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ABSTRACT:Demodulation process without knowledge of the modulation scheme 
requires Automatic Modulation Classification (AMC). When the receiver has limited 
information about the received signal, AMC becomes an essential process. AMC has an 
important place in many civil and military fields such as modern electronic warfare, 
interfering source recognition, frequency management, link adaptation, etc. In this paper, 
we explore the use of K-nearest neighbor (KNN) for modulation classification with 
different distance measurement methods. Five modulation schemes are used for 
classification purposes which are Binary Phase Shift Keying (BPSK), Quadrature Phase 
Shift Keying (QPSK), and Quadrature Amplitude Modulation (QAM) as both 16-QAM 
and 64-QAM. Higher order cumulants (HOC) are used as an input feature set to the 
classifier. Simulation results show that the proposed classification method provides 
better results for the considered modulation formats. 

ABSTRAK:Proses Demodulation tanpa ilmu mengenai skim modulasi memerlukan 
Klasifikasi Modulation Automatik (AMC). Apabila penerima mempunyai maklumat 
yang terhad mengenai signal yang diterima, maka AMC menjadi proses yang penting. 
AMC adalah penting didalam pelbagai bidang sivil dan ketenteraan seperti peperangan 
elektronik moden, gangguan di dalam pengiktirafan sumber, pengurusan kekerapan, 
penyesuaian pautan dan lain-lain. Dalam kertas ini kami meneroka penggunaan jiran K-
terdekat (KNN) bagi klasifikasi modulasi dengan kaedah pengukuran jarak yang berbeza. 
Lima skim modulasi digunakan untuk tujuan mengklasifikasi adalah Penguncian 
Anjakan Fasa Biner (BPSK), Penguncian Anjakan Fasa Quadrature (QPSK), Quadrature 
Pemodulatan Amplitud (QAM), 16-QAM dan 64-QAM. Cumulants paras tinggi (HOC) 
digunakan sebagai set ciri input yang ditetapkan untuk pengelas. Hasil simulasi 
menunjukkan bahawa cadangan kaedah pengelasan memberi keputusan yang lebih baik 
untuk format modulasi yang dipertimbangkan. 

KEYWORDS:automatic modulation classification (AMC); higher order cummulants 
(HOC);K-nearest neighbor (KNN); QAM and QPSK 

1.   INTRODUCTION  
Automatic modulation classification is a procedure performed at the receiver based on 

the received signal before demodulation when the modulation format is unknown to the 
receiver. It plays a key role in various tactical communication applications. It also finds 
applications in emerging wireless communication systems that employ interference 
cancelation techniques in order to demodulate and cancel the unknown interfering user’s 
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signal. In the interference application, the signal’s modulation format needs to be 
classified first. The solution to the problem of AMC strongly relies on one of the two 
approaches i.e. the likelihood-based (LB) [1, 2] and the feature-based (FB) AMC[3, 4]. 

The LB approach performs AMC-based on the likelihood function of the received 
signal, by which modulation classification can be formulated as a multiple hypothesis test 
problem with multiple unknown modulation parameters [5]. The LB-based AMC approach 
can theoretically reach the optimum solution in the Gaussian condition, but at a cost of 
computational complexity. Moreover, its performance is affected by model mismatch in 
the presence of carrier frequency offsets, phase errors, timing errors, and residual channel 
effects. In contrast, the FB approach is sub-optimal in performance but very feasible in 
real-time implementation.  

The FB-based AMC approach mainly extracts reference features from the received 
signal and makes decisions from the calculated features based on the theoretical values for 
different modulation parameters. In brief, the FB approach benefits from lower 
computational complexity, with better efficiency and less sensitivity to possible model 
mismatches. In the FB approach, three features are often discussed in the literature: 
instantaneous information [6, 7], wavelet coefficients [8–10] and high-order statistics 
(HOS) [11–15]. The instantaneous information may include the instantaneous amplitude, 
phase, or frequency of the incoming signal. These features are the most intuitive ones with 
less complex implementation. However, they are sensitive to additive noises and the 
residual channel effects. Moreover, the extraction of instantaneous information relies on 
thresholds that are set in advance. The wavelet coefficients can be obtained through a Haar 
wavelet transform by transforming the signal into its wavelet coefficients. Modulation 
classification with wavelet coefficients has better resistance to the noise at the cost of 
higher complexity, compared with that with instantaneous information. HOS is a more 
frequently adopted feature than the previous two, generally including the statistics of 
moments and cumulants [16–18]. In addition to classification of the modulation types, 
HOS can distinguish modulation orders with high resistance to the additive white 
Gaussian noise (AWGN) as well. Furthermore, the multipath channel effects can be easily 
modeled using the HOS method [19–21].  

