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ABSTRACT: Solving systems of nonlinear equations is a difficult problem in numerical 
computation. Probably the best known and most widely used algorithm to solve a system 
of nonlinear equations is the Newton-Raphson method. A significant shortcoming of this 
method becomes apparent when attempting to solve problems with limit points. Once a 
fixed load is defined in the first step, there is no way to modify the load vector should a 
limit point occur within the increment. To overcome this defect, displacement control 
methods for passing limit points can be used. In the displacement control method, the 
load ratio in the first step of an increment is defined so that a particular key displacement 
component will change only by a prescribed amount. In this paper, the load ratio is 
obtained using a Particle Swarm Optimization (PSO) algorithm so that the complex 
behavior of structures can be followed, automatically. The design variable is load ratio, 
and its unbalanced force is also considered an objective function in the optimization 
process. Numerical results are performed under geometrical nonlinear analysis, elastic 
post-buckling analysis and inelastic post-buckling analysis. The efficiency and accuracy 
of proposed method are demonstrated by solving numerical examples.  

ABSTRAK: Menyelesaikan sistem persamaan tak linear adalah masalah yang sukar 
dalam pengiraan numerik. Mungkin algoritma yang paling terkenal dan paling banyak 
digunakan untuk menyelesaikan sistem persamaan tak linear adalah kaedah Newton-
Raphson. Satu kekurangan besar kaedah ini menjadi jelas apabila mencuba 
menyelesaikan masalah dengan titik had. Setelah beban tetap ditakrifkan dalam langkah 
pertama, tidak ada cara untuk mengubahsuai vektor beban jika titik had berlaku dalam 
pertambahan.  Untuk mengatasi kecacatan ini, kaedah kawalan sesaran untuk melepasi 
titik had boleh digunakan. Dalam kaedah kawalan sesaran, nisbah beban dalam langkah 
pertama peningkatan akan ditakrifkan supaya komponen sesaran utama tertentu akan 
berubah hanya dengan jumlah yang ditetapkan. Dalam kertas ini, nisbah beban diperolehi 
dengan menggunakan algoritma pengoptimuman zarah swarm (PSO) supaya tingkah 
laku yang kompleks daripada struktur boleh diikuti, secara automatik. Pembolehubah 
reka bentuk adalah nisbah beban dan daya tidak seimbang yang juga dianggap sebagai 
fungsi objektif dalam proses pengoptimuman. Keputusan numerik dilakukan di bawah 
analisis geometri tak linear, analisis pasca-lengkokan anjal dan analisis pasca-lengkokan 
tidak anjal. Kecekapan dan ketepatan kaedah yang dicadangkan akan dibuktikan dengan 
menyelesaikan contoh numerik. 
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1.   INTRODUCTION  
The structural problems with geometrically nonlinear features can often be analyzed 

by solving a system of nonlinear equations (algebraic or differential) to determine the path 
of nonlinear load-displacement. The literature on analysis of these problems is quite 
extensive and provides several approaches, most notably the incremental stiffness 
procedure [1], the perturbation method,  the Newton-Raphson method and its modified 
variations, [1, 2], the initial value approach [3], and the self-correcting incremental 
procedure [1, 2], through all of which nonlinear equilibrium equations could be solved in 
an efficient manner.  

Literature also provides several analytical approaches specifically developed for 
assessing the nonlinear behavior exhibited by structural members such as trusses; these 
include the approach suggested in a study by Wempner [4], where complete sets of 
equilibrium paths of a number of Mises trusses have been provided, the method of Saffari 
et al. [5], who have used the Newton-Raphson iterative algorithm in conjunction with the 
flow path normal in nonlinear static analysis, and the method of Saffari et al. [5], who 
have analyzed the nonlinear behavior of trusses via a modified normal flow algorithm. 
Other notable works on this subject include - but are not limited to - the study by 
Papadrakakis and Gantes [6], where the optimization of geometrically nonlinear shallow 
trusses with stability-related constrains has been examined, the work of Greco et al. [7], 
where space trusses  has been analyzed by a new geometric nonlinear formulation based 
on nodal positions (instead of nodal displacements), and the article of Papadrakakis [6], 
where trusses have undergone a second-order and large deflection analysis using the 
dynamic relaxation scheme. There has also been much progress as the result of the study 
conducted by Huang and Vahidi [8], where the snap-through buckling of two sample 
trusses has been analyzed by the elastic theory of prismatic bars, the article of Kassimali 
and Parsi-Feraidoonian [9], which has been focused on nonlinear behavior of pre-stressed 
cable trusses, the work of Bellini [10], where the snap-buckling problem has been solved 
via a novel mathematical model, the article of Ramesh and Krishnamoorthy [11], where 
the dynamic relaxation method has been used to analyze the inelastic post-buckling of 
trusses, and the work of Thai and Kim [12], where space truss structures with geometric 
and material nonlinearities have been analyzed for their inelastic large deflections.  

