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ABSTRACT: The study of the transient thermal stress problem for a periodic edge cracks 
in an elastic plate on an elastic foundations is investigated. This study may also be 
applied for circumferentially periodic cracked hollow cylinder under transient thermal 
stresses. Based on previous studies, the cylindrical shell may be modeled by a plate on 
an elastic foundation. The thermal stresses are generated due to sudden convective 
cooling on the boundary containing the edge cracks while the other boundary is 
insulated. The superposition technique is utilized to solve the problem. The perturbation 
problem is formulated by using the thermal stresses obtained from uncracked problem 
with opposite sign on the crack surfaces as the only external loading. This leads to 
hypersingular integral equation with the crack surface displacement as the only unknown 
function. The main output of this study is the transient stress intensity factors that are 
evaluated numerically. The parametric studies based on time (Fourier number), crack 
length, coefficient of heat transfer (Biot number), Periodic crack spacing and the 
stiffness of elastic foundation are investigated.  

Keywords: Fracture mechanics, Thermal stresses, Periodic crack, Stress intensity  factor. 

1. INTRODUCTION  

The transient thermal stress problem in an elastic plate has been wide investigated since 
it can be found in many engineering applications. It is well understood that, the thermal 
shock due to sudden cooling of the surface can result in very high tensile stresses near the 
surface. These stresses may be occurred catastrophic failure especially in presence of 
preexisting surface flaws. Many studies have been investigated for a single crack in a 
semi-infinite and finite plate under thermal shock (see [1-6]). The analyses of thermal 
stress problems for multiple cracks are also considered in the literature. The problem of a 
periodic edge cracks with equally spaced in a long strip due to quenching using the 
boundary element method is investigated by Bahr et al [7]. Wang et al. [8] examined the 
multiple crack problem in functionally graded materials under thermal loading. The study 
of periodic cracking in a half plane under convective cooling using the principle of 
superposition is given by Rizk [9]. Also, the analysis of a periodic array of cracks in an 
infinite elastic strip under surface cooling and heating are investigated by Rizk [10, 11]. 
The problem of periodic array of cracks in fully constrained infinite strip under thermal 
shock is also considered by Rizk [12]. 
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In the present work the studying of periodic array of edge crack in an infinite plate on 
an elastic foundation is investigated. This study will also be useful to investigate the 
cylindrical shell having circumferentially periodic array of edge cracks under thermal 
shock. According to previous studies [13], the cylindrical shell can be modeled by a plate 
on an elastic foundation that may make the shell problem analytically tractable. 

In this analysis, it is assumed that the problem is linear. So, the superposition technique 
is utilized, i.e. the solution of the thermal problem is considered to be the sum of two 
solutions. The first solution is evaluated for the transient thermal stress problem without 
cracks. The second solution is obtained for the isothermal periodic crack problem in which 
the crack surface tractions that are equal and opposite to the thermal stresses obtained 
from the first solution are the only external loads. In addition, the transient thermal 
problem is assumed to be quasi-static (i.e. the inertia effects are neglected), and all 
thermoelastic coupling effects and the temperature dependence of the thermoelastic 
constants are neglected. Note that, since the cracks are in x - direction, they will not 
disturb the temperature and the stress distributions. By defining the unknown function in 
terms of crack surface displacement, the perturbation problem will be reduced to 
hypersingular integral equation. The expansion method is adopted and the principle of 
finite-part integral developed by Kaya and Erdogan [14, 15] are used for numerical 
solution. 

The important parameter that needs to predict mechanical failure in the subcritical 
crack growth is the stress intensity. So, the main results of this work are the variation of 
the stress intensity factor as a function of time (Fourier number), coefficient of heat 
transfer (Boit number), crack length, periodic crack spacing and the stiffness of elastic 
foundation.  

2. MATHEMATICAL FORMULATION  

Consider the plane strain problem for an elastic infinite strip of thickness H  at initial 
temperature oT  with periodic cracks of length )( ab  spaced out by  c2  is elastically 
supported with coefficient   as shown in Fig. 1. The edge crack case will be considered 
by taking 0a . The surface containing the edge cracks )0( x  is suddenly exposed to 
convective cooling at temperature aT  with heat transfer coefficient h . The other surface 

)( Hx   that is supported by elastic foundation is assumed to be insulated. 

