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ABSTRACT: In this paper, iterative learning control (ILC) is proposed to be combined 

with an optimal fractional order derivative and optimal fractional and proportional-

derivative (BBO-PD-type ILC). During the procedure of the update law (of Arimoto's 
derivative iterative learning control), a first order derivative of the tracking error signal 

was used. As a novelty, fractional order derivative of the error signal is proposed in terms 

of s where [0, 2] to update the learning control law. Two types of fractional order 

iterative learning control namely PD-type ILC and D-type ILC are used in a closed loop 

control system for different value of . In this regard, a feedback linearization control 
technique is applied on a single link robot arm. Convergence of the nonlinear control 

system is also shown for the first time. In order to investigate and also to improve 
performance of the closed-loop feedback linearization control system, coefficients of both 

D and PD learning law i.e. proportional kP, derivative kD, and  are optimized using 

Biogeography-Based optimization algorithm (BBO). Simulation results signify 

performance of the proposed optimally tuned BBO-D and BBO-PD-types ILC with 
respect to the conventional fractional order ILC.   

ABSTRAK: Dalam kertas ini, kawalan pembelajaran lelaran (ILC) adalah dicadangkan 

untuk digabungkan dengan derivatif susunan pecahan optimum dan derivatif pecahan dan 

berkadar optimum (BBO-PD-type ILC). Semasa prosedur undang-undang kemaskini 
(kawalan pembelajaran lelaran derivatif Arimoto ini), derivatif pengesanan isyarat ralat 

peringkat pertama telah digunakan. Sebagai sesuatu yang baru, derivatif susunan pecahan 

isyarat ralat dicadangkan mengikut s mana [0, 2]  untuk mengemaskini undang-

undang kawalan pembelajaran. Dua jenis susunan pecahan kawalan pembelajaran lelaran 

iaitu PD-jenis ILC dan D-jenis ILC digunakan dalam sistem kawalan loop tertutup untuk 

nilai  yang berlainan. Dalam hal ini, satu teknik maklumbalas kawalan linear digunakan 
pada pautan tunggal lengan robot. Penumpuan sistem kawalan bukan linear juga 
ditunjukkan buat kali pertama. Bagi menyiasat dan juga untuk meningkatkan prestasi 

sistem maklumbalas kawalan pelinearan loop tertutup, pekali kedua-dua D  dan PD  

undang-undang pembelajaran, iatu kP, berkadar, derivatif kD, dan  dioptimumkan 

menggunakan Biogeografi berasaskan algoritma pengoptimuman (BBO). Keputusan 

simulasi menunjukkan prestasi BBO-D yang diperkemaskan secara optimum dan prestasi 

BBO-PD-jenis ILC yang dicadangkan dari segi susunan ILC pecahan konvensional. 

KEYWORDS:  fractional order iterative learning control (FOILC);biogeography-based 

optimization; PD-type ILC; D-type ILC; input-state feedback 
linearization controller 
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1. INTRODUCTION  

Learning is a characteristic of living creatures, human beings among them. Several 

endeavors have been made to extend this learning ability to engineering systems in design 

and construction. Iterative learning control is such an important technique in the field of 

iterative learning systems, proposed by Arimoto and his colleagues in 1984 [1]. Intelligent 

iterative learning control falls into the intelligent control category. This involves new 

techniques to control iterative processes in certain amounts of time. In such control 

algorithms, the controller learns from its past experiences (iterations) to update itself to 

improve the performance of the closed loop system. 

There are several practical examples in industry in which a system or plant must 

perform a particular duty successively within a certain time duration. For instance, a robot 

arm [2] must perform a special task (such as welding, cutting, painting, etc.) in a prescribed 

geometric path at any iteration. One way to control such a process is to modify a control 

input from the previous iteration to the next in order to decrease the error between the actual 

path and desired command [2, 3]. Typically, the update law of an iterative learning control 

can be given by: 

(1) 𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + 𝑢𝑘(𝑡) 

where 𝑢𝑘+1(𝑡) is the input of the process at iteration (𝑘 + 1) which 𝑢𝑘(𝑡) is a correction 

term. Several types of the iterative learning controls are developed in which different 

correction terms of 𝑢𝑘(𝑡) are used. A perfect description of linear and nonlinear iterative 

learning control law can be found in [4]. Convergence conditions of an adaptive iterative 

learning law is studied in [5]. A monotonic convergence control law is introduced in [6] to 

control linear discrete-time where a self-tuning iterative learning control for time variant 

systems is proposed in [7]. 

Iteration-based systems use the ability to learn and appropriate tuning of the input to 

perform a repetitive operation, although the iteration process is time and cost consuming. 

Accordingly, algorithms to reduce the necessary iterations within the learning process 

attracted more interest [8]. The first fractional order ILC is reported by [8] where a fractional 

order learning control law of type Dα is proposed. The convergence condition, as an 

important method in fractional order iterative learning control (FOILC), is also analyzed in 

the frequency domain.  

Fractional calculus was primarily inspired by Leibniz in 1695 [9]. A fractional 

derivative is a proper tool to define properties such as memory and inherency of many 

materials and processes. As a result, broad research has been performed in recent years in 

the field of real-time modeling using fractional order differential equations. For example, 

power transmission lines can be modeled more accurately using fractional order models 

[10]. Occurrences of chaos in fractional order systems is investigated in a wide range of 

research [11]. Among other applications of fractional order systems, modeling of the 

oscillatory behavior of viscoelastic material [12], electrode-electrolyte polarization [13] and 

quantum evolution of complex systems [14] can be stated.   

