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Abstract: A numerical investigation of the performance characteristics of erbium 
doped fiber amplifier using different host materials is presented. The emission and 
absorption curves of each of these hosts are fitted to Guassian fitting parameters. A 
software program is then implemented to calculate the gain coefficient, gain spectrum 
and the equivalent input noise factors in forward and reverse directions. The hosts under 
consideration are: almino-germanosilicate, bismuth, LiNbO3, tellurite, sodium niobium 
phosphate, oxyfluoride silicate, Al2O3 and fluoride phosphate glasses. The corresponding 
gain covers the 1450-1650 nm wavelength range. 

1. INTRODUCTION 

As an optical signal propagates through a fiber, its power dissipates as a result of 
absorption and scattering [1]. Optical signals have to be regenerated for longer distance 
propagation. Electronic repeaters are commonly used to restore the signal. Such repeaters 
limit the progress in optical communication systems due to their relatively slower 
electronic speed that hinders the transmission rates of the system. Two decades ago, 
attention has been diverted toward optical amplifiers because of their advantages over 
electronic repeaters [2-5]. Optical amplification may be attained by either semiconductor 
optical amplifiers or fiber amplifiers. The erbium doped fiber amplifier receive more 
attention because its emission coincides with the 1.55 m window, corresponding to 
minimum attenuation in silica fibers. The most important parameters of optical amplifiers 
are their gain spectrum and noise properties. It is important that the maximum gain be 
centered at the wavelength of interest. The almino-germanosilicate glass exhibits high 
gain, high saturation output power, polarization independent gain and no crosstalk [6]. 
While the host, bismuth glass, exhibits broadened and flattened gain spectra of (EDFA), 
low noise figure and low insertion loss [7]. The host, LiNbO3 glass, is considered as one of 
the most popular dielectric materials in optoelectronics for remarkable electro-optical, 
acousto-optical and nonlinear properties [8]. The tellurite based fiber amplifiers and lasers, 
which can be used for the L-band operation, are capable of providing large and broad 
stimulated emission cross section because of their high refractive indices at the 
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communication band, and are attractive host materials for broadband applications [9]. The 
host, sodium niobium phosphate glass shows good quality optical waveguides by the ion-
exchange technique [10]. The oxyfluoride silicate can be used for potential broadband 
optical amplifier in the wavelength–division–multiplexing (WDM) network system [11]. 
The use of the host Al2O3 results in a high mode intensity in the waveguides and allows 
for a small bending radius and thus compact waveguide devices [12]. Fluoride phosphate 
glasses are interesting gain materials for lasers and amplifiers in the eye-safe region 
around 1.5 µm for applications in telecommunication systems, medicine and meteorology 
[13].  

2. THEORY 

2.1 Rate Equation in Three Level Systems  

The rate equations corresponding to the specific case of confined Er-doping are 
[6]: 
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where q is the normalized pump power, pk is the normalized sum of the signal power and 
the noise power introduced by the amplified spontaneous emission (ASE) at a signal 
wavelength k, the positive sign refers to the forward direction while the negative sign 
refers to the reverse direction and pok is the equivalent input noise power normalized to the 
saturation power at k. The emission and absorption coefficients are γe, γa and the letters p 
and k correspond to the pump and the signal, respectively. 

For the three-level pumping scheme, the emission and absorption coefficients are 
defined as [14]: 
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where 

papop   ,  (6) 

and 

kakok   , (7) 

where αp is the pump and αk is the signal absorption coefficients, Гp,k the overlap factors of 
the pump and signal at λpk, the wavelength of pump and signal and ρo is the dopant 
density. 

2.2 Amplifier Gain 

Introducing the emission and absorption coefficients to the power rate equations, one 
can get: 
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where 
op  and 

Lp  are the normalized input and output signal powers, ηp and ηk are the 
ratio of the emission to the absorption cross section for the pump and the signal, 
respectively. 

