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ABSTRACT: In this paper, a neuro-fuzzy fast terminal sliding mode control method is 
proposed for controlling a class of nonlinear systems with bounded uncertainties and 
disturbances. In this method, a nonlinear terminal sliding surface is first designed. Then, 
this sliding surface is considered as an input for an adaptive neuro-fuzzy inference 
system, which is the main controller. A proportional-integral-derivative controller is also 
used to assist the neuro-fuzzy controller in order to improve the performance of the 
system at the beginning stage of the control operation. In addition, a bee algorithm is 
used in this paper to update the weights of the neuro-fuzzy system as well as the 
parameters of the proportional-integral-derivative controller. The proposed control 
scheme is simulated for vibration control in a model of atomic force microscope system 
and the results are compared with conventional sliding mode controllers. The simulation 
results show that the chattering effect in the proposed controller is decreased in 
comparison with the sliding mode and the terminal sliding mode controllers. Also, the 
method provides the advantages of fast convergence and low model dependency 
compared to the conventional methods.  

ABSTRAK: Dalam kertas ini, kaedah mod kawalan terminal jenis gelongsor cepat 
neuro-kabur adalah dicadangkan untuk mengawal sejenis kelas sistem tak linear dengan 
ketidaktentuan dan gangguan terbatas. Dalam kaedah ini, permukaan terminal gelongsor 
yang tak linear adalah pertama direka. Kemudian, permukaan gelongsor ini dianggap 
sebagai input bagi sistem inferens neuro-kabur penyesuaian yang merupakan pengawal 
utama. Sebuah pengawal berkadar-penting derivatif juga digunakan untuk membantu 
pengawal neuro-kabur dalam usaha untuk memperbaiki prestasi sistem pada peringkat 
permulaan operasi kawalan. Di samping itu, algoritma lebah digunakan dalam kertas 
kerja ini untuk mengemaskini wajaran sistem neuro-kabur serta parameter pengawal 
berkadar-penting derivatif. Skim kawalan yang dicadangkan adalah simulasi untuk 
mengawal getaran dalam model sistem mikroskop daya atom dan keputusan 
dibandingkan dengan pengawal mod gelongsor konvensional. Keputusan simulasi 
menunjukkan bahawa kesan chattering dalam pengawal yang dicadangkan itu menurun 
berbanding dengan mod gelongsor dan pengawal terminal mod gelongsor. Selain itu, 
kaedah ini mempunyai kelebihan dari segi penumpuan cepat dan kebergantungan model 
rendah berbanding dengan kaedah konvensional. 

KEYWORDS: terminal sliding mode controller; adaptive neuro-fuzzy inference system;  
bee algorithm; atomic force microscope; nano manipulation 
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1.   INTRODUCTION  
Nonlinear control methods have significantly developed in terms of theory and 

practice. Important theoretical developments have been obtained in the fields of nonlinear 
robust control methods such as sliding mode control. The Sliding Mode Controller (SMC) 
has attracted the interests of many researchers due to its fast response and robustness 
against disturbance, noise, and uncertainty. The main reason for choosing this controller is 
its acceptable control performance in a wide range of operation conditions. Also, two main 
challenges in control, namely stability and robustness, can be effectively solved using this 
method [1-3]. In conventional SMC, the sliding surface is usually a linear surface that only 
guarantees the asymptotic stability. Thus, error dynamics cannot converge to zero in finite 
time. By tuning the parameters of SMC, faster error convergence can be achieved. 
However, this increases the control gain and thereby leads to a chattering phenomenon on 
the sliding surface that may damage the system [4]. 

Terminal SMC (TSMC) has been proposed in [5], for the first time, in order to solve 
the finite time asymptotic stability problem. In this method, a nonlinear sliding surface is 
used to obtain finite time asymptotic convergence. TSMC design includes two parts: 
choosing an appropriate sliding surface and choosing an appropriate control law that steers 
the system states of this sliding surface and makes them remain on it [5-7]. In order to 
have a good performance in SMC-based controllers, obtaining and formulating the 
acceptable nonlinear dynamics of the system is very important. However, determining the 
nonlinear dynamics of the system is usually a very difficult task. In addition, one of the 
disadvantages of such controllers is their sensitivity to noise, when the control signal is 
close to zero. Another important problem in SMC-based methods is the chattering effect 
that leads to high frequency oscillations in the controller’s output and may damage 
mechanical components. To remove, or at least decrease, the chattering effects, various 
methods have been reported by many researchers [1, 8, 9]. 