In recent years, various research was performed in the field of fractional calculus and 

its controllers. It is because such controllers are more flexible in comparison with integer 

order ones. A fractional controller increases the degree of freedom to choose the design 

parameters. This provides an opportunity for the designer to achieve smoother and more 

appropriate responses. On the other hand, this increases the performance of the controller in 

terms of the convergence time and also the steady state error [9].  
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The first fractional order controller was proposed by Oustaloup in 1988 [15] in the 

CRONE frame work. Later, this controller was extensively used and developed [16, 17]. 

Accordingly, initial fractional order controllers and application of fractional order calculus 

in control were introduced. In 1999, fractional PID controllers were proposed [18].  

Biogeography-based optimization (BBO) was primarily proposed by Dan Simon in 

2008 [19]. The BBO technique is a new global optimization algorithm based on the study 

of the geographical distribution of biological organisms. Mathematical models of 

biogeography deal with immigration of species from one island to another island, explaining 

the creation and extinction of species. Dan Simon further investigated the BBO algorithm 

in [20], using a new version of this algorithm and applying the probability theory. In parallel, 

Mehmet Ergezer and Dan Simon used biogeography-based optimization for some combined 

problems [21]. Other applications of biogeography-based optimization can be mentioned as 

reduction of movement estimation time in video [22], dynamic deployment of wireless 

sensor networks [23], solving the problem of economic load dispatch [24] and optimal 

dispatch in the power systems [25].  

Although iterative learning control is successfully applied in nonlinear systems [8], the 

convergence analysis is only presented for linear systems. To overcome this shortcoming in 

the current manuscript, convergence analysis is performed when a nonlinear system is 

linearized through a feedback linearization approach. Iterative learning updating law of 𝐷 

type is simulated for 0 ≤   ≤. However, the result will prove to be improved here when 

choosing 1 ≤   ≤ 2. Furthermore, a new optimal type of fractional PD of the iterative 

learning controller (FOILC) will be proposed for the first time. Coefficients of D and PD-

types ILC namely, kP, kd, and  , are determined using a BBO algorithm. The rest of the 

paper is organized as follows: 

In section Error! Reference source not found., a brief description of fractional 

calculus is stated. Section 0 introduces integer and fractional order iterative learning control. 

Motion dynamic and structure of a single-link robot arm is presented in section 0. This will 

be used as a case study to assess the quality of the proposed fractional type ILC algorithm. 

In section 5, input-state feedback linearization method is applied on the robot arm. The 

relevant convergence analysis of the fractional order learning law is given in section 0. A 

criterion for optimal determination of FOILC coefficients using a BBO algorithm is 

presented in section 0. Performance of the proposed method is studied during the 

implementation on a robot arm in section 8. Finally, a conclusion is presented in section 9. 

2.   BRIEF DESCRIPTION OF FRACTIONAL ORDER CALCULUS 

Fractional order calculus is an extension of the integer order differential. Operator  𝑎Dt
 

denotes the fractional order derivative-integral, which is defined as: 

(2)  𝑐𝐷𝑡
(. ) =

{
 
 

 
 

𝑑

𝑑𝑡
(. )   ()  0,

1    () = 0,

∫(. )(𝑑𝜏)−
𝑡



() 0.

 

where  indicates order of derivative-integral. For the derivative,  is a positive real value 

while for the integral, it is a negative real value. Parameters t and c denote the time and 
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initial time respectively. This extension leads to various definitions of fractional calculus. 

A common definition is Caputo’s, which is described as follows: 

Definition: Necessity of the initial condition such as 𝑓(𝑎), 𝑓′(𝑎) and… requires the 

use of  a new definition of Riemann-Liouville fractional derivative which is called Caputo 

fractional derivative [26] as in the following: 

(

(3) 
 𝑐Dt

𝑓(𝑡) =

{
 
 

 
 1

(− 𝑛)
∫

𝑓(𝑛)(𝑇)

(𝑡 − 𝑇)𝛼−𝑛+1

𝑡

𝑐

𝑑𝑇     , 𝑚 − 1𝑚       

𝑑𝑚

𝑑𝑡𝑚
𝑓(𝑡)                                    = 𝑚                 

 

where m is the first integer number lower than . The Laplace transform of the Caputo 

fractional derivative is shown as:   

(4) ∫ 𝑒−𝑠𝑡  0𝐷𝑡
𝑓(𝑡)

∞

0

𝑑𝑡 =  𝑠𝐹(𝑠) −∑  0𝐷𝑡
−𝑘−1𝑓(𝑘)(𝑡)| 𝑡=0

𝑛−1

𝑘=0

, 𝑛 − 1  ≤ 𝑛  𝑁   

Unlike to the Laplace transform of the Riemann-Liouville fractional derivative, only integer 

order 𝐹(𝑠) is appeared in the Laplace transform of the Caputo fractional derivative. In case 

of a zero initial condition, the Laplace transform has the form; 

(5) 𝐿{ 0𝐷𝑡
𝑓(𝑡)} = 𝑠𝐹(𝑠) 

3.   INTEGER AND FRACTIONAL ORDER ITERATIVE LEARNING 

CONTROL 

The basic idea of using iterative learning control is shown in Fig. 1. It is assumed that 

all signals are defined in the time duration of 𝑡[0, 𝑡𝑓] where k denotes the number of the 

experiment(s) or iteration. It means that during kth iteration, prior information of input signal 

up to 𝑢𝑘(𝑡), actual output 𝑦𝑘(𝑡), and error signal 𝑒𝑘(𝑡) are stored in the memory. This 

information is used to update the iterative learning control law in iteration 𝑘 + 1 in order to 

improve the control input. This is necessary to decrease the error between the actual value 

and that of the desired system output as well as to increase performance of the closed loop 

system. The new input must be designed such that the error is absolutely less than that of in 

the last iteration. 

