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Abstract: Two-dimensional boundary characteristic orthonormal polynomials are used in
Rayleigh-Ritz method to study the title problem. In general, it is found that this method
gives better results than the other traditional method such as boundary integral equation
methods, Spline methods, Chebyshev collocation method, Frobenius method etc. The
thickness is taken to be linearly varying in two orthogonal directions. Comparisons in
particular cases have been made with the existing results in the literature. Convergence
of frequencies of at least up to five significant figures is obtained. Results showing the
variation in frequencies with taper parameters and aspect ratios are presented in tabular
form. Mode shapes are shown using three-dimensional graphs of plates in displaced
configurations.
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1. INTRODUCTION

The subject of vibration of plates is an old one in which a lot of works has been carried
out in the past hundred years or so. In the earlier periods, results were available for some
simple cases only where the analytical solution could be found. The lack of good
computational facilities made it almost impossible to get reasonably accurate results even
in these cases. This explains why in spite of a lot of a theoretical development, numerical
results were available only for a few cases. With the advent of fast computers, particularly
after 1960s and 1970s there was a tremendous rise in the amount of research work using
numerical and approximate methods. Today, very versatile methods like finite element
methods, finite difference methods, boundary integral equation methods, Galerkin’s
method, Rayleigh-Ritz method, Spline methods and method of weighted residuals are
commonly used to handle practically any geometric shape and type of boundary
conditions of the plate.
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Bayer et al. [1] have carried out a parametric study on vibrating clamped elliptical
plates with variable thickness by using Moment method and Rayleigh-Ritz method. Narita
[2] has studied vibration of orthotropic elliptic plates resting on point supports using Ritz-
Lagrange multiplier method. Chakraverty and Petyt [3,4] have studied natural
frequencies of rectangular orthotropic elliptic homogeneous and non-homogeneous plates
by using boundary characteristic orthogonal polynomials in Rayleigh- Ritz method.
Recently, Gupta and Bhardwaj [5] studied vibration of rectangular orthotropic elliptic
plates of quadratically varying thickness resting on elastic foundation. In another paper,
the same authors [6] studied vibration of orthotropic elliptic plates of varying thickness
resting on elastic foundation. A lot of information is available in the literature on
vibration of isotropic triangular, rectangular and circular plates of constant and varying
thickness. Comparatively less work is available on isotropic elliptic plates of varying
thickness and those on half elliptic plate is even meager. Leissa [7-14] gives an excellent
account about clamped and free elliptic plates in Chapter 111 of his monograph.  From
1986 onwards, quite a number of research works on vibration of elliptic plates have been
carried out.  Singh and Chakraverty [15-22] have analyzed transverse vibration of circular
and elliptic plates of constant and variable thickness using successive approximation in
Galerkin’s method and boundary characteristic orthogonal polynomials in Rayleigh- Ritz
method.  Lam ef al. [23] have studied vibration of circular and elliptic plates using
orthogonal polynomials. They have reported the first six frequencies and shown plot
results of two dimensional mode shapes.  Rajalingham and Bhat [24] have analyzed
axisymmetric vibration of circular plates and its analog in elliptic plates using boundary
characteristic orthotrogonal polynomials in Rayleigh- Ritz method. Rajalingham er al.
[25] have investigated vibration of clamped elliptic plates using the exact modes of
circular plates as the shape function in Rayleigh- Ritz method.

In all the above-mentioned works, the researchers have analyzed full elliptic plates by
taking into account various other effects. For the case of half elliptic plate with constant
thickness, Liew and Lam [26] have computed the first six frequencies; Bucco, Mazumdar
and Sved [27] have computed fundamental frequencies for varying aspect ratio whereas
Bhattacharya and Bhowmic [28] have computed only fundamental frequency for semi-
circular plate. In all these three papers, they have all computed results for C-F boundary
condition only out of all nine possible combinations of boundary conditions (C-C, C-S, C-
F, §-C, §-8, §-F and F-C, F-S F-F), where C, § and F stand for clamped, simply
supported and fixed, respectively.

In the present paper, free vibration of isotropic half elliptic plate of two-dimensional
thickness variation with clamped curved boundary is considered. The first nine
frequencies are computed for various values of taper parameters and aspect ratio for C-C,
C-§ and C-F boundary conditions. Three-dimensional plots of mode shapes for these
combinations are also shown. Comparisons in particular cases are made with the results of
Liew and Lam [26], Bucco, Mazumdar and Sved [27] and Bhattacharya and Bhowmic
[28].

