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ABSTRACT: In this paper, we consider the problem of analytical continuation of
solutions to the system of equations of thermoelasticity in a bounded domain. That is, we
make a detailed analysis of the Cauchy problem regarding the values of thermoelasticity
in bounded regions and the associated values of their strains on a part of the boundary of
this domain.

ABSTRAK: Di dalam kajian ini, kami menyelidiki masalah keselanjaran analitik bagi
penyelesaian-penyelesaian terhadap sistem persamaan-persamaan termoelastik di dalam
domain bersempadan berdasarkan nilai-nilainya dan nilai tegasannya bagi sebahagian
daripada sempadan domain tersebut, iaitu kami mengkaji masalah Cauchy.
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1. INTRODUCTION

In this paper, we consider the problem of analytical continuation of the solution of the
system equations of the thermoelasticity in spacious bounded domain from its values and
values of its strains on part of the boundary of this domain, i.e., we study the Cauchy
problem. Since, in many actual problems, either a part of the boundary is inaccessible for
measurement of displacement and tensions or only some integral characteristics are
available. Therefore, it is necessary to consider the problem of continuation for the
solution of elasticity system of equations to the domain by values of the solutions and
normal derivatives in the part of boundary of domain.

The system of equations of thermoelasticity is elliptic. Therefore, the Cauchy problem
for this system is ill-posed. For ill-posed problems, one does not prove the existence
theorem: the existence is assumed a priori. Moreover, the solution is assumed to belong to
some given subset of the function space, usually a compact one [1]. The uniqueness of the
solution follows from the general Holmgren theorem [2]. On establishing uniqueness in
the article studio of ill-posed problems, one comes across important questions concerning
the derivation of estimates of conditional stability and the construction of regularizing
operators. Our aim is to construct an approximate solution using the Carleman function
method.

Let x = (x4, ..... , X and y = (yy, -.... , ¥ be points of the n-dimensional Euclidean
space E", D a bounded simply connected domain in E", with piecewise-smooth boundary
consisting of a piece Y. of the plane y, = 0 and a smooth surface S lying in the half-space
V> 0.
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Suppose U (x) = (u,(x),..., u, (x),u, (x)) is a vector function which satisfies the

following system of equations of thermoelasticity in D [3]:

B(d_,w)U(x)=0, ey

where B(ax,a)):HBkj(ax,(O)

(n+Dx(n+1)

2

ox,0x

J

and B, (0,,0) =0, (UA+ p@*)+(A+ 1)

k,j=1,...,n,

0
Bk(n+l)(ax’w)=_7/ , k=1,...,n,

'x(n+l)

. d ,
B(n+l)j(ax’a))=la)ﬂg, ]=1,...,n,

J

i@
B(n+l)(n+1) (ax ) a)) =A+ ;’

5ij is the Kronecker delta, w is the frequency of oscillation and A, u, p, @ its
coefficients which characterize the medium, satisfying the conditions

u>0,31+2u>0, p>0, >0, Z>0.
n

The system (1) may be written in the following manner:
HAu + (A + ) graddivu — ygradv + pa’u =0

Av+%)v+ia)77divu =0,

where U (x) = (u(x),v(x)) -

This system is elliptic, since, its characteristic matrix is

A+WE+HYE  (@rwés A (@rpés 0

2= @rwEsE ArwE+YE A (@rméd, 0|
A A A A A
0 0 A 0 1

and for arbitrary f = (fl,..., é:n) with real components satisfying the conditions
2&2 =1, we have
i=1

dety(§) = 1’ (A+ ) #0.

Statement of the problem. Find a regular solution U of the system (1) in the domain D
by using its Cauchy data on the surface S:
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Uy)=f(), RO, v(y)U(y)=g(y), yeS, (2)

where R(E))_,V(y)) is the stress operator, i.e.,

(-
RO, V) =[Ry@ VD = |[ 777
00 oo »
r=7@,=[1,0,v],.
T.(d ,,v)=/1vki+,uv.(y)i+(,u+/l)é‘k.7, k,j=1,..,n,
i dy, = 7 9y, Tv(y)

v(y)=,(y),....v,(y)) is the unit outward normal vector on 0D at a point y,

f=(.K.fr.) g=(g,K,g, ) aregiven continuous vector functions on S.