Most of the previous research work on AMC has focused on the modulation 
classification techniques in AWGN. Actually, the correctness of modulation classification 
is seriously degraded subject to the multipath fading effect in wireless channels. The 
pioneer work by Wu et al. [20] derived a relationship between the normalized channel 
coefficients and the normalized fourth-order cumulants. Through their formulation, the 
classification of the transmitted modulated symbols can be obtained from the normalized 
fourth-order cumulants of the received signal. The blind channel estimation method using 
higher-order cumulants was then adopted in [22, 23] to improve the classification 
performance in cases of non-dispersive channels and one-dominant-path channels. In 
literature, a tree-structured modulation classification scheme [24, 25] based on three 
normalized fourth-order cumulants is also used for the same work.  

In this paper, HOS was used for the modulation classification purpose; eleven eighth-
order cumulants have been used throughout the research. The features are extracted for the 
noisy (AWGN) signals. The modulation schemes used here are BPSK, QPSK, QAM, 
16QAM, 64QAM for a KNN classifier with different distance measurement methods i.e. 
Euclidean distance, Correlation distance, Minkowski distance, and Mahalanobis distance. 

The rest of the paper is organized as follows: Section 2 describes the system model 
and Feature Extraction. Section 3 explains the classification methodology.Section 4 gives 
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a comparative analysis of the KNN classifier for five modulations using different distance 
methods under different SNRs. Conclusion and future work is presented in section 5. 

2.   SIGNAL MODEL AND FEATURE EXTRACTION 
2.1  Signal Model 

An AWGN channel was used for these simulations. Thus, the received signal is only 
impaired by additive white Gaussian noise. Figure 1 shows the system model. The 
generalized expression for signal received is given by [26]. 

(݊)ݎ = (݊)ݏ +  (1) (݊)ݕ

whereݎ(݊)complex baseband is the envelope of the received signal,ݕ(݊) is the additive 
white gaussian noise and received signal ݏ(݊) is given by  

(݊)ݏ = ௜(ଶగ௙೚௡்ାఏ೙)݁ܭ ෍ (݆)ݏ
ஶ

௝ୀିஶ
ℎ(݊ܶ − ݆ܶ + ்߳ܶ) (2) 

where, ݏ(݆) is the input symbol sequence which is drawn from the set of M constellations 
of known symbols, not necessarily equi-probable. K is the amplitude of the signal,  ݂௢is the 
frequency offset constant, T is the symbol spacing, ߠ௡is the phase jitter which varies from 
symbol to symbol, ℎ(… )represents channel effects, and  ்߳ is the timing jitter. 

 

 
 

 
 

 

 

                           Fig. 1: System model for modulation classification. 

2.2  Feature Extraction   

Cumulants are made up of moments which are used here as features. For the complex 
valued stationary random process r(n), cumulants of the 2nd, 4th, 6th and 8th order are as 
follows[27]:- 

ଶ଴ܥ  = [(݊)ଶݕ]ܧ =  (3) {(݊)ݕ,(݊)ݕ}݉ݑܿ

ଶଵܥ  = [ଶ|(݊)ݕ|]ܧ =  (4) {(݊)∗ݕ,(݊)ݕ}݉ݑܿ

 C40=M40-3M20
2=cum{y(n),y(n),y(n),y(n)} (5) 

 C41=M40-3M20M21=cum{y(n),y(n),y(n),y*(n)} (6) 

 C42=M42-|M20|2-2M21=cum൛y(n),y(n),y*(n),y*(n)ൟ (7) 

଺଴ܥ  = ଺଴ܯ − ସ଴ܯଶ଴ܯ15 + ଶ଴ܯ30
ଷ =  (8) {(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ}݉ݑܿ

଺ଵܥ = ଺ଵܯ − ସ଴ܯଶଵܯ5 − ସଵܯଶ଴ܯ10 + ଶ଴ܯ30
ଶܯଶଵ (9) 
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 =  {(݊)∗ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ}݉ݑܿ

଺ଶܥ = ଺ଶܯ − ସଶܯଶ଴ܯ6 − ସଵܯଶଵܯ8 ସ଴ܯଶଶܯ− + ଶ଴ܯ6
ଶܯଶଶ + ଶଵܯ24

ଶܯଶଶ 

        =  {(݊)∗ݕ,(݊)∗ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ}݉ݑܿ
(10) 