Convergence of frequencies of at least up to five significant figures is observed. A
maximum of twenty-two number of terms are required in the solution to achieve this
convergence.
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2. BASIC FORMULATION

An isotropic half elliptic plate of semi axes a, b and varying thickness h(x,y) is
considered as shown in Fig.1. The plate is defined with respect to a rectangular Cartesian
co-ordinate system (x,y,z) by taking x,y axes to be lying along the semi-axes direction
of the plate and z-axis to be along the thickness direction of the plate. Under such
definition of coordinate system, the boundaries of the plate, side 2 and side 1 as shown in
Fig.1 could be represented using the following expressions, respectively:

y =0 (side2) and )]
2 2
X R
?+f2—=];y>0(s1del) )
y
side 1
b
Yoo 2 %
0 side 2

Fig. 1: An isotropic half elliptic plate

2.1 Thickness variation
The thickness of the plate is assumed to be represented by the following equation:
H = H, F(z,y) (3)
where, H=h/a, Hy is the thickness at the center of the plate and F{(x, y) is a function of the

coordinates x and y. Thickness of the plate varies linearly along both axes
simultaneously in the following manner:

F(x,y)=0 _a]x[)[l _%_’J a,f<1 (4)

where m is the aspect ratio.

2.2 Generation of boundary characteristic orthogonal polynomials

The N-term approximation of the deflection function is taken as

Ll
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W(xy)=>c,@,xy) (5)
J=1

where the two dimensional boundary characteristic orthonormal polynomials o, (z,v)
generated by means of Grahm-Schmidt process are defined as follows:

®,=¢,//<0,.8,> ¢=0-V))", j=12,..N (6)

2 <d /.8, >
=0/ y)-> —""¢,, i=23.,N ()
i) Z <¢,.¢,>
<f g;.—-[j ,\y xy (\’y dydx (8)
2 X y2
The values of p is taken as 2 since the boundary of side 1 (V? =1, V ——+—2-) is
a~ b

subjected to clamped edge conditions. The values of g will take the value of 0, 1 or 2
depending on whether side 2 (y =0) is subjected to free, simply supported or clamped

edge conditions, respectively. The functions f, (x,y) of the form x™ y™ are taken by
the same scheme as given in reference [7].

3. RAYLEIGH -RITZ METHOD

The functional J( )obtained by subtracting the maximum kinetic energy from the
maximum strain energy is

)= EH]} Lo ) ) o
12(| ,,)f,[ Wt Wosy 42V o W +2(1=0) W QP FW* | dYdX

&)

where , E= Young’s modulus, v= Poisson ratio, p = mass density, o= frequency,
Q' =12a*@’p(1-v?)/ Eh* and A is the region bounded by

Y=0and V2 =1, Y >0. (10)

Minimization of J(#) as a function of the coefficients ¢; based on standard
procedures leads to the following standard eigenvalue problem:
N N
Z{f!g—Q‘c’)‘U)cj- =0, i=I(N (11
J=1
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where
a; = _‘-L{ Fj(xa)") {(D.. o Pyt Py @)y +"(q):, @t }"Y®j,)0()
+20=9)D, 0D, ] ]dydx (12)

The integrals involved in Equations (8) and (12) are evaluated by the formula

m“l q+5+d+2 _ql] 5_+1 ‘m
¢ : 2 2 2
jL[]-sz v x9S dxdy =
5| ts g+s+d+2c+4
2 2
, when ¢ and s are even
=0 , otherwise (13)

where ¢,q,5>-1.

The eigenvalues () and the eigenvectors(c;) are computed using Jacobi method.

The mode shapes are computed using Equation (5).

4. RESULTS AND DISCUSSION

Table 1 shows the convergence of €. It can be seen that for the first nine modes, Q
show convergence of up to five significant figures when the number of terms in Equation
5is taken as 19, 19 and 22 for C-C, C-S§ and C-F plates, respectively.