2. CONSTRUCTION OF THE CARLEMAN MATRIX AND
APPROXIMATE SOLUTION FOR THE CAP TYPE DOMAIN

It is well known that any regular solution U(x) of the system (1) is specified by the
formula

W(x)=[ (Px—y. 0RO .V (y)}-
—{RQ@,.vi)P(y-x.0)} U(y))ds,, xe D, 3)

where the symbol “— means the operation of transposition, ¥ is the matrix of the
fundamental solutions for the system of equations of steady-state oscillations of
thermoelasticity: given by

¥ (x,0) =|¥, (x,0)

(n+D)x(n+1)”

: S, 9
¥, (x0) = Y[(1-8,,.)1-8,,., ){ S —a J+

27u " Ox, ox,
) 0 0 exp(id, | x 1)
+ ,Bz [la)nak(m-l) (1- 5j(n+1) )gj - 75;‘(n+1) (1- 5k(n+1> ) aka + 6k(n+l)5j(n+1) 7 ]T ’
o, = (_1) (1_lw07 /172(5”:—52[)— 53[ 7> l=1,2,3; ia’] =O,
2m(A+2u)(A, - A) 2P0 =
(_1) (5” i 521) B =1, ’3, iﬁ] = 07

= =1,2,3;
27(A+2u) (& - £)

_ (_1)](/112 _klz)(é‘ll +521)
T 2B -A)

3
L 1=1,23; >y,=0, k! = p@’ (A+2u)7",
=1
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P (x,0) =T1¥, (x, 0)] P, (x,0) =Y, (-x,0),

+1)x(n+1) ?
[IE———
R@,.v(y) = e
00 ... 2
v

Definition. By the Carleman matrix of the problem (1),(2) we mean an (n+1)X(n+1)
matrix [I(y,x,w,7) depending on the two points y,x and a positive numerical number
parameter 7 satisfying the following two conditions:

DIy, x,0,7) =¥ (x—y,w)+G(y,x,7),

where the matrix G(y,x, 7) satisfies system (1) with respect to the variable y on D, and
Y(y,x) is a matrix of the fundamental solutions of system (1);

2) [ (T(y.x,@.7) 1+ R@, WII(y,x,0,7) Nds, < &(r),

where &(7) >0, as 7-—oo; here |II| is the Euclidean norm of the matrix
1 1
0= 1T Il ie e ) In particular 2 )
- ij N(n+hx(n+) 2 " > |ITl= ZH” . p > U |= ZMW .
i,j=1 m=1
From the definition of Carleman matrix it follows that.

Theorem 1. Any regular solution U(x) of system (1) in the domain D is specified by
the formula

2U(x) = [ (M(y, x, @, D{R@,, VU (y)} -
—{R@, VI(y,x,@,7)}U(y)ds,, xeD, 4)

where I1(y,x, ®, 7) is the Carleman matrix.

Using this matrix, one can easily conclude the estimated stability of solution of the
problem (1), (2) and also indicate effective method decision this problem as in [4 - 6].

With a view to construct an approximate solution of the problem (1), (2) we construct
the following matrix:

M(y, x,0) =TT, (y,x, ®) (5)

(n+Dx(n+1)

IT, ( ) i[(l o HY1-=6. ) J o A +
Y, X, W) = T Yk T Y| A Yu _a1 N
Y ¥ I=1 (e st 27[,[1 axkaxj

0x o0x

J

: J d
+ ﬁ/ [l m5k(n+1) (1- 5j(n+l))7 - 7/5j(n+1) (1- 5k(n+l))j + §k(n+l)5j(n+l)7/l ]CI)(y, X, kl ),

where

C,K(x )P(y.x.k) = I:Im{ K(ilu +5+7,) } y (k) ©

iNut+s+y —x |Jut+s’
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w(ku) = wly(ku), n=2m, m=1, J,(u)-Bessel's function of order zero,
cosku, n=2m+1, m=>1,
s = (yl _'xl)2 +"'+(yn—l _'xnfl)2
and
¢, =2rc, ={(—1)m -2:"(n—2)7m)n (m-2)!, n=2m
(-1)" 27" (n-2) 7w, (m—-1)!, n=2m+1.

K(w),0 =u + iv (u, v are real), is an entire function taking real values on the real axis
and satisfying the conditions:

K (u) # oo for ‘u‘ <o, Ku)#0,

suplexpv‘lmk‘Km(a)) l=M(p,u)<oo, p=0,..,m, ucR".

v1

The following theorem was proved in [7].
Lemma 1. For function ®(y,x,k) the following formula is valid
C ®(y,x,k)=¢ (ikr)+g, (y,x,k), r=ly-xl,

where @ - are fundamental solutions of the Helmholtz equation, g.(0xk) is a

regular function that is defined for all y and x satisfies the Helmholtz equation:
A ))g,—k’g, =0.