଺ଷܥ = ଺ଷܯ − ସଶܯଶଵܯ9 + ଶଵܯ12
ଷ − ସଷܯଶ଴ܯ3 − ସଵܯଶଶܯ3 +  ଶଶܯଶଵܯଶ଴ܯ18

        =  {(݊)∗ݕ,(݊)∗ݕ,(݊)∗ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ}݉ݑܿ
(11) 

଴଼ܥ = ଴଼ܯ − ସ଴ܯ35
ଶ − ଶ଴ܯ଺଴ܯ28 + ଶ଴ܯସ଴ܯ420

ଶ − ଶ଴ܯ630
ସ 

        =  {(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ}݉ݑܿ
(12) 

ସ଼ܥ = ସ଼ܯ − ଶଵܥ଺ଷܥ16 + ସ଴|ଶܥ| − ସଶଶܥ18 − ଶଵଶܥସଶܥ72 −  ଶଵସܥ24

       =  {(݊)∗ݕ,(݊)∗ݕ,(݊)∗ݕ,(݊)∗ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ,(݊)ݕ}݉ݑܿ
(13) 

M୮୯Stands for moments of received signal and it is given by 

M୮୯ = E[y(k)୮ି୯y∗(k)୯] (14) 

The above cumulants are used to classify the BPSK, QPSK, QAM, 16QAM and 64QAM 
modulated signals in the presence of AWGN noise. 

3.   KNN CLASSIFIER 
3.1  Introduction to KNN Classifier  

KNN is a non parametric, slow adapting, and lazy algorithm in the sense that it does 
not make any assumptions on the underlying data distribution and requires more 
computations and memory. However, due to the non parametricness, KNN is well suited 
to practical real world problems as much of the acquired data does not agree with 
assumptions made in theory for mathematical convenience. This resembles the philosphy 
of SVM where non-support vectors can be omitted without sacrificing performance. KNN 
works with a minimal training phase, however, testing is performed over the whole testing 
data which requires more memory for its storage.    

3.2  KNN Classifiers 
The KNN classifier is used to compare the accuracy of extracted features from 

different modulation schemes. The eleven features are the Cumulants which have been 
extracted from the signal earlier. The method is quite simple. Firstly,a few values are used 
as sample data for the KNN classifier as there are eleven Cumulants and therefore eleven 
dimensional spaces for KNN. After this, some test values of these features are given to the 
KNN classifier and KNN calculates the distance of these samples from K neighbors' 
samples. The class having the maximum numbers of neighbors is considered to be the 
class of the test sample.  
3.2.1 Euclidean Distance 
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where s
ix the ith input is feature value and t

iy is the test feature value. 
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3.2.2 Correlation Distance 
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where s
ix is the ith input feature value and t

iy is the test feature value and furthermore, 

s
ix = 
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1 and s
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3.2.3 Mahalanobis Distance 
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where s
ix is the ith input feature value and t

iy is the test feature value and C is the 
covariance matrix. 

3.2.4 Minkowski Distance 

p
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where s
ix the ith input is feature value and t

iy is the test feature value. 

4.   SIMULATION RESULTS 
The modulation classification using KNN is evaluated in this section. Firstly, the 

input data -extracted features from the received signal and desired output signals- are used 
to make the classifier model, after which different distance techniques are used to classify 
the input signals. The performance using different distance measurement techniques for 
KNN under the influence of SNR and number of samples are given in the tables. Overall, 
250 data samples were used at the training phase and 25 were used as test samples during 
the testing phase, in order to obtain the results shown in the table. The end result is an 
average of 10 iterations for each horizontal and vertical entryin the table. 

4.1  KNN with Euclidean Distance  
Table 1 compares the performance of the KNN classifier using Euclidean distance for 

digital modulations which are BPSK, QPSK, QAM, 16QAM and 64QAM with different 
number of samples.As can be seenin the table, the accuracy is enhanced with the increase 
of signal to noise ratio and number of samples.The performance accuracy for BPSK is 
98.87 %. Similarly,the performance accuracy table for QPSK demonstrates a classification 
accuracy of 99.73%. However, for the next modulation scheme, which is QAM, the 
performance accuracy is 96.80% and for 16QAM it is 99.70%.At last, the classification 
accuracy for 64QAM is found to be 99.57%. 
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Table 2: Percentage classification accuracy using KNN (Euclidean distance) 

SIGNAL No of SAMPLE 0dB 5dB 10dB 
BPSK 512 88.08 98.97 100 

1024 98.49 99.98 100 
2048 99.95 100 100 
4096 100 100 100 

QPSK 512 95.85 100 100 
1024 99.97 100 100 
2048 100 100 100 
4096 100 100 100 

QAM 512 76 98 100 
1024 90.64 99.96 100 
2048 97.2 100 100 
4096 99.88 100 100 

16QAM 512 97.87 99.41 99.73 
1024 99.89 99.99 100 
2048 100 100 100 
4096 100 100 100 

64QAM 512 97.00 98.9 99.47 
1024 99 99.98 99.72 
2048 100 100 100 
4096 100 100 100 

Table 2: Percentage classification accuracy using KNN (Correlation distance) 