Artificial intelligence algorithms have been applied in SMC-based methods to 
improve them. For example, neural networks, fuzzy logic systems and neuro-fuzzy 
systems have been combined with the sliding mode control method for controlling 
nonlinear systems with uncertainties. The Fuzzy Logic Controller (FLC) is one of the most 
important applicable systems, which can be utilized for uncertain nonlinear systems. It can 
convert the experimental science into the mathematical formulation. However, FLC, by 
itself, cannot guarantee the stability condition and the acceptable performance [10]. Some 
researchers have used fuzzy logic in SMC to reduce the chattering effect in pure sliding 
mode control methods. Their proposed controller is called a Fuzzy SMC (FSMC) [11-13]. 
FSMC is a SMC that is combined with a fuzzy logic system to reduce or remove the high 
frequency oscillations. Furthermore, it is utilized to compensate for the unknown 
dynamics of the model and also to tune the sliding surface slope. For example, Sarailoo et 
al. have proposed a fuzzy-based SMC [11]. Moreover, Wong et al. have combined a FLC 
with SMC and a PI controller to overcome the chattering effect [12]. A fuzzy system has 
been used in [13] to combine SMC and a state feedback controller for reducing the 
chattering effect. Some studies have also utilized fuzzy logic systems in TSMC [14-18]. In 
[14], an adaptive fuzzy system has been used in TSMC to reduce the chattering. Adaptive 
TSMC using a fuzzy system has been developed in [15]. Also, in [16], fuzzy TSMC has 
been proposed for fault-tolerant control. A combination of the state feedback controller 
and TSMC using a fuzzy system has also been investigated in [17]. 

Many researchers have used the sliding mode control method in a fuzzy controller, 
called Sliding Mode Fuzzy Controller (SMFC), to improve the stability of the system. 
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Stability is the most important challenge in pure FLC. The SMFC method is a SMC-based 
FLC that is used for reducing fuzzy rules and improving closed-loop stability of the 
system. Research in the field of SMFC has been significantly performed as an applicable 
program. For example, this method has been used for robot control in [3, 8, 18, 19]. 
Moreover, adaptive fuzzy methods have been applied in the SMC for nonlinear systems in 
order to obtain accurate tracking and to remove the chattering effects [20, 21]. Hwang et 
al. have proposed an adaptive FSMC based on type-2 fuzzy systems for nonlinear systems 
with uncertainties and external disturbances. In this method, the type-2 fuzzy controller 
has been utilized to obtain the linear feedback control law and an impulse controller has 
been used to compensate the error approximation between the control law and type-2 
fuzzy controller [20]. Benbrahim et al. have proposed an adaptive FSMC with a type-2 
fuzzy controller for unknown nonlinear systems with uncertainties and external 
disturbances. In this method, two type-2 fuzzy logic systems have been applied for 
approximating the dynamics of the unknown system [21]. The main disadvantage of 
FSMC is the lack of systematic methods for designing the fuzzy rules and membership 
functions. Adaptive FSMC can cope with this shortcoming. 

An Adaptive Neuro-Fuzzy Inference System (ANFIS) is an effective modeling 
method that provides the benefits of both a fuzzy inference system and neural networks 
[22]. ANFIS involves two types of tunable parameters, i.e., antecedent parameters and 
conclusion parameters. The training and parameter updating in ANFIS is mostly based on 
the gradient and computation of gradient at each stage, which is a complicated task. Also, 
the chained rules that are used in this method may lead to local optimums. In the gradient-
based method, the convergence of the parameters is slow and depends on the initial value 
of the parameters. Also, finding the best learning gain is difficult. Shoorehdeli has 
proposed different hybrid methods for training parameters in ANFIS [23-28]. In these 
hybrid methods, a Particle Swarm Optimization (PSO) algorithm with descending gradient 
[27], a Recursive Least Square (RLS) method [25], and Extended Kalman Filter (EKL) 
[23] have all been used for training. In these studies, the PSO algorithm has been used to 
train antecedent parameters, while the other methods have been used to train conclusion 
parameters. In a different study, Shoorehdeli has used a Forgetting Factor Recursive Least 
Square (FFRLS) method to train conclusion parameters [26]. In this work, the stability of 
the algorithm has been investigated based on the Lyapunov stability theory. Moreover, 
Shoorehdeli has applied a PSO algorithm for the entire parameters of the neuro-fuzzy 
network [27]. Chatterjee et al. have introduced an extended type of Takagi-Sugeno type 
neuro-fuzzy system for modeling robot manipulators in [28]. This type of neuro-fuzzy 
system has been trained by a PSO algorithm. Lin et al. have proposed a hybrid training 
algorithm based on fuzzy entropy clustering, modified PSO, and recursive singular value 
decomposition method [29]. Cus et al. [30] have proposed an approach that uses ANFIS to 
represent the manufacturer objective function and an ant colony optimization algorithm to 
obtain the optimal objective value. Gunesekaran et al. [31] have integrated ANFIS with an 
artificial immune algorithm. Training the neuro-fuzzy system is important for satisfactory 
operation of ANFIS and finding new algorithms for updating the weights of ANFIS is an 
open challenge. 