In (6) we put K (@) = exp(7aw) . Then
D(y,x.k) =P, (y-x.k),
m—1 . ) _
C.P (y-xk) =2 [Tim Xpr(ii’ +5+y, ~x,) |yl
i T i es ey, —x, s

m—1 . 2
=exp7r(y, —X,) J {— costvu’ +a’ + (y,— xn)smrzuﬂ}//(ku)du, (7N

nfl".
ds" 0 u +s

, od
P (y—xk)= BTT .

’ am—l . . 5 +
qu)r(y_x,k)zexpf(yn_x J‘ SlnT\/ﬁ

)
J —
os"T Y Jut +s

v, (k,s),

v (ku)du,

m—1

as m—1

C, @ (y—xk)=expr(y, —x,)

0, T<k

W, =1{cos4/s(t’ —k?), n=2m
%ﬂ]o(wls(rz—kz)), T>k
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Now, in formulas (5) and (6) we set ®(y,x,k) =P _(y—x,k) and construct the
matrix [I(y, x,w) =11(y,x, ®,7)
From Lemma 1 we obtain,

Lemma 2. The matrix [1(y,x,w,7) given by (5) and (6) is Carleman's matrix for
problem (1), (2).

Indeed by (5), (6) and Lemma 1 we have
II(y,x,0,7) =¥Y(y,x,w)+G(y,x,7),

where

9

G(y,x,7) = Hij (y,x,7)

G, ()= 318, )18, 25, -0 |1
Ay, x,7)= T Yran T Yin w
Y X = (n+1) J(n+l) 27U axkaxj
. J 9
+ 5| iond,,.,(1-6,,.,) Y Y0 iy (1= 6 ) o +

+5,(("“)5].(”“)7,]gn(y,x,k,,f), k,j=1,.,n+1.

By a straightforward calculation, we can verify that the matrix G(y,x, 7) satisfies the
system (1) with respect to the variable y everywhere in D. By using (5), (6) and (7) we
obtain

_LD\S(I (y,x,@,7) 1 +1 R@ ,,VII(y,x,®,7) |),ds, < C (x)T" exp(-7x,), (8)
Where C(x) is a bounded function inside of D.

Let us set

2U (x)= L(H(y,x, @,7){R( .U (y)} - {R(® LIy, x,0,7)} U(y))ds, . )

The following theorem holds.
Theorem 2. Let U(x) be a regular solution of the system (1) in D such that
|U(y)|+|R(ay,V)U(y)ISM,ye oD\S. (10)

Then for 7 >1 the following estimate is valid:

lU(y)=U,(y)I< MC,(x)t" exp(-Tx,).

By formulas (4) and (9) we have

21U -U, (0= [ ([1(3,x0,70)(R@, MU} ~(R@, WI(y,x0.7)} U(y)ds,.

oD\S

Now on the basis of (8) and (10) we obtain the required estimate.

Next we write out a result that allows us to calculate U(x) approximately if, instead of
U(y) and R(d ,v)U(y), its continuous approximations f,(y) and g,(y) are given on

the surface S:
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max | £ (3) = f;(2) 1+ max |R@,V)U ()= g,(3)I<8, 0< <L, an

We define a function U_;(x) by setting

20, (x) = [y, %,0,7)8, ()~ {R@, Ty, x5, 0.0) f,(y)ds, (12)
where
T= iolnM, x! =maxx,, x, >0.

X o D

n

Then the following theorem holds:

Theorem 3. Let U(x) be a regular solution of the system (1) in D satisfying the
condition (10). Then the following estimate is valid:

X
n

lU(x)-U._;(x)I< C3(x)5x(”)[ln1‘;j , xeD.

From all of the above results we immediately obtain a stability estimate.

Theorem 4. Let U(x) be a regular solution of the system (1) in D satisfying the
conditions:

lU(y)I+IR@ ,,VU(y)I<M,yedD\S

and

|U(y)|+|R(ay,V)U(y) <0, 0<od<l1, yeS.
Then

IU(x)I=C, (x)é‘j[”) (ln(ﬂg)j

ds ., C isaconstant depending on 4, u, .

y

where ¢ (x) = C’LD =

Corollary 1. The limits
imU. () =U), limU.;(x)=U(x)

T—o0

hold uniformly on each compact subset of D.