Comparison of Q with the results of Liew and Lam [26] for isotropic half elliptic C-F
plate of uniform thickness when & = #=0, m=2/3and v, = 0.3 are shown in Table 2.
Table 3 shows comparison of Q for isotropic half elliptic C-F plate of uniform thickness
and varying aspect ratio with (i) the results of both Bucco, Mazumdar and Sved [27] when
a=p0=0 and v, =0.3 and (ii) the results of Bhattacharya and Bhowmic [28] for

isotropic semi-circular C-F plate when o = f=0 and v, =0.3. A very close agreement

is found in almost all the cases and the present results are found to be better, especially in
higher modes, even for those cases where lesser number of terms is taken into
consideration in the solution.
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Table 1: Convergence of Q for isotropic half elliptic plate when o = £ =0.5 and
v, =0.3.

Edge N Q, Q; Q, Q, Q Q, Qg Q,
Conditions

C-C 15 51.607 56.503 65201 75.360 89.297 141.17 147.47 163.49 164.22
16 51.604 56.503 65.200 75.360 89.296 105.01 141.17 147.64 163.40
17 51.604 56.501 65.199 74.971 89.292 105.01 140.58 147.64 160.74
18 51.604 56.501 65.199 74.971 89.292 104.61 140.58 147.58 160.74
19 51.604 56.501 65.199 74971 89.292 104.01 140.58 147.58 160.61

C-§ 15 31.016 38942 48.629 60.643 75577 110.52 11934 13551 168.34
16 31.012 38.940 48.627 60.634 74.006 93.595 110.52 119.37 135.11
17 31.012 38933 48.625 59.925 73.923 93.032 11042 11937 134.4]
18 31.012 38.897 48.615 59.923 73.746 91.031 11042 119.37 134.33
19 31.012 38.897 48.615 59.923 73.746 91.031 110.42 119.37 134.33

C-F 18 53149 12734 22.050 32.353 42.449 48.546 55.786 63.165 73.292
19 52655 12.731 21.852 32340 42378 48.181 55.786 63.165 70.113
20 5.2655 12.644 21.849 32324 42311 48.170 55.785 63.071 70.092
21 52599 12.644 21.827 32324 42299 47973 55785 63.071 70.063
22 52599 12.644 21.827 32324 42299 47.973 55.785 63.071 70.063

Table 2: Comparison of Q for isotropic half elliptic plate of constant thickness for C-F
edge condition when @ = f=0, m=2/3and v, =0.3.

Ref. Number Q, Qs Qs Q Qs Qs
of Terms
[26] 40 9.8771 167973 27.0056 41.8201 56.5984 60.0828
Present 28 9.8771  16.7953  27.004 41.820 56.590  60.081
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Table 3: Comparison of Q for clamped isotropic half elliptic plate of constant thickness
for C-F edge condition when ¢ = §=0, and v, =0.3.

1/m Ref. [27] Ref. [28] Present
1.0 28.652 28.293 28.113
1.1 33.807 . 32.980
12 39.515 " 38.331
1.3 45.716 8 44.159
1.4 52358 i 50.455
1.5 59.400 ’ 57217
2.0 101.256 : 97.897
3.0 231.802 - 213.340
4.0 411.089 ‘ 374.310
50 630.549 580.99

Table 4 shows the variation of Q with taper parameters « for C-C, C-S and C-F plates
when =0, m=05and v, =0.3. Similar results of comparison with taper parameter j

when =0, m=05and v, =03 is summarized in Table 5. It is observed that the

frequencies decrease when the thickness of plate varies from thick to thin. This is due to
the fact that the stiffness of the plate decreases continuously with increasing ¢ or f.

Table 6 shows the variation of Q with aspect ratio m for C-C, C-S and C-F plates
when « = f#=-0.8 and v, =0.3. It can be seen that Q increases as m decreases from 1.

The rate of increase is maximum in the case of C-C plates and minimum in the case of C-
F plates.

Three-dimensional plots for the first nine normal mode shapes for C-C, C-S and C-F
plates are shown in Fig. 2,3 and 4, respectively when @ = = 0.5, v=03andm =0.5.
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Table 4: Variation of Q wither for isotropic half elliptic plate when £ = 0.0 and v, =0.3.