The conventional sliding mode control method has also combined with ANFIS in [32-
35]. These adaptive FSMC methods have the advantages of robustness and stability of the 
SMC, the model-free feature of fuzzy systems, and the learning capability of ANFIS. In 
such hybrid configurations, the common sliding surface is a linear surface which only 
guarantees asymptotic stability. However, the error dynamic may not converge to zero in 
finite time. Moreover, by tuning the parameters of SMC, although fast convergence of the 
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error may be achieved, the control gain is then increased which results severe chattering 
on the sliding surface. These problems motivate the current research to improve the 
existing results. 

In the present paper, a combination of Fast TSMC (FTSMC) and ANFIS are proposed 
to overcome the above mentioned problems. In the proposed scheme, both finite-time 
asymptotic convergence and chattering-free results can be achieved simultaneously. In 
fact, the nonlinear sliding surface is considered as the input of ANFIS. Then an adaptive 
intelligent law is utilized to tune the weights in order to obtain the best weights with stable 
convergence property. To satisfy the Lyapunov condition, an intelligent control law is 
applied for tuning the weights such that the most optimum value with a stable convergence 
property is achieved and thereby the Lyapunov condition is satisfied. In this paper, a bee 
algorithm is used to determine the adaptive optimal control law. The bee algorithm is 
simple and fast in comparison with conventional descending gradient-based methods and 
can lead to satisfactory results. In the proposed scheme, a PID is also used in parallel with 
ANFIS to assist it by providing an additional control action. This PID controller is also 
tuned using the bee algorithm. By using this PID controller, the response of the ANFIS, in 
the beginning stages of control, will be improved.  

The advantage of the proposed controller, compared to the FTSMC, is its high 
robustness against uncertainties and undesirable disturbances. This robustness is due to the 
use of the terminal sliding surface as the input in the ANFIS structure. Therefore, the 
network structure becomes simpler and the error converges to the sliding surface in less 
time. Although the benefits of the fast terminal sliding surface are achieved, the chattering 
effect does not exist. Moreover, improvement in the closed-loop stability and finite time 
asymptotic stability are the other advantages of the proposed controller with respect to the 
purely neuro-fuzzy controller. This method is applicable for the cases where the dynamic 
of a system is not available or the system is unknown. In this paper, the proposed control 
scheme is applied to an atomic force microscope (AFM) system and the results are 
compared with conventional SMCs. Simulation results show the effectiveness and 
improved performance of the proposed controller. 

The paper is organized as follows. In Section 2, the system description and control 
goals that are considered in this paper are explained. Moreover, in this section, a 
mathematical model of the AFM system is introduced as a case study to verify the 
theoretical results using simulations. In Section 3, the fast terminal sliding mode control 
method is introduced and its stability for the considered class of nonlinear systems is 
proven. Then, the neuro-fuzzy controller is introduced, after which the hybrid 
configuration of this network with TSMC is investigated. Also, in this section, a bee 
intelligent algorithm is used instead of classical methods to tune the parameters of the 
proposed controller. In Section 4, by applying the proposed method to the AFM model, the 
simulation results are presented. Finally, conclusion remarks are drawn in Section 5. 

2.   PROBLEM FORMULATION 
2.1  System Description 

In this paper, a Neuro-Fuzzy FTSMC (NFFTSMC) is proposed for a class of 
nonlinear systems. Consider a nonlinear dynamic system as follows: 
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where x(t)=[x1(t) x2(t) ... xn(t)]TϵRn

 
 is the state vector of the system, which is assumed to 

be measurable. ݂(ܠ) and g(x) are nonlinear continuous functions and y is the output of the 
system. ∆݂(ܠ) and ݀(ݐ) represent uncertainty and bounded external disturbance 
respectively. Also, uϵR denotes the control input of the system. Moreover, it is assumed 
that the system (1) is controllable and g(x)≠0. 

2.2  Control Objective 
The control objective is that the state vector of the above system, x(t), tracks the 

desired vector, xd(t)=[xd1(t) xd2(t) ... xdn(t)]T, which is known in [ݐ଴,∞). Let the tracking 
error be: 
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To achieve the objective vector, a controller is designed such that tracking error 
satisfies the following equation: 

0)()(lim)(lim 


ttt dtt
xxe  (3) 