Although solving a system of nonlinear equations could prove to be very difficult, 
literature has provided a number of methods for this purpose, nevertheless they do little in 
improving the computation time required by this procedure. The Newton–Raphson 
method, which attacks the problem via an iterative procedure of solving linear algebraic 
equations (corresponding to their non-linear counterparts), is perhaps one of the best 
techniques for solving nonlinear equations since it provides the quadratic convergence 
characteristics well suited for this application.  

There are a number of iterative methods specifically developed to improve the 
performance of the Newton-Raphson technique [13-15], but they often have questionable 
practicality mainly because they still follow an approach that requires the computation of 
second or higher derivatives, which can be very time-consuming and computation-
intensive. There are some techniques that can omit the second derivatives (Hessian matrix) 
from this process [16, 17], and these are classified into two groups: one-step techniques, 
and two-step techniques [14]. Two-step techniques, like the one used in this paper, are in 
fact the combinations of the Newton-Raphson method and another one-step method. This 
approach, constructed in conformity with predictor-corrector methods, and so taking most 
frequently Newton's method in the first iteration, is used in this paper. The common 
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disadvantages of one-point methods, most notably their high computational intensity and 
their inadequate convergence, can be sidestepped using a series of very effective 
techniques known as multipoint iterative solvers [18]. Rezaiee-Pajand et al. [19, 20] the 
efficiencies and capabilities of residual load minimization, normal plane, updated normal 
plane, cylindrical arc length, work control, residual displacement minimization, 
generalized displacement control, and modified normal flow were evaluated. Rezaiee-
Pajand and Naserian [21] employed incremental–iterative methods for the base of iteration 
steps by setting each area to zero, and minimizing its perimeter separately. Application of 
cubic spline on large deformation analysis of structures has been proposed by Saffari et al. 
[22]. A Dynamic Relaxation (DR) method, suitable for nonlinear structural analysis, has 
been suggested by Rezaiee-Pajand and Estitri [23]. 

The weakness of the Newton-Raphson method is that, in the course of computing 
structural response, having a solution point sufficiently close to the limit point will cause 
the method to exhibit significant divergence, possibly leading to significant errors in 
computation of failure loads. To deal with this problem, one can use a number of methods 
provided by literature, most important of which are classified as displacement control 
methods [24]. In the present study, to compensate for this inability of the Newton-Raphson 
method, a normal flow algorithm is used. 

The objective of this study is to assess the optimization of the structures that must 
undertake large deformations. A Eulerian formulation is used to model the geometrically 
nonlinear structural behaviors and then a normal flow algorithm is used, which is a 
displacement-control iterative method to determine the point of equilibrium. Finally, 
Particle Swarm Optimization (PSO) is used with the objective of effectively reducing the 
computational intensity of the analysis. 

2.    GEOMETRICAL NONLINEAR ANALYSIS OF SPACE TRUSSES 
The system equilibrium equations are generally defined as: 

}{)}({ Pf                 (1) 

where {f} is the resultant of the nodal internal loads and {P} is the external nodal force or 
load. According to equation expressing the member force deformation, {f} is a function of 
{δ} and is predominantly non-linear. Equation 1, in its differential form, is expressed as: 

}{}]{[ P                (2) 

In the above equation, {∆δ} is the increment of displacement, {ΔP} is the increment of 
load, and [τ] denotes the tangent stiffness matrix. 