System

Memory

Iterative Learning 

Control

uk (t) yk (t)

yd (t)uk+1 (t)  

Fig. 1: Basic idea of ILC. 
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Conventional iterative learning control laws are proportional and derivative. For the 

derivative iterative learning control updating law, 𝑢𝑘(𝑡) contains only a derivative  

according to [27]: 

(6) 𝑢𝑘(𝑡) = 
𝑑

𝑑𝑡 
𝑒𝑘(𝑡), 𝑡 = 0,1, … . , 𝑇  ,     𝑘 = 0,1,2, …. 

Replacing Eqn. (1) into (6) yields the following update law: 

(7) 𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + 
𝑑

𝑑𝑡 
𝑒𝑘(𝑡) 

Likewise, a proportional iterative learning control updating law generates 𝑢𝑘(𝑡) and 

𝑢𝑘+1(𝑡) which is as follows: 

)8) 𝑢𝑘(𝑡) =  𝑒𝑘(𝑡)  

(9) 𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) +  𝑒𝑘(𝑡)        𝑡 = 0,1, … . , 𝑇  ,     𝑘 = 0,1,2, …… 

In equations (6)–(10), 𝑒𝑘(𝑡) is the tracking error between the actual output 𝑦𝑘(𝑡) and the 

desired path 𝑦𝑑(𝑡) at 𝑘th iteration. This can be obtained by: 

(10) 𝑒𝑘(𝑡) ≜ 𝑦𝑑(𝑡) − 𝑦𝑘(𝑡) 

From equations (6) and (8), it can be seen that the way of achieving 𝑢𝑘(𝑡) defines the type 

of iterative learning control law. In the above equation  is the learning gain. Signal 𝑢𝑘(𝑡) is 

the control input at kth iteration and k denotes the number of iteration. Parameter t[0, 𝑡𝑓] 

indicates the time variable, which may be of a discrete or continuous variable.  𝑡𝑓 is the 

known duration of each iteration. Input (u) and output (y) are not known in advance. 

Equations (11) and (12), introduce fractional order iterative learning control of 𝐷 and 𝑃𝐷 

types in the time respectively.  

(11) 𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + 𝑘𝐷
𝑑

𝑑𝑡  
𝑒𝑘(𝑡) 

(12) 𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + 𝑘𝑝𝑒𝑘(𝑡) + 𝑘𝐷
𝑑

𝑑𝑡  
𝑒𝑘(𝑡) 

where  = 0 defines a proportional iterative learning law. Similarly, when  = 1 shows a 

derivative iterative learning law. Frequency domain of the fractional order iterative learning 

controls of (11) and (12) are shown as: 

 (13) 𝑢𝑘+1(𝑠) = 𝑢𝑘(𝑠) + 𝑘𝐷𝑠

 𝐸𝑘(𝑠) 

(14) 𝑢𝑘+1(𝑠) = 𝑢𝑘(𝑠) + 𝑘𝑃 𝐸𝑘(𝑠) + 𝑘𝐷𝑠

 𝐸𝑘(𝑠) 

where 𝐸𝑘(𝑠) is the Laplace transform of the error 𝑒𝑘(𝑡) in (10). In equations (11) and (12), 

the proportional coefficient 𝑘𝑃 and the derivative coefficient 𝑘D are unknown constant 

learning gains that must be appropriately determined. In the current manuscript, the effect 

of choosing  in the interval [0,2] on the convergence of the error in (10) will be 

investigated. 
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4.   ROBOT ARM STRUCTURE AND THE MOTION DYNAMIC 

Robot arms usually perform repetitive operations. It is then meaningful to use benefits 

of past experience(s) in iterative learning control approaches. This improves the response 

and increases the efficiency and accuracy. A single-link robot arm [28] as in Eqn. Error! 

Reference source not found. is used to study the dynamic and to simulate behavior of the 

proposed FOILC.  

(15) ̈(𝑡) =  
1

𝐽
(𝑢(𝑡) − 𝐹(𝑡)) +

1

𝐽
(
1

2
𝑚 +𝑀)𝑔𝑙 𝑠𝑖𝑛 (𝑡) 

where (𝑡) is the position of the robot hand, 𝑢(𝑡) is the applied joint moment (as an input), 

𝐹(𝑡) is the frictional moment, 𝑚 and l are the mass and the length of the robot arm 

respectively. Furthermore M is the mass of blade tip, g is the gravity acceleration and finally, 

J is the joint momenta inertia. The joint inertia and frictional moment are described as 

follows:  

(16) 𝐽 = 𝑀𝑙2 +𝑚𝑙2/3 

(17) 𝐹(𝑡) = {
𝑓+ +𝐵+̇(𝑡)