2.3  AFM System for Nano Manipulation Model 
In this paper, after designing the controller for the system described by Eq. (1), it is 

applied to a model of an AFM system as a case study. The AFM system is a well-known 
system that is widely used for nano manipulation in many industrial applications of nano 
technology. One of the goals in nano technology is to control material with high accuracy 
in nano dimensions in order to produce special materials and devices. Thus, control of 
AFM vibration behavior and construction of a micro-cantilever tip, which tracks a certain 
goal, is essential for particle manipulation in nano dimensions. The sharp tip of the AFM 
is used for pressing, pulling, cutting, and indenting materials and surfaces. The AFM 
includes a micro-cantilever, with a sharp tip at its end that is used for scanning the instance 
surface. Figure 1 shows the structure used for this device. The AFM cantilever is 
connected to a piezoelectric actuator with a photo detector. The photo diode provides a 
feedback signal for the controller by receiving a reflected laser beam to make the feedback 
from the cantilever deflection. The controller provides the input signal for the actuator 
based on the feedback signal received from the photo detector. The dynamics of the 
interaction of the micro-cantilever tip with the surface is proposed in [36, 37]. The main 
idea of the AFM system is that the changes in vertical oscillation of the cantilever are 
measured when the vibrating tip scans the surface of the sample. The characteristics of the 
oscillation, such as frequency, amplitude, and phase, are recorded. In fact, while the 
sample is scanned using the vibrating tip, a feedback control loop adjusts the tip-sample 
separation to maintain the cantilever amplitude at a reference value [38].  
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Fig. 1: Atomic force microscope (AFM). 

In [39], the AFM setup has been modeled as a mass-spring element in which the 
effect of the tip and the instant force has been obtained by molecular potential. This AFM 
model can be considered as a special case of Eq. (1) and is described using a non-
dimensionalized autonomous form as below: 
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where x1 and x2 are the position and speed of the cantilever tip and y is a measurement 
from the position of the cantilever tip while ωn is the natural frequency of the cantilever. ξ  
denotes the system damping, u(t) is the system control input and h is the interaction force 
between the surface and the cantilever tip. Also, δ is a parameter for determining the 
distance between the instance and the equilibrium point from the cantilever tip in the 
absence of instance. Finally, )cos(~ tf   is the bounded external disturbance. A type of 
force that is usually used for modeling the interaction between a molecular pair is known 
as the  Lennard-Jones potential [39] that is defined as follow: 
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where a1 and a2 are constant parameters and δnom and δmax are the nominal value and the 
maximum value of δ respectively. This model demonstrates both attraction and repulsion 
intermolecular forces. Parameter δ depends to the distance between the tip as a controller 
and the nano material and can be considered as an uncertainty in the model. 

3.   THE PROPOSED METHOD 
3.1  Fast Terminal Sliding Mode Controller 

One of the main drawbacks of classical SMC is that the control gain must be 
increased to compensate for the unknown dynamics of the system. Moreover, this control 
method cannot guarantee the asymptotic convergence of the error. This means that the 
tracking error cannot converge to zero in finite time. To overcome this problem, the 
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FTSMC method is used instead of conventional SMC. In this section, control of a class of 
nonlinear systems is introduced to track a desired trajectory based on FTSMC. Consider a 
nonlinear system with uncertainty and disturbance in the form of Eq. (1). The aim is that 
the state vector x(t) must track the objective vector xd(t). It is also assumed that |d(t)| ≤  δ1 
and |f(x)| ≤ δ2 where δ1, δ2 > 0. 

The sliding surface is defined recursively as: 
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where s0 = x1 - xd1 and qi > pi , qi and pi are positive odd numbers and also αi ≥ 0 and βi ≥0, 
for i = 0, 1, ... , n-2 are the parameters of the sliding surface. 

For Eq. (1), by considering the structure in Eq. (6), if the control law u is designed as 
follow: 
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where l > δ1+ δ2, then the states of the system (1) converges to the sliding surface, sn-1 = 0, 
in finite time, tn., then the tracking condition in Eq. (3) can be satisfied. To prove this, 
consider the following Lyapunov function: 
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Substitute Eq. (7) into Eq. (6), while considering the dynamics of Eq. (1), we have: 
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This shows that convergence to sn-1 = 0 will be satisfied in the following finite time [40]: 
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FTSMC has attracted much attention because of its robustness against disturbance, 
noise, and uncertainty, and also due to its fast and finite-time convergence. However, 
FTSMC has some systematic drawbacks in real applications. Some of these shortcomings 
are emerging chattering effect, the full-dependency of this method to the dynamic 
equations of the system and also the sensitivity of the method to noise when the input 
signal is very close to zero. Therefore, in order to overcome these problems, a hybrid 
configuration of ANFIS and PID controller is used instead of the control law in Eq. (7) to 
remove the chattering effect and also to remove the dependency of the controller to the 
accurate dynamic model of the system. 

3.2  Neuro-Fuzzy Fast Terminal Sliding Mode Control Method 
In this section, the FTSMC method is extended by ANFIS in order to obtain an 

equivalent control through adaptation of the weights. Accordingly, advantages of FTSMC 
and an adaptive controller design are combined into a neuro-fuzzy system. Thus, a 
variable sliding surface is considered as the input of ANFIS and then the weights of the 
ANFIS are determined by an intelligent algorithm. 