SIGNAL No of SAMPLE 0dB 5dB 10dB 
BPSK 512 93.95 99.99 100 

1024 99.8 100 100 
2048 98.29 100 100 
4096 99.95 100 100 

QPSK 512 94.5 99.3 100 
1024 94.58 99.68 100 
2048 95.26 99.70 100 
4096 96.35 99.79 100 

QAM 512 60.23 73.5 97 
1024 71.92 82.19 97.99 
2048 80.27 93.3 99.91 
4096 87.05 93.57 100 

16QAM 512 80.33 90.3 93 
1024 81.59 87.07 95.5 
2048 83.24 92.45 96.73 
4096 93.23 97.86 100 

64QAM 512 80.33 93.65 95 
1024 87.94 94.98 96.39 
2048 89.93 96.91 98.17 
4096 90.43 97.83 100 

 

4.2  KNN with Correlation Distance  
Table 2 compares the performance of the KNN classifier using correlation distance 

for digital modulations which are BPSK, QPSK, QAM, 16QAM and 64QAM with 
different number of samples.As can be seenin the table, the accuracy is enhanced with the 
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increase of signal to noise ratio and number of samples.The performance accuracy for 
BPSK is 98.33 %.Similarly, the performance accuracy table demonstrates that the 
classification accuracy for QPSK is 67.53%. However, for the next modulation scheme, 
which is QAM, the performance accuracy is 71.11% and the accuracy for 16QAM is 41.29 
%. At last, the classification accuracy for 64QAM is found to be 41.17%. 

4.3  KNN with Minkowski Distance  

Table 3 compares the performance of the KNN classifier using Minkowski distance 
for digital modulations which are BPSK, QPSK, QAM, 16QAM and 64QAM with 
different numbers of samples.As can be seenin the table, the accuracy is enhanced with the 
increase of signal to noise ratio and number of samples.The performance accuracy for 
BPSK is 99.53 %.Similarly, the performance accuracy table demonstrates that for QPSK, 
the classification accuracy is 99.95%. However, for the next modulation scheme, which is 
QAM, the performance accuracy is 99.38% and for 16QAM it is also 99.79%.At last, the 
classification accuracy for 64QAM is found to be 99.63% which is same as QPSK, QAM 
and 64QAM. 

Table 3: Percentage classification accuracy using KNN (Minkowski distance) 

SIGNAL No of SAMPLE 0dB 5dB 10dB 
BPSK 512 95.2 100 100 

1024 99.23 100 100 
2048 100 100 100 
4096 100 100 100 

QPSK 512 96.4 99.8 100 
1024 99.98 100 100 
2048 100 100 100 
4096 100 100 100 

QAM 512 79.96 99.28 100 
1024 90.62 99.93 100 
2048 98.91 100 100 
4096 99.92 100 100 

16QAM 512 98.63 99.48 99.53 
1024 99.95 100 100 
2048 100 100 100 
4096 100 100 100 

64QAM 512 97.33 99.78 100 
1024 99.95 99.96 100 
2048 97.2 100 100 
4096 99.88 100 100 

 

4.4  KNN with Mahalanobis Distance  
Table 4 compares the performance of the KNN classifier using Mahalanobis distance 

for digital modulations which are BPSK, QPSK, QAM, 16QAM and 64QAM with 
different numbers of samples. As can be seenin the table,the accuracy is enhanced with the 
increase of signal to noise ratio and number of samples.The performance accuracy for 
BPSK is 99.95 %. Similarly, the performance accuracy table demonstrates that the 
classification accuracy is 99.97% for QPSK. However, for the next modulation scheme, 
which is QAM, the performance accuracy is 99.97% and for 16QAM it is also 99.91%. At 
last, the classification accuracy for 64QAM is found to be 99.87%. 
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Table 4: Percentage classification accuracy using KNN (Mahalanobis distance) 

SIGNAL No of SAMPLE 0dB 5dB 10dB 
BPSK 512 97.56 99.96 100 

1024 99.80 100 100 
2048 99.92 100 100 
4096 100 100 100 

QPSK 512 97.84 99.92 99.96 
1024 99.92 100 100 
2048 100 100 100 
4096 100 100 100 

QAM 512 99.68 99.84 100 
1024 99.76 99.84 100 
2048 99.96 99.80 100 
4096 100 100 100 

16QAM 512 98.63 99.92 100 
1024 99.88 99.88 99.92 
2048 99.80 99.92 99.96 
4096 100 100 100 

64QAM 512 97.84 99.88 100 
1024 99.88 99.88 99.88 
2048 99.84 99.92 99.92 
4096 99.80 99.92 99.88 

 