2.1 Tangent Stiffness Matrix of the Structural Member 
The end displacements have an incremental relationship with end member forces, 

which is expressed by the following equation [5]:  

    VTF                 (3) 

In the above equation, [T] is the tangent stiffness matrix of the member. The following 
formula provides a method to calculate this parameter: 
 



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Mansouri et al. 

 160

      gQBB
L

AET T 







              
(4) 

 The structure of geometric matrix [g] is as follows [5]:  

 






































)()(
)()(

)()(
)()(

)()(
)()(

1

2222

2222

2222

2222

2222

2222

mlmnnlmlmnnl
mnnllmmnnllm
nllmnmnllmnm
mlmnnlmlmnnl

mnnllmmnnllm
nllmnmnllmnm

L
g

 

(5) 

 

3.   NONLINEAR SOLUTION ALGORITHM 
3.1 Newton-Raphson Technique 

Of several methods available to deal with non-linear problems, the Newton-Raphson 
technique is certainly one of the best and is generally the basis of other iterative algorithms 
developed to deal with this problem. While this section presents a brief introduction to this 
technique, the more detailed information regarding this subject can be found in [2]. This 
technique starts its first iteration with a procedure similar to the one followed in the linear 
incremental method, with the only difference being the calculation of member forces and 
their transformation into the global coordinates at the end of procedure. The next step of 
this technique is the calculation of imbalance between the external loads and the internal 
nodal forces. This procedure of iteration continues until it reaches a predefined termination 
condition, often based on a convergence criterion. 

3.2 Modified Newton-Raphson Technique 
The difference between the normal Newton-Raphson technique and the modified 

Newton-Raphson technique is the frequency of reformation of the tangent stiffness, which 
will be repeated for every iteration of the normal technique, but will be done only once in 
the first iteration of the modified one. Omitting the reformation process increases the 
number of iterations required to reach convergence, but reduces the computational 
intensity of each single iteration, leading to a shorter run time for the entire process. 

4.   NORMAL FLOW ALGORITHM 
This paper uses the normal flow algorithm, which is an effective approach for tracing 

the complete equilibrium path for this very same purpose. Now, let i be the number of the 

steps, j be the number of the modifying iterations, and  j
iP  be the total load on the 

structure. In that case: 

   ref
j
toti

j
i PP                 

(6) 

where 
j
toti

 is the product of a total ratio and {Pref} is a reference external load exerted via 
a series of load increments. Figure 1 shows the schematic representation of this method. 
More detailed information regarding this method can be found in [5]. 
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Fig. 1: Schematic representation of the normal flow method. 

The following formulation is the general form of a nonlinear system of equilibrium 
equations: 
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In this formulation, ),( 11  j
i

j
iJ  represents the Jacobian matrix of order N×(N+1), and 

j
iS

denotes the step size of Newton–Raphson technique. This step size can be calculated via 
Eq. (8): 
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The step size of Newton–Raphson technique for a normal flow algorithm can be 
determined by finding the minimum of an infinite number of solutions obtainable for Eq. 
(9). The procedure stated below must be followed to find this minimum solution: 
First, the following equation should be used to calculate an initial solution {V}: 

        11   j
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where: 
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(10) 

In the above equation,   1 j
iQ  denotes the vector of the unbalanced forces,  j

iI

represents the vector of tangential displacement at the point of convergence; and  j
iR  

denotes the vector of unbalanced displacements such that, 
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where  j
iF  denotes the vector representing the resultant of internal forces at the nodes. 

Next, the following equation should be used to obtain the vector of unbalanced force: 

      11   j
i

j
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j
i Q  

(12) 

And finally, the following equation should be used to obtain the minimum solution of the 
norm: 
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This means that the process of calculating the unknown vectors {V} and  j
iR  by 

solving the system of equations should be repeated at each iteration. 