3.2.1 ANFIS Structure 
Both fuzzy logic and neural networks are model-free approximators that share their 

ability to deal with uncertainty and noise. Fuzzy logic architecture can be converted to a 
neural network and vice versa. Moreover, one can gain the benefits of both neural 
networks and fuzzy logic by combining these two methods. The network achieved by this 
method, similar to neural networks, possesses the capability of training and parameter 
adaptation. Moreover, the obtained network has the ability inherent to fuzzy logic for 
interpreting in terms of linguistic variables. 

ANFIS is combination of neural network and fuzzy logic methods [22]. ANFIS 
network structure includes two parts. The first part involves an antecedent section, which 
is formed based on the IF part of fuzzy rules. The second part involves the conclusion 
section, which is based on the THEN part of fuzzy rules. Therefore, antecedent and 
conclusion parts are connected to each other as a network through fuzzy logic. These parts 
have some adjustable parameters that can be tuned, similar to weights in neural networks. 

The structure of ANFIS includes five layers as depicted in Fig. 2. This figure 
illustrates one example of ANFIS structure that involves two inputs (x, y) and one output 
(z). There are four rules in the following form: 

IF x is Aj and y is Bk THEN z=fi   (for i=1,2,3,4 and j,k=1,2) 

where Aj and Bk are fuzzy sets with membership functions of ( )
jA x  and ( )

kB x  and fi is a 
linear function of x and y. 
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Fig. 2 ANFIS structure with two inputs and one output 

The layers of the ANFIS are as follow: 
 Layer 1: This layer is called the fuzzifier layer. This layer provides the membership functions (MFs) of 

each input. In this paper, triangular membership function is used as described in Eq. (9). The 
parameters ai, bi, ci are the set of parameters that change the shape of the membership functions. 
Parameters of this layer are called antecedent parameters.  
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The output of this layer can be written as: 
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 Layer 2: This layer is called the rule layer. The rule layer indicates firing strength for each rule that is 
generated in fuzzifier layer. The output of this layer is: 
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 Layer 3: This layer is called the normalization layer. It normalizes the firing strength for each input. 
This normalization is the ratio of the i-th rule firing strength to the total firing strength as defined in Eq. 
(12): 
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 Layer 4: This layer is called the defuzzifier layer. The output of each node in this layer is achieved by 
multiplying a polynomial with normalized firing strength and is calculated as below: 

 
4 ( ) 1, 2,3,4i i i i i i iO w f w m x n y l i      (13) 

The output of this layer is normalized. Also, mi, ni and li in this layer denote the conclusion parameters.  

 Layer 5: This layer is called the summation layer. This layer is obtained from the sum of all received 
signals. The overall output of ANFIS becomes: 

overall  output 1,2,3,4
i i

i

i
i

w f

i i w
i

z w f i


     (14) 
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3.2.2 Neuro-Fuzzy Control Scheme 
In this section, in order to remove the chattering effect, ANFIS is used for nonlinear 

mapping approximation between the terminal nonlinear sliding surface and the control 
output. The neuro-fuzzy network used in this paper has one input (sn-1) with five 
membership functions and one output (u) as depicted in Fig. 3.  

 

Fig. 3: ANFIS structure with single input and single output. 

Five fuzzy rules are of the following form: 

IF sn-1 is Ai THEN u=mix +li   (for i=1,...,5) 

where Ai are fuzzy sets with membership functions of ( )
iA x  with antecedent parameters 

of ai, bi and ci, and mi and li are conclusion parameters. 
The main problem in this neuro-fuzzy network is to tune the entire parameters of this 

algorithm to obtain the best value with stable convergence property. The training method I  
ANFIS is mostly based on the gradient. In the gradient method, due to its complicated 
calculation at each iteration, the convergence of the parameters is very slow and is 
dependent to the initial value of the parameters. Also, the chained derivative rules used in 
this method may lead to local minimum and finding the best learning gain is very difficult. 

Here, a method is proposed for updating all parameters that is simpler and faster than 
the descending gradient method. According to the Lyapunov theorem, the nonlinear 
sliding surface of the terminal sliding must satisfy the condition sn-1ṡn-1 ≤ 0. To satisfy the 
Lyapunov condition, an intelligent algorithm, namely the bee algorithm, is used for tuning 
the parameters such that the best value with the stable convergence property can be 
achieved. This algorithm determines the best weights wi, fi to obtain sn-1ṡn-1 ≤ 0. Also, in 
the proposed method the initial value of the parameters and the learning rate is not 
required.  