4.5  Average Classification Performance  
Table 5 shows the overall performance accuracy of each modulated signal with 

different distance measurement method for the KNN classifier. Each column represents 
the distance measurement technique and rows show the modulation scheme which was 
used in this paper. The performance of KNN with Euclidean distance was excellent for 
almost every modulation technique used. A 98.87% performance accuracy was achieved 
in the case of BPSK, and for QPSK it was 99.73%. QAM showed 96.80% performance 
accuracy, for 16QAM it was 99.70%, and for 64QAM performance accuracy was 99.57%. 
However, the correlation distance showed moderate results in comparison to other 
distance methods used. In the case of BPSK, a 99.33% accuracy was obtained.For 
16QAM,the accuracy was 90.94%.Moreover, QPSK,QAM, and 64 QAM obtained 
98.26%,86.41%, and 93.46% respectively.KNN with Minkowski distance gave excellent 
results in all means; which is evident from the above table. 64QAM was classified with an 
accuracy of 99.63% and BPSK, QPSK, QAM, and 16QAM showedaccuracies of 99.53%, 
99.95%, 99.38%, and 99.79% respectively. The Mahalanobis distance with KNN also 
showed very good results, 64QAM had a low performance of 99.87%, while QPSK and 
QAM had maximum performance with 99.97%. 

Table 5: Average Classification performance accuracy for KNN with used distance 
measurement approaches 

Modulation Type Euclidean  Correlation  Minkowski Mahalanobis 
BPSK 98.87 % 99.33% 99.53 %, 99.95 % 
QPSK 99.73% 98.26%. 99.95%. 99.97%. 
QAM 96.80% 86.41% 99.38% 99.97% 

16QAM 99.70% 90.94% 99.79%. 99.91%. 
64QAM 99.57% 93.46%. 99.63% 99.87%. 
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4.6  Comparison of Classification Accuracy with Different Distance Methods  
This subsection presents the comparison of percentage of classification accuracy 

versus different SNR values under different distance methods. Due to limitations of space, 
graphs are presented in Fig. 2 to Fig. 6 for all 512 samples for the cases of BPSK, QPSK, 
QAM, 16 QAM and 64 QAM modulation schemes. 

It can be clearly observed that the Mahalanobis distance method produces higher 
classification accuracy percentage compared to Euclidean, Correlation, and Minkowski 
distance methods for all modulation schemes under consideration. The correlation distance 
method is shown to have performed poorly compared to all other distance methods for all 
schemes other than BPSK. In the case of a BPSK modulation scheme,the correlation 
distance method out-performed the Euclidean distance method. However, overall the 
correlation method is shown to be the least performing of all distance methods. 

 
Fig. 2: Classification accuracy of BPSK modulation scheme for 512 samples  

with different SNR and distance methods. 

 
 
 

 
 

 

 

 
 

 
 

Fig. 3: Classification accuracy of QPSK modulation scheme for 512 samples 
with different SNR and distance methods. 
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Fig. 4: Classification accuracy of QAMmodulation scheme for 512 samples 

with different SNR and distance methods. 

 
Fig. 5: Classification accuracy of 16QAMmodulation scheme for 512 samples 

with different SNR and distance methods. 

 
Fig. 6: Classification accuracy of 64QAMmodulation scheme for 512 samples 

with different SNR and distance methods. 
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5.   CONCLUSION AND FUTURE WORK 
In this paper, a classifier was proposed based on KNN using different distance 

methods on the sample data, in which HOC was used to extract features from the received 
signal under influence of SNR combined with an AWGN channel. Eleven eighth-order 
features were used for five different modulation schemes, namely BPSK, QPSK, QAM, 
16QAM and 64QAM to be classified. Average performance accuracy was calculated with 
different SNR and number of samples which showed that the Mahalanobis distance 
method had a slight edge over the Minkowski method in terms of accuracy. Euclidean 
distance-based KNN classifier fell behind the aforementioned two distance methods 
classifiers. Correlation distance gave the least performance accuracy, making it unusable 
for classification. 

In future, normalized cumulants can be used for feature extraction and GP for the new 
sample data generation with KNN as a fitness evaluator to improve the performance 
accuracy. Different channels and different modulation schemescan be used for the same 
problem. 
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