The thermal stresses for the transient thermal stress uncracked problem can be set up by 
solving first the diffusion equation with proper boundary conditions using Lapalce 
transform technique to obtain the transient temperature distribution as developed in [5] 
and it is given by  
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Fig.1: Periodic crack geometry 

where, Hxx /*  , 2/ HtD (Fourier number), D  is the thermal diffusivity and n  is 
the roots of the equation  Binn  tan ,  where Bi  is the Biot number that is defined by 

'/ khHBi  , and 'k  is the material thermal conductivity. The thermal stresses for 
elastically supported plate can be obtained by observing that the plate will remain flat 
under self-equilibrating transient thermal stresses, i.e. the plate undergoes uniform strain 
over the thickness H . Following [16] the transient thermal stresses as a result of the 
transient temperature aTtxTtx  ),(),(  are given by  
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where E  is the Young’s modulus,   is the Poisson’s ratio and  is the coefficient of 
linear thermal expansion. By substituting equation (1) into equation (2), the transient 
thermal stresses would be in the form 
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The analysis of the circumferential cracked problem in a cylindrical shell may be 
approximated by a plate supported by elastic foundation under plane strain conditions. 
Previous studies showed the validity of this assumption [13] and the stiffness of the elastic 
foundation is given by 
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where E  is Young’s modulus, H is the thickness of the cylinder )( io RR  , oR  is the 
outer radius, iR  is the inner radius, and nR  is the mean radius of the cylinder.  

The plane strain problem shown in Fig. 1 may be formulated by solving the following 
governing differential equations 
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where )43(    for plane strain, )1/()3(    for plane stress, and vu,   are 
the x  and y  components of the displacement vector. Because of periodicity, the local 
perturbation problem is considered, i.e. cy 0 , and the problem should be solved 
under the following homogeneous and mixed boundary conditions: 
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where ),,( yxjiij   are the stresses,   is the stiffness of the elastic foundation and 

),( txT
yy  is the thermal stress obtained from the uncracked problem. The solution of the 

mixed boundary value problem described by equations (5)-(10) may be obtained by 
expressing the displacement components in terms of sums of finite and infinite Fourier 
transform [17]: 
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where cnn /  . By substituting equations (11) and (12) into equations (5) and (6), 
and by solving ordinary differential equations, the displacements vu,  may be expressed 
as  
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where the unknown functions )4,3,2,1( iDi  and )4,3,2,1( iCi  are functions of the 
transform variables   and n  respectively. Using the stress-strain relations, the strain-
displacement relations and equations (13) and (14), the stress components xx , yy , xy  
may be given by  
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where )1(2/   E  is the shear modulus. Seven of these unknown functions can be 
eliminated by the conditions (7-9). By defining the new function )0,()( xvx  and using 
the mixed boundary condition (10), the problem will be reduced to the following singular 
integral equation for the unknown function )(x  
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The singular terms must be separated from the kernels 1K and 2K before solving the 
integral equation (18). By examining the asymptotic behavior of 1K for   , 

0)(  xs and taking the limit 0y , it is found that 
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The kernel 2K is bounded for embedded crack ),0( Hba  , and as the crack 
approaches the boundary  )0( a  some terms will be unbounded and the asymptotic 
behavior of 2K for n and 0)(  xs  would be  
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After summing the series and taking the limit, the generalized singular terms may also be 
separated i.e. 
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Then the singular integral equation (18) may be expressed as 
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The solution of the integral equation would be based on the behavior of the unknown 
function )(s that can be obtained by following Muskhelishvili technique [18] and the 
concept of finite part-integral described by Kaya and Erdogan [14, 15]. Let )(s will be in 
the form 

21 )())(()(  sbassfs   (26) 

where the unknown function )(sf  is bounded with 0)( af , 0)( bf , and 21 ,  
would depend on the location of the crack tip. It can be shown that for an impeded crack 