3. REGULARIZATION OF SOLUTION OF THE PROBLEM (1), (2)
FOR A CONE TYPE DOMAIN

Let x=(x,,K ,x,) and y =(y,K,y,) bepointsin E", D  be a bounded simply
connected domain in E" whose boundary consists of a cone surface

. — 2 2 2
X a =1,y,0 =Y, +K+y .

n?

T
T =te—.,y >0, p>1
P g2p Vo P

and a smooth surface S lying in the cone. Assume x, =(0,...0,x,)€ D,.
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We construct Carleman matrix. In formula (5), (6) we set
K =E,[t(w-x,)] >0,p>1.

Then

DP(y,x,k)=P_(y—x,k), k>0

g [im E, (z(ivu* +s+y, —x)) |w(ku)du

Co (y—xk)= (13)
ds iNu’+s+y —x, Nu® +s

m—1

c1>’,(y—x,k):acpf.
o7

m—1

j:lm{Ep [f(im +y, - x]}l/:/%t

Where E,(w) is Mittag-Loffer's entire function [8]. For the functions & _(y — x,k)
hold Lemma 1 and Lemma 2.

, d
CPd (y—xk)=
n T(y ) asm—l

Further, we may show similar estimate for U, (x) and Uy (x) (in cone case) defined
in (9) and (12), as Theorems 1, 2, 3, and 4.

For the simplicity let us consider 7 = 3, since the other cases are considered analogously.

Suppose that D, is a bounded simple connected domain in E’ with boundary
consisting of part )’ of the surface of the cone

T
Y +y, =T, ¥:, Tp=tg%, p>1, y, >0,

and of a smooth part of the surface S lay inside the cone. Assume x, = (0,0,x,)€ D, .

We construct Carleman’s matrix. In formulas (5), (6) we take
1

1 . E (77w) cos kudu (14)

Im )
] '[0 iNu>+s+y,—x, Nu'+s

AT’E (77 x,)

D (y,x,k)=

where w = ivu’ + s+ ¥, . For the functions & _(y,x,k) holds Lemma I.

It follows from the properties of E,(w) that for y€ X and 0 <u <oo the function
® _(y,x,k) defined by (13) its gradient and the second partial derivatives

0°® _(y,x,k

9wk i 10a,
dy, 9y,

tends to zero as 7 — oo, for a fixed xe Dp.

Then from (5) we find that the matrix TII(y,x,@w,7) and its stresses
R ,,v)II(y,x,w,7) also converge to zero as 7 — oo forall y € X, ie., II(y,X,,7) is

the Carleman matrix for the domain D , and the part Y. of the boundary.
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If U(x) is a regular solution of the system (1) then the following integral formula

W =] [(y,x@ )R, VUM~ {RO,. VI, 0,0} Uy)ds,.
P

holds. For x€ D, we denote by U _(x) the following:

2U,(x) = [([(y.x,@.0){R@, VU ()}~ (R@, WI(y.x,@.7)} U(y)ds,. (15)
Then the following theorem holds.

Theorem 5. Let U(x) be a regular solution of the system (1) in D, such that
lU(y)I+1R@ ,WVU(y) <M, ye X (16)
Then for 7 >1 the following estimate is valid:

|U(x,)=U.(x,) < MC,(x,)7’ exp(—7x7),

where x, =(0,0,x,)e D,, x,>0,
1

C,(x)= CﬂJ;Fdsy, r,=ly-x,1, C,—constant.
0

Let us take continuous approximations f5(y) and gs(y) of U(y) and R ,v)U(y),

respectively, i.e.,

max LU (y)— f5(»)] +max IR, ., VU (y)—g;(y)I£d, 0<d<1
and define the following function

2U,,(0) = [y, %.0.0)8,(») ~(R@ . WIL(y,x,0.0)) f,(»)ds,,

Then the following theorem holds.
Theorem 6. Let U(x) be a regular solution of the system (1) in the domain D,
satisfying the condition (16), then

1U(x,)=U,,;(x,) < Cp(xo)5q(ln]‘;)3,
o M ‘
where 7 = (TpR) pl”?a R? = max Re(l\/;+ y})p,

b 1 1
q= (Es)p’ Cp (X()) = Cp ,L|:3+ 4:|ds,v'

0 0
The theorem is proved analogously as Theorems 3 and 4.

Corollary 2. The limits
im0, (1) = U, 1imU,(x) =U()

T—00

hold uniformly on each compact subset of D .
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