𝑓− +𝐵−̇(𝑡)
 

where the column friction is assumed [28] as f+ = 8.43Nm and   f− = −8.26Nm and the 

viscous frictional coefficient is B+ = 4.94
Nm

rad
/sec and B− = 3.45

Nm

rad
/sec. Other 

simulation setting are: m = 2 𝑘𝑔, 𝑙 = 0.5 𝑚 and 𝑔 = 9.8 𝑚/𝑠2. Finally, the state vector of 

the nonlinear robot arm system is considered as follows: 

(18) 𝑥 = [𝑥1 𝑥2]𝑇 = [ ̇]
𝑇 

Comparing the system dynamic equations in the following state space format: 

(19) 
𝑥̇ = 𝑓(𝑥) +  𝑔(𝑥)𝑢 

𝑦 = ℎ(𝑥) 

results nonlinear function 𝑓(𝑥) and 𝑔(𝑥) as:  

(20) 

𝑓(𝑥) = (
𝑥2

−
1

𝐽
 (𝑓+𝐵𝑥2)+ 

1

𝐽
(
1

2
𝑚+𝑀)𝑔𝑙 𝑠𝑖𝑛 𝑥1

), 

𝑔(𝑥) = (
0
1

𝐽

),  ℎ(𝑥) = (1
0
). 

The dynamic of the robot arm in Eqn. (15) will be controlled through a state feedback 

linearizing controller in the next section. 

5.   INPUT-STATE FEEDBACK LINEARIZATION CONTROLLER 

A schematic diagram of an input-state feedback linearization technique is illustrated in 

Fig. 2 where a nonlinear controller will be realized in two steps. First, a state transformation 

will be used to convert nonlinear dynamic into a linear one in terms of input-state of the 
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plant as: ż = 𝐴𝑧 + 𝐵𝑣. Some other conventional (and even advanced) controllers  may  be  

used  to make  the  control  aim  possible. It  is primarily necessary to  

Inverse Dynamic

0

z

x

-

Pole-Placement Loop

Linearization Loop

 

Fig. 2: Schematic diagram of the input-state linearization. 

verify if the dynamic can be linearized in terms of input to state variables. This is possible 

if and only if both following conditions are simultaneously satisfied [29]: 

1- Vectors of matrix 𝐺(𝑥) = [𝑔(𝑥), 𝑎𝑑𝑓𝑔(𝑥),  … , 𝑎𝑑𝑓
𝑛−1𝑔(𝑥)] are of full rank.  

2- Distribution of 𝑠𝑝𝑎𝑛[𝑔(𝑥), 𝑎𝑑𝑓𝑔(𝑥),… , 𝑎𝑑𝑓
𝑛−2 𝑔(𝑥)] is involutive.  

In the above enumerated terms, 𝑎𝑑𝑓𝑔(𝑥) denotes the Lie bracket derivative which is defined 

as:  

(21) 𝑎𝑑𝑓𝑔(𝑥) = 𝑔. 𝑓 −𝑓. 𝑔 

The number 𝑛 indicates the relative order (degree) of the system. This eventually means the 

required number of differentiations to get the input to appear, which is found to be  𝑛 = 2 

for the robot arm dynamic. The Jacobian matrix of 𝑓(𝑥) as shown by 𝑓, is achieved as: 

(22) 𝑓 =
𝜕𝑓

𝜕𝑥
 ,     𝑔 =

𝜕𝑔

𝜕𝑥
 

The 𝑛  𝑛  Jacobian matrix consists elements of (𝑓)𝑖𝑗 = ∂𝑓i ∂xj⁄ . In order to show that 

the robot arm system can be fully linearized, both enumerated conditions must be met. By 

evaluating vector fields, matrix 𝐺(𝑥) in the first condition can be achieved as: 

(23) 
𝑎𝑑𝑓𝑔(𝑥) = 𝑔 𝑓 −𝑓 𝑔 =

[
 
 
 −

1

𝐽
1

𝐽2
𝐵
]
 
 
 

 

(24) 𝐺(𝑥) = [𝑔(𝑥), 𝑎𝑑𝑓𝑔(𝑥)] =

[
 
 
 0 −

1

𝐽
1

𝐽

1

𝐽2
𝐵
]
 
 
 

 

The rank of the 𝐺(𝑥) matrix is found 2 (rank(𝐺(𝑥)) = 2). The span of  = span{g} is also 

found involutive. Therefore a state 𝑧 = 𝑧(𝑥) alteration, together with the control 𝑢 =
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(𝑥) + (𝑥)𝑣 transformation, linearize the dynamic in Eqn. (19) in the sense of the input-

state linearization. In this regard, 𝑧(𝑥) must be determined such that: 

(25) {
𝑧1𝑎𝑑𝑓

𝑖𝑔 = 0        𝑖 = 0,… , 𝑛 − 2  

𝑧1𝑎𝑑𝑓
𝑛−1𝑔 ≠ 0                                 

 

Equation (25) immediately yields: 

(26) 
𝜕𝑧1
𝜕𝑥2

= 0,            
𝜕𝑧1
𝜕𝑥1

≠ 0. 

As a result, 𝑧1  must only be a function of 𝑥1 i.e.:  

(27) 𝑧1 = 𝑥1 

Other states can be successively achieved from 𝑧1by: 

(28) 𝑧2 = 𝑧2𝑓 = 𝑥2 

Hence, the input linearizing the dynamic is found as seen in Eqn. (29), together with the 

relevant coefficients in Eqns. (30) and (31). 