5.   PARTICLE SWARM OPTIMIZATION (PSO) 
This study uses the PSO method to optimize its objective. Authors of [25] have 

reported that the use of Binary PSO (BPSO) for structural optimization has resulted in 
significant improvement in solutions. First proposed by Eberhart et al. [26] in the 1990s, 
PSO has been inspired by the social and group behavior of animals such as fish, insects, 
and birds. The mentioned authors were seeking to perform a socio-cognitive study on the 
group behavior of bird swarms and to achieve that purpose, they developed this amazingly 
effective optimization algorithm. This algorithm starts with a number of particles (or 
birds), which are spread randomly in the search space of the objective function (swarm of 
birds in a habitat). Here, particles represent the potential solutions to the problem. At each 
iteration, all particles move around the search space based on the best positions (solutions) 
obtained at the previous iteration. This algorithm obtains this best solution by calculating 
the objective function and the fitness of all particles in the search space [26]. Algorithm 
moves the position of particles based on the following equations: 
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Where, k is the number of iterations, 
k
iX  is the current position of i-th particle and 

k
iV  

is the velocity of this particle; Pi is the best position previously attained by the i-th particle 
(called pbest) and Pg is the best position attained globally by all particles (called gbest); r1 
and r2 are two uniform random sequences generated from interval [0, 1]; wk denotes the 
inertia weight that will be used to modify (reduce) the previous velocity of the preserved 
particle. According to Shi and Eberhart [25], the cognitive and social scaling parameters c1 
and c2, should be selected such that c1 = c2 = 2.0, which consequently allows the product   
c1r1 or c2r2 to have a mean of 1. The minimum and maximum possible velocities are also 

incorporated into this design and are denoted by 
max

iV and 
min

iV (Fig. 2).  
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Fig. 2: Flowchart of PSO. 

 
This paper uses a modified Euclidian criterion in the following form to express the 
displacement control: 
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In the above relationship, ε is the defined error of calculation. 
 

In the updating scheme used in this paper, the number of performed iterations affects 
the load increment parameter. Meanwhile, this algorithm uses the following formula to 
determine the sign of the determinant of the tangential stiffness matrix resulting from the 
previous step: 


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(17) 

In the above formula, JD is the predefined number of iterations, JM is current count of 
performed iterations minus one, and γ is a constant. 

6.   NUMERICAL RESULTS 

In this section, the results of a computer program developed to implement the 
algorithm described in previous section are presented. The duration of calculation, or total 
runtime, can be obtained by entering the corresponding command into the program. This 
program is run on a 64–bit PC with a Core™ i7-6700T Processor, 8M Cache, and uses 
similar parameters for all problem instances. These problem instances act as a measure to 
gauge the performance of the proposed method. Here, the objective is to perform elastic 
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analysis, elastic post–buckling (EPB) analysis, and inelastic post–buckling (IPB) analysis 
on typical truss structures using the proposed method, the conventional Newton–Raphson 
technique and other sub-stepping algorithms. In all tests, r = 0.4, X1 = 50 and X2 = 100, 
and the maximum error is defined as ε = 10-5 [12]. It should also be noted that all 
algorithms are tested with the smallest possible steps to ensure a uniform and accurate 
solution.  

6.1   Problem Instance 1 
The following geodesic dome truss has 156 members with identical cross-sections A 

= 6.5 cm2, and I = 1 cm4, and 61 nodes with outer ones attached by pin supports (Ramesh 
and Krishnamoorthy [11]).  

 
Fig. 3: Geodesic dome truss from problem instance 1 (all dimensions in cm) [11]. 

This dome is subjected to a point vertical load of P = 8 kN exerted on its center. Here, the 

parameters of Eq. (17) are 01.01
1  , λmax = 0.5, γ = 0.1, JD = 10, Jmax = 100. The 

following equation expresses the height of each point of truss with respect to the X-Y 
coordinates: 

84.60)2.7( 222  zyx  (18) 

This truss is built with a material with an elasticity modulus of E = 6895 kN/cm2 and yield 
strength of Fy = 400 kN/cm2. Figure 4 shows the load–displacement curves obtained as a 
result of elastic analysis, post–buckling (EPB) analysis, and inelastic post–buckling (IPB) 
analysis conducted on this truss structure.  
 