Edge @ €, Q, Q; Q, Qs Qg €, Qs 0
Conditions
C-C 0.8 112,66 146.93 19737 250.61 293.82 384.57 395.08 481.71 490.30

0.6 108.87 13930 183.12 231.19 285.42 360.01 362.16 444.06 446.18
0.4 10516 131.76 169.12 211.96 277.19 324.17 340.08 398.21 411.76
0.2 10152 12427 15543 192,97 268.78 288.01 318.09 353.22 378.74
0.0 97.897 116,14 142.14 174.32 249.02 262.90 294.04 311.51 347.27
0.2 94200 109.14 12939 156.10 212.88 254.10 258.58 282.89 317.56
0.4 90224 101.12 117.26 138.36 177.02 217.59 245.17 262.17 288.92
0.6 85538 92.189 10541 120.77 143.85 179.03 233.70 242.53 264.43
0.8 78.948 81.214 91.800 102.12 118.57 147.94 214.42 21745 237.48
C-S 0.8 82233 11236 155.83 20227 243.83 321 63 32932 419.12 428.45
0.6 79.074 106.24 14434 186.00 236.22 298.73 303.29 385.86 386.60
0.4 75934 100.18 133.08 169.98 228.70 267.82 28530 343.42 355.13
0.2 72915 94.141 122.09 15433 221.36 236.84 267.67 301.24 324.91
0.0 69.857 88.061 111.45 139.15 204.55 21 531 250.18 259.78 296.12
02 66.732 81.816 101.21 124.59 174.04 20772 217.96 234.23 269.01
0.4 63.416 75.184 91.332 110.70 144.32 178.61 199.87 217.60 244.03
0.6 59.690 67.813 81.225 96.895 117.48 142.74 190.10 200.47 221.49
0.8~ 54.980 59.052 69.175 $0.579 97.631 1 16.03 175.01 179.29 195.68
C-F 0.8 26,148 43582 67.652 104.59 118.94 149.58 160.55 222.27 254.32
0.6 24404 40.563 62.780 95.906 114.16 136.96 151.82 205.77 231.50
0.4 22,679 39.572 57.943 §7.387 109.48 124.57 14323 189.61 208.32
0220974 34.600 53.132 79.079 104.85 1 12.45 13472 173.87 184.54
0.0 19.289 31.632 48323 71.035 99.980 100.94 126.19 158.68 159.99
0.2 17.627 28.640 43.471 63.286 89.216 95.633 117.42 134.89 144.10
0.4 15997 25590 38504 55.741 78.130 90.704 107.33 110.83 129.87
06 14414 22448 33316 47.895 66.617 85273 87.071 98.134 112.00
0.8 12908 19.162 27.674 38.759 52.92] 70.597 78.634 85.666 91.407

r— S
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Table 5: Variation of Q with # for isotropic half elliptic plate whena = 0.0 and v, =0.3.

Edge

Conditions

B

Q

Q,

Q;

Qy

Qs

Qs

Q,

Qg

€

c-C

C-S

0.8
0.6
-0.4
02
0.0
0.2
0.4
0.6
0.8
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0:6
0.8

133.72
125.14
116.35
107.29
97.897
88.066
77.620
66.220
53.073
101.40
93.764
85.987
78.034
69.857
61.391
52.522
43.043
32.523

158.18
148.23
138.05
127.59
116.14
105.47
93.517
80.582
66.074
123.79
115.09
106.25
97.212
88.061
78.585
68.729
58319
47.190

190.88
179.03
166.99
154.72
142.14
129.12
115.43
100.71
84.468
152.31
142.36
132.27
121.98
111.45
100.59

§9.341
77.583

65.203

237.85
222.33
206.60
190.60
174.32
157.73
140.86
123.71
106.39
188.79
176.46
164.07
151.63
139.15
126.59
113.88
100.90
87.807

325.63
306.64
287.64
268.54
249.02
228.50
204.92
175.68
140.66
266.26
251.34
236.16
220.61
204.55
187.67
166.98
141.13
111.77

359.58
336.38
312.60
288.14
262.90
236.89
211.19
186.99
162.66
300.12
279.51
258.60
237.26
215.31
192.75
172.26
154.79
138.18

392.77
367.68
343.01
318.59
294.04
268.16
239.05
205.65
167.77
333.43
314.09
294.50
273.75
250.18
224.68
197.75
169.04
139.69