(29) 𝑢 = (𝑥) + (𝑥)𝑣 

(30) (𝑥) = −
𝐿𝑓
𝑛𝑧1

𝐿𝑔𝐿𝑓
𝑛−1𝑧1

= −
𝐿𝑓
2𝑧1

𝐿𝑔𝐿𝑓
 𝑧1

 = 𝑓 + 𝐵𝑥2 − (
1

2
𝑚 +𝑀)𝑔𝑙 𝑠𝑖𝑛 𝑥1 

(31) (𝑥) = −
1

𝐿𝑔𝐿𝑓
𝑛−1𝑧1

= 𝐽 

Ultimately input (𝑢)-state (𝑥1, 𝑥2) transformation linearizes the dynamic as follows:  

(32) {
𝑧̇1 = 𝑧2
𝑧̇2 = 𝑣 
𝑦 = 𝑧1

 

This eventually means: 

(33) {
𝑧̇ = 𝐴𝑧 + 𝐵𝑣
𝑦 = 𝐶𝑧          

 

where matrices A, B, and C in Eqn. (33) are as: 

(34) [
𝑧̇1
𝑧̇2
] = [

0 1
0 0

] [
𝑧1
𝑧2
] + [

0
1
] 𝑣 

(35) 𝑦 = [1 0] [
𝑧1
𝑧2
] 

In conclusion, the input-state transformation in Eqns. (26) to (31) converts the stability 

analysis of the nonlinear dynamic (15) using the main control input u to the stability analysis 

of the new dynamic (32) via the new input v. Since the new dynamic is linear and 

controllable, the following pole placement technique may be used to generate v.  
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(36) 𝑣 = −𝐾1𝑧1 −𝐾2𝑧2 

It is seen that the linear state feedback control is capable of arbitrarily placing poles by 

choosing proper feedback gains. 

6.   CONVERGENCE ANALYSIS OF THE PROPOSED 

FRACTIONAL ORDER CONTROLLER 

In this section, convergence analysis of the proposed PD-type ILC is presented. For 

this system, input is 𝑢(𝑡) where the output is 𝑦(𝑡). It is assumed that the linearized plant 

GC(s), is internally BIBO stable. It is assumed that a unique input can be found such that 

the desired output trajectory   𝑦𝑑(𝑡) in 𝑡 [0, 𝑇] can be produced: 

(37) 𝑦𝑑(𝑡) = 𝐺𝑐𝑢𝑑(𝑡) 

Using (12) to (14), a PD-type ILC update law can be found as in the following:  

where  is defined as follows: 

(39)  = 1− 𝑘𝑃GC(s) − 𝑘Ds
GC(s) 

It recursively yields:  

 

 

)40) 

 

 

 

𝑢1(𝑠) = 𝑢0(𝑠)+ (𝑘𝑃 + 𝑘Ds
)GC(s)𝑢𝑑(𝑠) 

𝑢2(𝑠) = 𝑢0(𝑠)
2 +

1−2

1− 
(𝑘𝑃 + 𝑘Ds

)  GC(s)𝑢𝑑(𝑠) 

𝑢3(𝑠) = 𝑢0(𝑠)
3 +

1−3

1− 
(𝑘𝑃 + 𝑘𝐷𝑠

) 𝐺𝐶(𝑠)𝑢𝑑(𝑠) 

⋮ 

𝑢𝑘+1(𝑠) = 𝑢0(𝑠)
𝑘+1 +

    1−𝑘+1

1−
(𝑘𝑃 + 𝑘𝐷𝑠

) 𝐺𝐶(𝑠)𝑢𝑑(𝑠) 

In Eqn. (40), if || 1  then: 

(41) 𝑙𝑖𝑚
𝑘→∞

(𝑢𝑘+1(𝑠))
 
= 𝑙𝑖𝑚

𝑘→∞
( 𝑢0(𝑠)

𝑘+1 + (1 − 𝑘+1)𝑢𝑑(𝑠)) = 𝑢𝑑(𝑠) 

Thus, the convergence condition of the proposed learning law may be stated as follows: 

(42) |1 − 𝑘𝑃𝐺𝐶(𝑗) − 𝑘𝐷(𝑗)
𝐺𝐶(𝑗)|1,      

If , 𝑘𝑃 and 𝑘D are chosen such that the condition in Eqn. (42) is met, the proposed D-type 

ILC is convergent and the error asymptotically approaches zero. i.e:  

(43) 𝑙𝑖𝑚
𝑘→∞

(𝑦𝑑(𝑠) − 𝑦𝑘(𝑠))
 
= 0   

(38) 

𝑢𝑘+1(𝑠) = 𝑢𝑘(𝑠) + 𝑘𝑃 (𝑦𝑑(𝑠) − 𝑦𝑘(𝑠)) + 𝑘Ds

 
(𝑦𝑑(𝑠) − 𝑦𝑘(𝑠))                                                                

                = 𝑢𝑘(𝑠) + 𝑘𝑃 𝐺𝐶(𝑠)(𝑢𝑑(𝑠) −  𝑢𝑘(𝑠)) + 𝑘𝐷𝑠

 𝐺𝐶(𝑠)(𝑢𝑑(𝑠) − 𝑢𝑘(𝑠))                                                         

                = (1 − 𝑘𝑃𝐺𝐶(𝑠) − 𝑘𝐷𝑠
𝐺𝐶(𝑠))𝑢𝑘(𝑠) + (𝑘𝑃 + 𝑘Ds

)GC(s)𝑢𝑑(𝑠) 
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7.   OPTIMIZATION OF FOLIC PERFORMANCE USING THE BBO 

ALGORITHM 

It is observed in the previous section that if , 𝑘𝑃 , and 𝑘D are properly chosen such that 

(42) is satisfied, then the proposed D-type ILC is convergent. In this section, a 

biogeography-based optimization algorithm [19] will be used to tune those gain parameters 

by defining a criterion. A BBO algorithm is an evolutionary population-based technique that 

is inspired by animal and bird migrations to islands. This method has some common 

properties with other biology-based algorithms such as genetic and suspended particle 

swarms.  