 
Fig. 4: Load–displacement curves for the apex of a geodesic dome truss.  

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

Vertical displacement at apex (cm)

P 
(k

N
)

Elastic Analysis EPB Analysis IPB Analysis



IIUM Engineering Journal, Vol. 17, No. 2, 2016 Mansouri et al. 

 165

The run times achieved in each mode of analysis by the proposed method and the 
conventional Newton–Raphson technique are shown in Table 1. This result demonstrates 
the superiority of the proposed method in all modes of analysis. 
 

Table 1: The runtime achieved for problem instance 1 (sec) 

Flow algorithm PSO method Improvement% 

106 71 33.02 

 

6.2   Problem Instance 2 
The semi-spherical truss shown in Fig. 5 is composed of 168 elements with identical 

cross-sections with A = 50.431 cm2, and I = 52.94 cm4, and 73 nodes with total freedom 
degree of 147 [12]. In this problem, a vertical load P = 500 kN is applied on the apex of 
this truss. The pin supports defined at the outer nodes of the truss restrict the off-plane 
displacements. 

 
Fig. 5: Semi-spherical truss from problem instance 2 (all dimensions in cm) [12]. 

 
This truss is built with a material with elasticity modulus of E = 2.04×104 kN/cm2 and 
yield strength of Fy = 25 kN/cm2. In this problem, the parameters of Eq. (17) are

01.01
1  , 2max  , 5DJ , 100max J , 1.0 . 

The load–displacement curves obtained via elastic analysis, post–buckling (EPB) 
analysis, and inelastic post–buckling (IPB) analysis conducted on this truss are shown in 
Fig. 6. The run times achieved in each mode of analysis by the proposed method and other 
tested technique are shown in Table 2. These runtimes also show that the proposed method 
outperforms other algorithms and achieves the quickest convergence. 
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Table 2: The runtime achieved for problem instance 2 (sec) 

Flow algorithm PSO method Improvement% 

99 77 22.22 

 

 
Fig. 6: Load–displacement curves for node 2 of the semi-spherical truss.  

6.3   Problem Instance 3 
In this problem, a Schewdeler’s truss is assessed with properties stated as EA = 

640×103 kN, Fy = 25 kN/cm2, I = 30.04 cm4 built in the form of 264 elements and 97 
nodes. Here, the outer nodes are again attached with pin supports [7]. 
 

 
Fig. 7: Dome truss from problem instance 3 (all dimensions in cm) [7]. 

 
This truss is subjected to a point load of P = 50 kN exerted at its apex. In this problem, the 

parameters of Eq. (17) are 01.01
1  , 1max  , 1.0 , 2DJ , 100max J . The load–

displacement curves obtained through elastic analysis, post–buckling (EPB) analysis, and 
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inelastic post–buckling (IPB) analysis performed on this truss are shown in Fig. 8. The 
analyses conducted in three modes by the proposed method and other tested algorithms 
produced 12 sets of results. Table 3 compares these techniques by examining their 
corresponding runtimes. As before, these runtimes demonstrate that the proposed method 
outperforms other algorisms and exhibits a clearly superior runtime. 

Table 3: The runtime achieved for problem instance 3 (sec) 

Flow algorithm PSO method  Improvement%  

104 83 20.19 

 

 
Fig. 8: Load–displacement curve for the apex node of the truss. 

7.   CONCLUSION 

The objective of this paper was to facilitate the process of complex structural analyses 
by developing a simple but equally accurate higher order predictor-corrector. The results 
obtained by this paper show that the runtime of nonlinear analysis can be reduced by about 
20–30% through the use of a hybrid method composed of PSO and Newton-Raphson 
algorithms. This paper developed its method based on two functions to accelerate the 
convergence and compared the obtained results with the results of a conventional 
Newton–Raphson technique. In the course of this study, authors developed a computer 
program to implement the proposed method and solve the systems of nonlinear equations 
in incremental forms through a numerical technique. Several problem instances were 
solved by the proposed method and the results were compared with those of other 
algorithms. These comparisons demonstrated the ability of the proposed method to return 
equally accurate solutions through a lower number of iterations and a shorter runtime. 
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