The intelligent control scheme for controlling the system (1) is depicted in Fig. 4. 
During this procedure, the best value of the antecedent and conclusion parameters of 
ANFIS are achieved through the bee algorithm. Also, a NFFTSMC has a poor 
performance in the beginning of the control operation, thus a PID controller is used to 
improve the control performance in this period and to have a total acceptable performance. 
After a short period of time, PID is replaced by NFFTSMC controller and the output of 
PID controller (uPID) is reduced to zero. 
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Fig. 4: Block diagram of the proposed NFFTSMC system. 

According to Fig. 4, total control input is as below: 

ANFISPIDtotal uuu   (15)   

The bee algorithm is utilized to tune the coefficients of both the PID controller and the 
ANFIS antecedent and conclusion parameters. As a result, the bee algorithm will optimize 
all unknown parameters in utotal. 

3.3  Combining NFFTSMC and Bee Algorithm 
One of the important challenges in ANFIS is its training and parameter updating. In 

this section, we propose a simple and fast method for updating the parameters of ANFIS. 
3.3.1 Bee Algorithm 

The bee algorithm [41] is inspired from behavior of the honey bee in nature. In this 
algorithm, bees are divided into three categories: employed bees, onlooker bees, and scout 
bees. Employed bees bring nectar from the explored source. These bees bring information 
such as distance, direction, and profitability of a location to the hive and share it with other 
bees. Onlooker bees use a complex communication system. This system enables them to 
obtain information about the location and quality of nectar which is outside the hive. 
Communication between the bees is performed by a dance called waggle dance that 
includes information about the quality, location, and position of the food source. Scout 
bees search randomly for the food in the vicinity of the hive. These bees move from one 
location to another randomly. Bees need high energy for flying. Thus they try to find the 
shortest and the best path among swarms of flowers.  

In evolutionary algorithms, the main goal is the minimization of the objective 
function. This algorithm searches for the optimal points in the search space with 
inspiration from the bees’ dance. Each point in the search space is considered as a food 
source. The scout bee randomly searches the space through a fitness function and by 
sampling from visited locations and ranking them in terms of quality. Other bees search 
the best points ranked by fitness function. The bees of the algorithm promise the best 
solution and minimization of the cost function according to the measurement of the cost 
function.   

In the space dedicated to the solution interval defined as U={xRn; mini < xi < maxi;  
i=1, 2, ... , n} and a fitness function as f(x):U→R, each solution candidate is defined as a 
n-dimensional variable x=[x1, ... , xn]. Table 1 shows the parameters in the bee algorithm.  
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    Table 1: Parameters of bee algorithm 

Parameter Description 
ns Number of scout bees 
ne Number of elite sites 
nb Number of best sites 
nre Recruited bees for elite sites 
nrb Recruited bees for remaining best sites 
ngh Initial size of neighborhood 

The algorithm can be described as below [41]: 

A constant population of scout bees, ns, is selected. Then, this population is randomly 
and uniformly spread throughout the solution space. Each scout bee evaluates its position 
according to the fitness function, and then the algorithm enters into the main loop which 
includes four steps. At the end, the algorithm stops when the stopping criterion is met. ns is 
the visited site, and it is ranked according to the fitness information obtained by the scout 
bee. Then, nb sites with best fitness (the measured minimums by the objective function) 
are chosen, for local exploration. This local exploration is performed by a class of other 
bees, called foragers, that steer to the vicinity of the site chosen by the scout bees. For 
each chosen location, the number of allocated foragers is defined as below: each scout bee 
that comes back from one of the best chosen sites, nb, performs a waggle dance that 
attracts foragers for a local search. For each ne first top-rated elite site that a scout bee 
visited, among nb best available sites, nre forager bees are sent to search in the 
neighborhood of these sites. Then, for each nb-nre remaining sites, where nrb ≤ nre, forager 
bees are sent for searching in that vicinity. According to the above method, most of the 
bees are allocated for searching in sites with the highest fitness. Thus, a local search is 
performed with more accuracy in the vicinity of elite sites that are hopefully sites of the 
search space for finding the optimal solution. The bees, employed by a scout bee, are 
located randomly with uniform distribution in the neighborhood of the specified site with 
high fitness. This flower patch is specified as an n-dimensional vector of sites to the center 
of the scout bee site. For each flower patch, the fitness of each visited site by an employed 
bee is evaluated. If the fitness of one of the employed bees is more than that of the scout 
bee, the selected bee is chosen as the new scout bee. In the end, the best bee (with 
maximum fitness) is achieved from each patch. In the global search process, ns-nb bees are 
spread randomly in the search space of the new flower patch. Selection of scout bee in a 
random process is for exploring better sites by bee algorithm. At the end of each iteration, 
a new population of the bee colony is composed of two groups. The first group includes nb 
scout bees corresponding to the center (the best available solution) of each flower patch 
and denotes the local search. The second group includes ns-nb scout bees corresponding to 
solutions that are generated randomly and denotes the global exploration. The stopping 
criterion depends on the problem dimensions and can be a threshold considered for fitness 
such that if a site satisfies this condition, then it can be introduced as the optimal site. It 
can also be considered as a prescribed number of full cycles (for a certain number of 
algorithm iterations). Figure 5 shows the flowchart of the bee algorithm. 
3.3.2 Training NFFTSMC Based on the Bee Algorithm 