Appropriate islands are shown by a habitat suitability index (HSI) to spot the merit for 

the life of a biological species is. Factors such as the rainfall, vegetative diversity, land area, 

temperature, or ground determine properties of HSI. The suitability index variables (SIVs) 

are other factors to be considered as habitat independent variables while the HSIs are 

considered as habitat-dependent variables. 

Many species live in habitats with high HSI, thus the species emigration rate to the 

adjacent habitat is high whilst the immigration rate is low. Habitats with low HSI have few 

species that define a high immigration rate and the lower emigration rate. An example of 

species abundance in a habitat is depicted in Fig. 3.  

Number of species
s0 smax

R
at

e

E

I Immigration

l 
Emigration

m  

 

Fig. 3: Species model of a single habitat based on [19]. 

The emigration rate (m) and immigration rate (l) are functions of the numbers of species 

in the habitats. The maximum rate of emigration E, occurs when the habitat hosts a 

maximum number of species that it can support. Whereas the maximum immigration rate to 

habitat I occurs when there are zero species in the habitat. The species balance number is 

the point where the emigration and immigration rates are equal (denoted by S0). Immigration 

and emigration rates are functions of the number of species living in a habitat. They can be 

respectively evaluated by l𝑆 and  m
𝑆
, which are as follows:  

(44) 
l𝑆 = 𝐼 {(1 −

𝑆

𝑆𝑚𝑎𝑥
)} 

(45) 
m
𝑆
= 𝐸(

𝑆

𝑆𝑚𝑎𝑥
) 

In a specific case for E=I, immigration and emigration rates are as follows: 
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(46) m
𝑆
+ l𝑆 = 𝐸   

where maximum allowable rate of immigration is E, S is the number of Sth personal species. 

The maximum number of species in habitat is shown by 𝑆max  in which the immigration rate 

is zero and the maximum allowable emigration rate (E) occurs. BBO concept is based on 

migration and mutation which are dealt in the following.  

7.1  Migration Strategy 

The migration action in the biogeography algorithm is similar to the recombination 

operator in the genetic and evolutionary algorithm. This is used to modify non-elite 

responses. Migration can be described as a mapping of 𝐻𝑗(𝑆𝐼𝑉) to 𝐻𝑖(𝑆𝐼𝑉)(𝐻𝑗(𝑆𝐼𝑉) →

𝐻𝑖(𝑆𝐼𝑉)) [30]. It is assumed that there are N habitats where 𝐻𝑖 is the one with the 

immigration rate l𝑖. 𝐻𝑗  is the next habitat with the emigration rate m
𝑗
. An extended 

migration operator of the standard BBO operator is blended migration which is as follows 

[30]: 

(47) 𝐻𝑖(𝑆𝐼𝑉)  𝐻𝑖(𝑆𝐼𝑉) + (1 − )𝐻𝑗(𝑆𝐼𝑉) 

In Eqn. (47),  is a real number between 0 and 1 that can be chosen either at random or by 

the user.  

7.2  The Mutation Operator  

Sudden events lead to deviation of the species number from their mean (balance) value 

and also sudden changes of habitat HSI. In BBO, this is shown by SIV mutation. BBO 

algorithm may not lead to an optimal point or may diverge from an optimal point. However, 

after migration, the mutation operator has to be applied on the achievement so far to prevent 

diversion (or getting stuck at a point). The main aim of the mutation is to create diversity in 

the solution set or to increase the habitat among the population [19, 31]. The probability of 

the species number 𝑃S, denotes that the habitat involves exactly S species. 𝑃S is updated 

from  𝑡 to (𝑡 + 𝑡)  using l𝑠 and m
𝑠
 according to: 

(48) 𝑃𝑠(𝑡 + 𝑡) = 𝑃𝑠(𝑡) + (1 − l𝑠𝑡 − m
𝑠
𝑡) + 𝑃𝑠−1l𝑠−1𝑡 + 𝑃𝑠+1m𝑠+1𝑡 

where Eqn. (48) is used to express the mutation rate. Assume that a habitat with S species 

is determined to be mutated; change the chosen variable (SIV) based on the existence 

probability 𝑃S. The mutation rate 𝑚(𝑠) is calculated as follows using the probability of the 

number of species in habitat 𝑃S: 

(49) 𝑚(𝑠) = 𝑚𝑚𝑎𝑥(1 −
𝑃𝑠
𝑃𝑚𝑎𝑥

) 

where 𝑚𝑚𝑎𝑥  is determined by the designer and 𝑃𝑚𝑎𝑥 is the maximum probable number of 

species. Number  𝑃S  shows the existence of the probability of species S in the habitat.  

7.3  The Procedure and the Cost Function 

To achieve an optimal set of FOILC coefficients, the prescribed BBO optimization 

algorithm (in section 3) is used. Each SIVs (suitability index variables) of PD-type ILC 

controller consists of three parameters , 𝑘𝑃, and kD. Similarly, each SIVs of D-type ILC 

controller consists of two parameters:  and kD. To determine the HSI or the cost function 

for each SIV, perform the following steps: 
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- First, the iterative learning control algorithm begins with an initial value of SIV. 