From Eq.(8), the amplifier gain, G, can be obtained as: 
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From the definition of the absorption coefficient, p, and using an amplifier of length L, 
one can get the relation between the input and output pump powers, qo and qL, as: 
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Equation (9) is now used with Eq.(10) to get: 

)exp( LAqq GoL   ,   (11) 

where AG is the gain-dependant pump absorption coefficient, given by: 



IIUM Engineering Journal, Vol. 5, No. 2, 2004 Y. M. Zakaryia et al. 

 56





























L
GA

kp

pk

k

p
pG 





 log
11

1

  (12) 

The input pump power 
oq  is then expressed as a function of the amplifier gain G, by 

eliminating 
Lq from Eqs.(11) and (12) as: 
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The output pump power 
Lq  is then rewritten: 
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For forward pumping case, 
Lq  is always smaller than 

oq  and hence Qk must be smaller 
than one. Equation (14) gives the following condition for the peak gain as:  
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which sets the upper limit for the gain, Gmax, through which the amplifier length, L, can be 
determined.   

Through the amplifier gain, one can get the normalized input and output signal powers 
as: 
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where N   and N   are the ASE photon numbers in forward and backward directions, 
respectively, which are given by: 
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2.3 Equivalent Input Noise Factor 

In terms of the gain and the ASE noise photon numbers, the equivalent input noise 
factors for the forward and backward pumping schemes, 

eqn , and the optical noise figures, 


oF , are defined by [14]: 

   
G

N
n k

keq





 
 ,   (22) 

 
G
N

F k
o





 


21

)(
.  (23) 

Using Eqs. (19)-(21), the equivalent noise factors and the optical noise figures can be 
written in the forms: 
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3. RESULTS 

The experimental emission and absorption cross sections of the different hosts [3-16] 
are fitted to Gaussian curves and the parameters are used in calculations of the gain 
coefficient, gain spectrum and the equivalent input noise factors in forward and reverse 
directions. One considers an EDFA pumped at λp= 980 nm, at which the EDFA operates 
as a three-level laser system, with the ratio of emission to absorption cross section of 
pump ηp= 0.   

Figure 1 plots the gain coefficient around the 1.5 µm for a typical Er3+-doped alumino-
germanosilicate glass fiber amplifier for different values of the relative inversion D, by 
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incremental steps of 0.2. It is clear that for D = -1, all ions are in the ground state and the 
medium is absorbing at all signal wavelengths, as the gain coefficient is negative. As the 
value of D increases, however, a spectral region near the long wavelength side of the 
transition is characterized by a positive gain coefficient. 
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Fig.1: Signal gain coefficient of erbium doped alumino-germanosilicate glass. 

The gain coefficient for the hosts, bismuth glass, LiNbO3 glass, tellurite, sodium 
niobium phosphate glass, oxyfluoride silicate, Al2O3 and fluoride phosphate glass fiber 
amplifier, is calculated in the same manner. The EDFA gain spectrum G(λ) corresponding 
to the hosts, alumino-germanosilicate glass, bismuth glass, LiNbO3 glass and tellurite is 
shown in Fig.2, while that of the sodium niobium phosphate glass, oxyfluoride silicate, 
Al2O3 and fluoride phosphate glass hosts is shown in Fig.3. 

Figure 4 displays the dependence of the equivalent noise figure on both signal gain and 
signal wavelength for the forward pumping for the alumino-germanosilicate glass at 
different values of the maximum gain. It is noted that, as the gain increases the equivalent 
input noise figure becomes nearly independent of signal wavelength and for the case of 
complete population inversion it reaches unity. Such a regime can be achieved with a 
pump wavelength of 980 nm, for which the EDFA operates as a three-level system, as 
mentioned before.  

 



IIUM Engineering Journal, Vol. 5, No. 2, 2004 Y. M. Zakaryia et al. 