The goal of designing NFFTSMC is to obtain a control law, u, such that it can steer 
all the states  of  an  uncertain  nonlinear system (1)  to  the sliding surface s in finite time  
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Fig. 5: Flowchart of the bee algorithm. 

without chattering. To achieve this goal, a fast terminal sliding surface is first calculated, 
and then intelligent ANFIS is gained to obtain the control law u.   

The advantage of combining such methods is the appropriate chattering-free control 
action in the presence of bounded external disturbances and uncertainties. In the 
conventional ANFIS training methods, input-output data is usually required. However, in 
the proposed method, intelligent bee algorithm is used in on-line mode, and therefore, the 
best values of the ANFIS parameters are obtained, without any information about the 
system input and output. Also, to help the ANFIS controller in the beginning of the control 
operation, a PID controller is utilized as depicted in Fig. 4. As an initial time elapses, the 
control law of this controller converges to zero, as shown in Fig. 6.     

 

Fig. 6: Control effort of the PID. 
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In this section, training and updating ANFIS and PID controllers, using a bee 
algorithm, is explained. ANFIS involves three antecedent parameters, ai, bi and ci and two 
conclusion parameters, mi and li for each fuzzy rule. Thus, the total number of parameters 
is equal to the parameters associated with all fuzzy rules. In Fig. 3, ANFIS includes five 
rules and each rule involves three antecedent parameters and two conclusion parameters. 
Therefore, fifteen parameters are optimized in the antecedent part of ANFIS, and ten 
tunable parameters are adjusted in the conclusion part of ANFIS. On the other hand, there 
are three tunable parameters in a PID controller kp, ki and kd that must be obtained by bee 
algorithm. As a result, a bee algorithm is utilized in this paper to tune the antecedent and 
conclusion parameters in ANFIS and PID coefficients.  Thus, there are twenty eight 
tunable parameters in this controller that are determined by bee algorithm. 

4.   SIMULATION RESULTS 
The proposed method is applied to the model of an AFM described by Eq. (4). The 

simulation results are performed in MATLAB/SIMULINK. To obtain the nano 
manipulation goals, the cantilever tip of the AFM must be able to strongly track a 
reference signal in the presence of uncertainties and disturbances. In this simulation, the 
unit step and periodic pulse inputs are considered as the reference signals. The pulse input 
oscillates between 0.8 and 1.2 with a period of 10 s. 

The parameters of the system described in Eq. (4) are considered same as [42], i.e.: 

1 ,2~ ,2.1 ,8.0 ,66.3 ,148.0 ,02.0 ,1 maxnom21  fen   (16) 

where δ is an uncertain parameter with a nominal value δnom and maximum value δmax 
(δnom < δ < δmax). 

First, conventional SMC is applied to this model with uncertainty and disturbance. 
The results for the unit step and periodic pulse inputs are shown in Fig. 7. It can be seen 
that chattering occurs for the control input signal. However, the output follows the inputs 
favorably. Although the satisfactory results for this condition, as SMC cannot guarantee a 
finite-time convergence, it is quite possible that for different conditions, a long time may 
be required for convergence.  

At the next step, the FTSMC method is used to solve the problem of finite time 
asymptotic stability. Similarly, the FTSMC method is applied to this model with 
uncertainty and disturbance. The simulation results are illustrated in Fig. 8. According to 
Fig. 8, the output converges to the reference signals in less time in comparison with the 
SMC method. Also, FTSMC guarantees finite time asymptotic stability, but the control 
input signal still has chattering. In FTSMC, by appropriate selection of the sliding surface 
parameters, fast responses can be achieved. However, reducing the convergence time in 
this method may lead to chattering in the control signal, as can be observed in Fig. 8. 

In order to remove the chattering effect, an ANFIS+PID control scheme is applied to 
this model with uncertainty and disturbance. The simulation results of pure ANFIS are 
illustrated in Fig. 9. As can be seen from this figure, the results reveal less chattering 
compared with SMC and TSMC, but the tracking performance is getting worse. In fact, 
without exact adjustment in the parameters of ANFIS, it may be difficult to achieve 
satisfactory tracking performance. Moreover, the pure ANFIS cannot guarantee the 
stability condition and acceptable performance especially at the beginning of the operation 
[10]. It can be observed that the response performance of ANFIS is not desirable enough 
when the periodic pulse signal is applied as the reference input. Therefore, the ANFIS  
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(a)                                                                                                        (b) 

 
(c)                                                                                                        (d) 

Fig. 7: Simulation results for conventional SMC (a) tip position for step reference input 
(b) control input for step reference input (c) tip position for periodic pulse reference 

input (d) control input for periodic pulse reference input. 