- At the end of the iteration in the ILC algorithm, evaluate the error in terms of the integral 

of time multiplied by the square value of the error (ITSE). The last term denotes the cost 

function, which is defined as follows:   

(50) 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∫ 𝑡. 𝑒2(𝑡)
𝑡sim 

 0
. dt = ∫ 𝑡. (𝑦𝑑(𝑡) − 𝑦𝑘(𝑡))

2𝑡sim 

0
. dt 

- The procedure continues until the stop criterion is met. The criteria will be given either 

in terms of the number of the iterations or the relative discrepancy of successive cost 

functions. 

In Eqn. (50), tsim is the previously described duration of the simulation time. In brief, the 

extended BBO algorithm diagram is depicted in Fig. 4.  

Start

- Choose BBO parameters such 

as I,m,m,l,  ,E,mmax,MaxIt, .

- Generate each habitat SIVs random to 

determine amount of α, Kp and KD. Then make 

the habitat matrix using equation (50).

Evaluate, arrange and set the iteration counter 

g=0.

g=g+1

- For each habitat such as i 

(HSIi), evaluate  λi and µi 

- Migrate  SIVs from non-elite 

islands, using equation(47)

- Perform probable mutation on non-

elite islands,  using  equation(49)

- Evaluated new sets of results 

according to the criteria

- Combine the old population and the migrated 

population to generate new population

Is

g  MaxIt

Yes

No

- Show the best 

solution

End

 

Fig. 4: The prescribed BBO flowchart. 
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8.   SIMULATION 

In this section, a brief description of the desired trajectory, together with the feedback 

linearization technique, will be given. Thereafter, the proposed fractional order iterative 

learning control updating law of D-type ILC and PD-type ILC is used to verify the 

capability of the proposed controller. The fractional controller is then used to manipulate 

the single-link robot arm. Thereafter, the BBO algorithm is used to optimize coefficients of 

the fractional order ILC controller.  

The desired output trajectory of the robot arm is depicted in Fig. 5 [8], which is expressed 

as follows:  

(51) 𝑑(𝑡)  =  𝑏 + (𝑏 − 𝑓)(15𝑟
4 − 6𝑟5 − 10𝑟3) 

where: 

(52) 𝑟 =
𝑡

𝑡𝑓−𝑡0
 ,  and    tsim =𝑡𝑓 − 𝑡0. 

During simulation, the angular position of the robot arm is assumed 𝑏 = 0 and 𝑓 = 90 

where 𝑡0 = 0 and 𝑡𝑓 = 1. Finally, the state feedback gain vector 𝐾 = [2, 3] locates desired 

poles of the closed loop system in [−1,−2]. 

 

Fig. 5: Desired output trajectory 𝒅(𝒕) = 𝒚𝒅(𝒕). 

The proposed procedure is performed according to the following steps: 

- First, the nonlinear dynamic of the robot hand in Eqn. (15) is linearized as 

schematically shown in Fig. 2.  

- The closed-loop poles are placed at the desired location, using the state feedback 

scheme through the feedback gain vector 𝐾 = [𝐾1 𝐾2]. This essentially stabilizes the 

complete system.  

- The proposed ILC (13), as shown in Fig. 1, will be used to generate the control effort 

via an updating law in Eqn. (13) or Eqn. (14) where applicable. 
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- Ultimately, the BBO algorithm will be used to tune parameters of the fractional ILC. 

8.1  Fractional-Type ILC 

The initial condition of the ILC at any iteration is set to zero. Moreover, the angular 

velocity is assumed accessible. For  = 1 in (13), the best choice for  is 𝐽 that is determined 

by (16) [32]. In the meantime, 'N integer' is used to implement the fractional order 

controllers in MATLAB®. Fractional order derivative S, R is calculated using the 'nid' 

function in the "CRONE" approximation.   

The gain k in the 'nid' function is evaluated as the leaning gain  or 𝑘D, which is equal 

to k = J. The bandwidth is [0.01 100] rad/s, the number of zeros and poles are assumed to 

be "n = 5", the applied method is "expansion = cf" and the approximation style is set on 

"decomposition = all". The above setting leads to achieve the error 𝑒m (𝑒m =

supt[0,1]( d(t) − (t))
2
) to be depicted as in Fig. 6, for 40 iterations. The D-type ILC 

updating law is used generate the process input at k+1th iteration.  

 

Fig. 6: Maximum square error (MSE) of the tracking versus the iteration number, 

Comparison of D-type ILC with different . 

In Fig. 6, a D-type ILC updating law is used to investigate performance of the integer and 

fractional iterative learning control. The simulation results are depicted for the square of the 

tracking error versus the iteration number for different value of . When  = 0, the state 

variables are only used to update the ILC. In this case, the update law is of a P-type ILC. In 

contradiction, for  = 1, the derivative of state variables are used, which involves angular 

acceleration. This means the updating law is of a D-type ILC. Figure 7 shows the required 

control signal when the ILC has experienced 40 iterations. These control efforts cause the 

output of D-type ILC as seen in Fig. 8 for different values of , as illustrated.  
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Fig. 7:  The control effort vs. different values of   after 40 iterations using the 

updating law of D-type ILC. 

