/C7SC02967E.

Yin, X., Zhang, Y., Guo, Q., Cai, X., Xiao, J., Ding, Z., & Yang, J. (2018). Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination. ACS applied materials & interfaces, 10(13), 10998–11007. https://doi.org/10.1021/acsami.8b01629

Zhou, X., Zhao, F., Guo, Y., Rosenberger, B., & Yu, G. (2019). Architecting highly hydratable polymer networks to tune the water state for solar water purification. Science Advances. https://doi.org/aaw5484

Lewis N. S. (2016). Research opportunities to advance solar energy utilization. Science (New York, N.Y.), 351(6271), aad1920. https://doi.org/10.1126/science.aad1920

Santos, Nicole & Pulido, Maria Teresa & Tumacder, Doebner Von & Taaca, Kathrina Lois. (2021). Effect of Polyaniline on the Structural, Conductivity, and Dielectric Properties of Chitosan. Carbohydrate Polymer Technologies and Applications. 2. 100129. 10.1016/j.carpta.2021.100129.

Goswami, S., Nandy, S., Fortunato, E., & Martins, R. (2022). Polyaniline and its composites engineering: A class of multifunctional smart energy materials. Journal of Solid State Chemistry, 317, 123679. https://doi.org/10.1016/j.jssc.2022.123679

Guo Y, Zhou X, Zhao F, Bae J, Rosenberger B, Yu G. Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. ACS Nano. 2019 Jul 23;13(7):7913-7919. doi: 10.1021/acsnano.9b02301

Downloads

Published

2023-10-12

How to Cite

Serati, F., MOHD ZAKI, S., & AKID, A. (2023). THE STRATEGIES FOR IMPROVING PHOTOTHERMAL CONVERSION CAPABILITIES IN HYDROGEL POLYMER MATERIALS FOR SOLAR VAPOR GENERATION. IIUM Engineering Congress Proceedings, 1(1), 111–122. Retrieved from https://journals.iium.edu.my/ejournal/index.php/proc/article/view/3012

Issue

Section

Chemical Engineering & Sustainability