 
(a)                                                                                                        (b) 

 
(c)                                                                                                        (d) 

Fig. 8: Simulation results for FTSMC (a) tip position for step reference input (b) 
control input for step reference input (c) tip position for periodic pulse reference input 

(d) control input for periodic pulse reference input. 
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(a)                                                                                                        (b) 

 
(c)                                                                                                        (d) 

Fig. 9: Simulation results for the ANFIS controller (a) tip position for step reference 
input (b) control input for step reference input (c) tip position for periodic pulse 

reference input (d) control input for periodic pulse reference input. 

controller by itself is not able to completely track sudden changes in the reference signal, 
and the system performance may be deteriorated. However, by exactly adjusting its 
parameters, a better performance can be attained. 

Finally, the NFFTSMC method is applied to overcome all shortcomings of the 
aforementioned methods. In fact, by combining these methods, finite time asymptotic 
stability, together with stability requirements and acceptable performance, can be 
obtained. Also, the chattering effect is removed completely. Moreover, due to the 
application of one input variable in the NFFTSMC network, the number of fuzzy rules is 
less than other fuzzy-based method. Also, fast convergence is obtained in comparison with 
previous methods. The simulation results of NFFTSMC in Fig. 10 verify these statements. 
It can be seen that the tip position tracks rapidly with the desired reference inputs and the 
proposed controller makes the effect of uncertainty and disturbance negligible. In addition, 
due to the use of ANFIS, it provides a chattering-free control action. The simulations 
reveal that the presented method has better tracking performance with negligible 
chattering in control action when compared with the other control methods. 

For comparison of all methods, the responses on unit step and periodic pulse 
reference signals are depicted in Fig. 11. Responses of all controllers are performed in the 
presence of the same uncertainty and disturbance as modeled in Eq. (4). As can be seen 
from this figure, the value of overshoot for the ANFIS controller, due to its weak stabilty, 
is more than the other controller. It has been improved using the proposed NFFTSMC. On 
the other hand, comparing the response time of the controllers, it can be stated that the 
proposed NFFTSMC has a best response speed among the controllers. As expected, 
FTSMC converges more quickly than SMC, but there is significant chattering in the 
control action (as shown in Figs. 7 and 8). In the proposed NFFTSMC, due to the use of 
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the bee algorithm for adjusting ANFIS parameters, the poor performance of ANFIS is 
improved while the control action is smoother than the other controllers. Hence, the 
proposed method is obviously more efficient in comparison with the other control 
techniques, because of its acceptable control performance. 

 
                                            (a)                                                                                 (b) 

 
                                           (c)                                                                                (d) 

Fig. 10: Simulation results for NFFTSMC (a) tip position for step reference input (b) 
control input for step reference input (c) tip position for periodic pulse reference input 

(d) control input for periodic pulse reference input. 

 
                                          (a)                                                                                   (b)        

Fig. 11: Comparison of the outputs of SMC, FTSMC, ANFIS and NFFTSMC (a) tip 
position for step reference input (b) tip position for periodic pulse reference input. 

5.   CONCLUDING REMARKS 
In this paper, a NFFTSMC method has been proposed for a class of nonlinear systems 

to remove the chattering effect, to have finite-time asymptotic convergence, and to reduce 
fuzzy rules. In this method, an ANFIS network has been proposed to approximate between 
the terminal nonlinear sliding surface and the control law. A bee algorithm has been also 
used in this paper, which is fast and simple compared with the conventional descending 
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gradient method. In fact, by using the intelligent bee algorithm, all weights of the neuro-
fuzzy network have been optimized such that the stability condition, sn-1ṡn-1 ≤ 0, has been 
satisfied. The simulation results of the NFFTSMC method, for an AFM model, illustrate 
the effectiveness of the proposed control scheme and verify that the chattering effect has 
been totally removed in comparison with conventional SMC and FTSMC. Also, faster 
convergence has been observed with respect to other methods. In fact, by combining 
FTSMC with ANFIS, finite time asymptotically stability and acceptable performance have 
been achieved. Moreover, due to application of one input variable in NFFTSMC, the 
number of fuzzy rules is less than fuzzy-based methods. Therefore, compared with the 
other conventional controllers, the proposed control method has advantages in the aspect 
of convergence time, chattering, implementation cost, response performance, and 
robustness. In this paper, the proposed controller has been applied to a mathematical 
model of AFM using software simulations. Future research will include experimental 
implementation of the proposed control method for a real application of the AFM system. 
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