 

Fig. 8: Desired and the output response of the D-type ILC update law, for different 

values of   and k=40. 

From Fig. 8, it can be seen that after 40 iterations, the fractional type of  =
{1, 1.25, 1.5, 1.75} provides perfect convergence. In contrast, lower   i.e.  =
{0, 0.25, 0.5, 0.75} means that the number of tries must be increased. If the precision is 

reduced, meaning the stop criterion of the ILC is chosen as 𝑒m < 0.01, the ILC converges 

after 16 iterations as seen in Fig. 10. 
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Fig. 9: Maximum absolute angular tracking errors versus the iteration number, 

Comparison of D-type ILC with different , with respect to iteration number 16. 

 

Fig. 10: The control effort for different values of   when 𝑒m < 0.01, using updating 

law D-type ILC and k=16. 

From Fig. 10, it can be seen that  = 1.75 provides rapid convergence with respect to other 

's. To illustrate the performance of the PD-type ILC updating law, Eqn. (Error! 

Reference source not found. is used to obtain the process input at the k+1st iteration. 

During simulation, the value of the learning gains are chosen as 𝑘𝑃 = 𝐽/2 and 𝑘𝑑 = 𝐽, 
whereas the other settings are kept the same as with the D-type ILC law. The trend of the 
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error, in terms of maximum absolute tracking error, is depicted in Fig. 11 for different values 

of . 

 

Fig. 11: Maximum absolute angular tracking errors versus the iteration number, 

comparison of PD-type ILC with different . 

 

Fig. 12: The control effort for different values of , by using updating law PD-type 

ILC and k=40. 

Time response of actual output y to desired output yd using PD-type ILC updating law is 

depicted in Fig. 11 during 40 iterations. It can be seen that for some value of , the PD-

type ILC updating law can provide the convergence. The obtained control input signal, using 

PD-type ILC updating law for different value of , is shown in Fig. 12 for 40 iterations. 
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From Fig. 13, it can be seen that the PD-type ILC updating law (for =1.75 and considering 

the stop criterion 𝑒m < 0.01) convergence is achieved with fewer iterations e.g. 14 

iterations. 

8.2  The BBO Tuned Fractional Types ILC 

In this regard, FOILC coefficients are adjusted in collaboration with the previously 

described BBO algorithm. Parameters of the BBO are set as follows: 

The maximum iteration is set to 10, the population size to 50, the elite island as 5, the 

species dimension (SIV) is 3, the maximum mutation rate is mmax= 0.05, and in (44) =0.9 

and finally the maximum rate of Emigration and Immigration are set to E=1 and I=1 

respectively.  

Figure 14 shows a uniform convergence of the BBO algorithm when the fitness is 

gradually decreased. This BBO setting ends with coefficients of the FOILC, as in Table. 1. 

The time behavior of the error of both PD and D-type ILC is illustrated in Fig. 15. The 

required control effort of using both types of fractional order learning law is depicted in Fig. 

16. The results after 10 iterations of the BBO algorithm for BBO-D-type ILC and BBO-

PD-type ILC are illustrated in Fig. 17. 

Table. 2: Parameter values obtained from the BBO algorithm for 

performance comparison between PD-type ILC and D-type ILC. 

FOILC kp kD α JITSE 

BBO – D type - 3.3712 1.5886 2.0172×10-9 

BBO - PD type 3.179 1.808 1.7302 1.384×10-10 

 

Fig. 14: Maximum absolute angular tracking errors versus the iteration number,  

for D-type ILC and PD-type ILC using the BBO algorithm. 
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In comparison with Fig. 15, it can be seen that the convergence speed is increased when 

FOILC coefficients are tuned by the BBO algorithm. Meanwhile, Fig. 9 confirms that the 

maximum convergence speed for D-type ILC occurs in 16 iterations. Whereas using the 

BBO adjusted D-type ILC much improves the convergence rate by a factor of 3 times i.e. 

5 iterations, as seen in Fig. 14. A similar result is achieved for PD-type ILC when the 

maximum convergence speed occurs at iteration 14 (Fig. 11), whereas the BBO designed 

PD-type ILC occurs in 4 iterations (Fig. 14). This confirms a huge improvement of the 

convergence speed when the BBO is used to optimally tune parameters of the ILC.  

 

Fig. 15: Maximum absolute angular tracking errors versus the iteration number, for 

D-type ILC and PD-type ILC using the BBO algorithm. 

 

Fig. 16: The control signal for different values of , by using updating laws BBO-D-type 

ILC  and BBO-PD-type ILC for  k=10. 
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Fig. 17: The desired output trajectory of the robot arm of BBO-D-type ILC and  

BBO-PD-type ILC updating laws, for k=10 and different values of . 

9.  CONCLUSION 

In this paper, by combining fractional order calculus and an ILC controller, the 

performance of two types of updating laws, called PD-type ILC and D-type ILC, are 

investigated. Necessary conditions of convergence for the proposed PD-type ILC for the 

nonlinear robot arm are presented for the first time. A feedback linearization approach is 

used together with a state feedback to arbitrarily assign the poles of the linearized system.  

A simulation is carried out on a feedback-linearized robot arm. A BBO optimization 

algorithm is proposed to adjust coefficients of the FOILC. The simulation result illustrates 

that optimal tuning of FOILC coefficients increases the convergence speed. The simulation 

results confirm the improvement of convergence speed for both types of the proposed PD 

and D types ILC learning laws. 
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