422.48
395.08
367.48
339.60
311.51
284.03
258.52
235.24
211.76
352.88
328.34
303.84
280.40
259.78
241.09
223.64
207.64
185.41

489.98
454.75
419.07
383.10
347.27
312.09
278.19
245.49
214.13
398.68
372.23
346.30
320.95
296.12
271.37
245.63
217.14
193.65

C-F

0.8
0.6
0.4
0.2
0.0
02
0.4
0.6
0.8

33.006
29.443
25.959
22.567
19.289
16.153
13.204
10.515
8.1994

46.926
42.941
39.052
35.276
31.632
28.140
24.826
21.706
18.778

65.862
61.336
56.901
52.561
48.323
44.190
40.154
36.161
31.924

01.315
86.167
§1.090
76.061
71.035
65.938
60.664
55.087
46.208

125.87
119.35
112.98
106.74
99.980
87.454
74.343
60.661
49.100

149.30
137.22
125.05
112.75
100.94
94.772
§8.928
83.092
70.304

179.92
166.67

193.53
185.38
177.18
168.79
158.68
143.50
128.04
112.25
96.997

219.28
204.02
188.84
173.75
159.99
150.56
140.46
130.17
120.75
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Table 6: Variation of Q with m for isotropic half elliptic plate whena = f = -0.8 and

v, =0.3.
Edg{! m (o Q, [N Qy Qs Q Qy Qs Qy
Conditions
C-C 1.0 47379 74.168 106.88 118.40 14521 181.36 195.14 219.57 251.41

0.8 67.554 97971 13875 169.94 187.91 238.82 267.01 314.90 33575
0.6 11098 149.52 201.80 265.77 287.45 378.85 397.32 48998 494.96
0.4 233.74 295.70 383.99 48597 621.04 738.98 778.57 909.43 984.15
0.2 89222 1081.4 1380.1 16942 2402.4 2606.9 28574 3260.5 3670.5
C-s 1.0 38292 62.991 99.178 102.65 129.48 156.98 174.27 201.25 245.42
0.8 53456 80.877 117.87 144.15 161.95 20576 235.36 288.66 308.22
0.6 86.176 119.61 16525 218.16 241.68 326.08 341.17 413.61 438.11
0.4 17831 22842 30129 377.02 518.55 597.75 670.46 748.06 805.82
0.2 669.28 80533 1043.9 1251.8 1962.2 2042.8 23392 26284 2985.7
C-F 1.0 18.142 35303 52.617 62364 82.167 99.761 113.42 129.26 155.37
0.8 22.604 40332 64.834 78.800 100.58 115.64 141.43 168.50 189.62
0.6 32581 51.752 78.608 11837 126,58 167.62 170.93 23547 272.09
0.4 61.138 85550 117.54 164.99 224.16 263.67 330.38 388.97 432.57
0.2 209.67 263.89 331.82 434.52 555.60 940.53 987.42 1183.5 1198.7

5. CONCLUSIONS

As already pointed out, there are a number of papers on vibrations of isotropic elliptic
plates where most of them are dealing with constant thickness and only a few are on
variable thickness. In the particular case of half elliptic plates, only two papers are found
and those too are dealing with constant thickness.  Furthermore, in those papers, results
are computed only for one boundary condition out of the nine possible combinations.

The current paper deals with free vibration of isotropic half elliptic plates of linearly
varying thickness with clamped-curved boundary using Rayleigh-Ritz method. This
method describes a procedure that can be applied to obtain approximations for the
frequencies up to practically any order.  Convergence of frequencies of at least up to five
significant figures is observed. A maximum of twenty-two number of terms are required
in the solution to achieve this convergence.  The main advantage of the proposed method
is that comparison of consecutive approximation makes it possible to monitor the rate of
convergence. Also, it gives an idea to obtain results for a particular mode with the desired
accuracy.

Y
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Fig. 2: Three dimensional plots for the first nine normal modes of vibration for C-C

plate when a= g =0.5,v=03and m=0.5.
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£ Q Q

Fig. 3: Three dimensional plots for the first nine normal modes of vibration for C-S
plate when a= £ =0.5,v =0.3and m = 0.5.
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Q, Q Qy

Fig. 4: Three dimensional plots for the first nine normal modes of vibration for C-F
plate when a=#=05,v=03and m=0.5.
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