2/121    ),0( Hba  , and for an edge crack ),0( Hba   2/1,0 21   . 
By defining the stress intensity factor at the crack tip b  as 
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3. NUMERICAL SOLUTION 

To evaluate the stress intensity factor given by equation (28), it is required to solve the 
singular integral equation (25) for the unknown function )(sf . First it is normalized by 
the following variables 
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Also from equations (26) and (29), )(  may be written as 

21 )1()1)(()(    F  (32) 

where )(F is the new unknown function that may be  approximated by truncated series as 

n
N

n
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


0
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where na are )1( N  unknown coefficients to be determined. After substituting equations 
(32) and (33) into equation (31), we end up with )1( N  linear equations that are solved 
at certain collocation points which are selected to be to the zeros of Chebychev 
polynomial of order )1( N , i.e. 
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Following the technique developed by Kaya and Erdogan [14,15], the unknown 
coefficients na  can be determined and then the stress intensity factors can be evaluated. 

4. RESULTS 

Figure 2 shows sample results of the normalized transient thermal stresses versus 
normalized distance Hx /  calculated from equation (3) for two values of Biot number 

20,Bi  and different values of normalized time (Fourier number) 001.0 , 01.0 , 
1.0 , 5.0 , 0.1 . From the stress profiles it can be observed that, for Bi   which 

corresponds to the unit step function temperature change on the boundary leads to highest 
transient thermal stresses compared to the values obtained for 20Bi . At any instant of 
time the thermal stresses is tensile in the region near the cooled surface and compressive in 
region near the insulated surface which satisfy zero resultant force at any cross section of 
the plate. Also the effect of the time (Fourier number) on thermal stresses can be seen in 
the figure. The gradient of the thermal stresses is decreasing as the time increases and 
reaching zero value for large time. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Fig. 2: Transient thermal stresses for Bi  and 20Bi  
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The influence of the normalized stiffness of the elastic foundation EH / on the 

normalized stress intensity factors defined by bTTEbK ao )(/)1)((    is given in 
Fig. 3 for different values of  00238.0/ EH , 01108.0 , 08163.0 , 0.1 ,   which are 
corresponding to 20/ HRi , 9 , 3 , 5.0  respectively, except for EH /  which is 
related to fully constrained boundary as given by Rizk [12]. . The results are obtained for 
normalized crack length 3.0/ Hb , Biot number Bi , which is the most severe case, 
and three values of normalized periodic crack spacing 05.02/ cb , 1.0 , 3.0 . Infact, the 
values of 3/ HRi  and 5.0  represent thick hollow cylinders which can not be modeled 
by a plate on an elastic foundation. The figure shows great effect of the normalized 
stiffness EH /  on the normalized stress intensity factors especially for small normalized 
periodic crack spacing )05.02/( cb . As the normalized stiffness increases the 
normalized stress intensity factors decrease and the smallest values would be for the case 
of fully constrained boundary EH / . The effect of the normalized crack spacing 

)2/( cb on the normalized stress intensity factors is also exposed in the figure. If the 
numbers of the cracks increase per unit length ( cb 2/  increases) the normalized stress 
intensity factors are decreasing consequently and the effect of the normalized stiffness 
becomes less. For 1.02/ cb the values of the normalized stress intensity factors for 

00238.0/ EH , 01108.0  ( 20/ HRi , 9 ) are almost the same. For 3.02/ cb  the 
values of the normalized stress intensity factors are approximately equal for all given 
values of 00238.0/ EH , 01108.0 , 08163.0 , 0.1 ,   and they are represented in the 
figure by one curve  which corresponds to the fully constrained boundary problem. So the 
elastic foundation will perform as a fully constrained boundary when the cracks become 
closer to each other.  

 

 

 

 

 

 

 

 

Fig. 3: Stress intensity factors for different values of EH / , 3.0,1.0,05.02/ cb , 
3.0/ Hb , Bi  

The variation of the normalized stress intensity factors versus time is represented in 
Fig. 4 for varying values of normalized periodic crack spacing 0.02/ cb , 1.0 , 2.0 , 

3.0 , 5.0 . The results are shown for 4.0/ Hb , Bi  and two values of normalized 
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stiffness  ,01108.0/ EH . It can be seen that the normalized stress intensity factors 
decrease as the normalized periodic spacing increases ( c  decreases) and the most 
dangerous case would occur for 0.02/ cb  which is related to single crack problem. For 
large normalized periodic crack spacing ( 5.02/ cb ) the variation of the normalized 
stress intensity factors for  ,01108.0/ EH  are almost identical and they would 
approach the fully constrained boundary case ( EH / ). Also for large cb 2/  the 
normalized stress intensity factors start to be negative while they are always positive for 
single crack ( 0.02/ cb ). The negative values of the normalized stress intensity factors 
are meaningless because crack closure occur, or it is meaningful only when these results 
are used in a superposition and the stress intensity factors are positive. 

 

 

 

 

 

 

 

 

Fig. 4: Stress Intensity factors for different values of cb 2/ ,  ,01108.0/ EH , 
4.0/ Hb , Bi  

Figure 5 displays the variation of the normalized stress intensity factors versus 
normalized time for varying normalized crack length 05.0/ Hb , 1.0 , 2.0  3.0 , 4.0 , 

5.0 . The calculations are based on 1.02/ cb , Bi  and two values of normalized 
stiffness  ,01108.0/ EH . As expected, the largest normalized stress intensity factors 
would occur for small crack which lies completely in the tensile region and as the 
normalized crack length increases the normalized stress intensity factors decrease due to 
the increasing effect of the compressive stresses in the interior of the plate. Noted that, for 
small crack ( 05.0/ Hb , 1.0 ), The normalized stiffness has weak effect on the 
normalized stress intensity factors while it has great effect for large crack 
( 5.0,4.0/ Hb ). 
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Fig. 5: Stress intensity factors for different values of Hb / ,  ,01108.0/ EH , 
1.02/ cb , Bi  

Finally, Fig. 6 shows the effect of the Biot number on the normalized stress intensity 
factors for different values of  1Bi , 5 , 10 , 20 ,   and two values of normalized crack 
length  1.0/ Hb , 5.0 . The results are obtained for 1.02/ cb  and 

01108.0/ EH . It is clear that the normalized stress intensity factors are reducing by 
decreasing the Biot number due to the decreasing in the thermal stresses and the most 
severe case will be for unit step function temperature change on the boundary (  ). 
The effect of the normalized crack length on the normalized stress intensity factors is also 
shown in the figure by reducing it as the Hb /  increases. 
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Fig. 6: Stress intensity factors for different values of Bi , 5.0,1.0/ Hb , 
01108.0/ EH , 1.02/ cb . 
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5. CONCLUSION 

In this paper, the effect of the stiffness of elastic foundation ( EH / ), the periodic 
crack spacing ( cb 2/ ), the heat transfer coefficient (Biot number, Bi ), the crack length 
( Hb / ) and the time (Fourier number, 2/ HtD ) on the stress intensity factors are 
investigated. The stiffness of the elastic foundation has quit effect on the stress intensity 
factors especially for large crack and large periodic crack spacing ( cb 2/  small) by 
reducing the normalized stress intensity factors as the normalized stiffness increases. For 
small crack the elastic foundation has very small effect on the stress intensity factors. By 
increasing the crack length the normalized stress intensity factors decrease accordingly. 
The periodic crack spacing has a great effect on the stress intensity factors. As  cb 2/  
increases ( c  decreases), the crack interaction will reduce the the normalized stress 
intensity factors and the effect of the stiffness of the elastic foundation will approach the 
fully constrained boundary case. In addition the increasing Hb /  and  cb 2/  the 
normalized stress intensity factors started to be negative leading to the crack surfaces to be 
in contact along certain contact length from the edge crack b . Also it is shown that the 
normalized stress intensity factors would be reduced with decreasing the Biot number. 
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