 59

0

5

10

15

20

25

30

35

1500 1550 1600 1650

Wavelength, l, nm

G
ai

n 
sp

ec
tru

m
, G

, d
B

Alumino-
germano-
silicate host
Bi-glass
host

LiNbo3 host

Tellurite
glass host

qo=51.8 mW

 

0

5

10

15

20

25

30

35

40

45

1450 1500 1550 1600 1650

Wavelength, l, nm

G
ai

n 
sp

ec
tru

m
, G

, d
B

Sodium noibium
host

Oxyf louride
silicate host

Al2O3 host

Fluoride
phosphate host

qo=51.8 mW

 

Fig. 2: Gain spectrum plotted at qo=51.8 mW. Fig. 3: Gain spectrum plotted at qo=51.8 mW.
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Fig.4.Forward equivalent noise figure for the erbium doped alumino-germanosilicate 
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Figures 5 and 6 display the dependence of the equivalent noise figure on both input 
normalized pump power and signal wavelength for the forward pumping, for the eight 
mentioned hosts, at the maximum gain of each host.  
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Fig. 5: Forward equivalent noise figure for 
the erbium doped in alumino-
germanosilicate, bismuth, LiNbO3 and 
tellurite glasses, respectively. 

Fig. 6: Forward equivalent noise figure for 
the erbium doped in, sodium niobium 
phosphate, oxyfluoride silicate, Al2O3 and 
fluoride phosphate glasses, respectively. 

The optical noise figure for the almino-germanosilicate glass fiber amplifier is plotted 
in Figs. 7, at different values of the signal gain G, having its maximum value around 1530 
nm. 

The optical noise figure for the almino-germanosilicate, bismuth, LiNbO3, tellurite, 
sodium niobium phosphate, oxyfluoride silicate, Al2O3 and fluoride phosphate glass fiber 
amplifiers is plotted in Figs. 8 and 9 at the maximum gain of each host. Figures 7 and 8 
indicate that for the highest gains, the optical noise figure reaches a lower limit of 3 dB 
and is very nearly wavelength independent.  

For the un-pumped fiber (qo= 0), the optical noise figure is the reciprocal of the fiber 
transmission. As the fiber is pumped with an increasing input power, corresponding to 
increasing gains and overall fiber inversion, the optical noise figure is seen to decrease for 
forward propagation direction.  
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Fig.7: Forward optical noise figure for the erbium doped alumino germanosilicate glass. 
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Fig .8: Forward optical noise figure for the 
erbium doped in, alumino-germanosilicate, 
bismuth, LiNbO3 and tellurite  glasses, 
respectively.erbium doped with the  hosts, 
alumino germanosilicate  glass, bismuth 
glass, LiNbO3 glass and tellurite  
respectively. 

Fig. 9: Forward optical noise figure for the 
erbium doped in, sodium niobium phosphate, 
oxyfluoride silicate, Al2O3 and fluoride 
phosphate glasses, respectively.  
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4. CONCLUSION 

A numerical investigation of the performance characteristics of erbium-doped in the  
host materials, almino-germanosilicate, bismuth, LiNbO3, tellurite, sodium niobium 
phosphate, oxyfluoride silicate, Al2O3 and fluoride phosphate glass fiber amplifiers. One 
summarize the features of the amplifier with different hosts in Table 1, where G is the 
amplifier gain,  is the 3 dB broadening of the gain, Fo, is the noise figure calculated at 
the maximum gain, Gmax, and o is the central frequency which corresponds to the 
maximum gain. The amplifier gain using these different hosts covers the wavelength range 
1450-1650 nm. 

From Table 1, it is clear that the erbium-doped oxyfluoride silicate fiber amplifier 
exhibits a maximum gain of 39 dB at the central wavelength of 1540 nm and minimum 
noise figure ≤1dB, but the broadening in the gain curve is just 21 nm. One can also see 
that the erbium doped alumino-germanosilicate fiber amplifier exhibits a more broadening 
in the gain curve (= 40 nm), which allows amplifying the signal at a large range of 
wavelengths, which is the case in WDM systems.  

The case of erbium doped sodium niobium phosphate glass fiber amplifier exhibits a 
less gain (=12.9 dB) than other hosts and large noise figure (=4 dB) in comparison with 
the other hosts, and the broadening (Δλ=20 nm) is considerably small.  

Table 1 Features of the EDFA with different hosts. 

Host o (nm) Gmax (dB) Fo(dB)  (nm) 

Alumino-germanosilicate 1540 24 1.5 40 

Bismuth   1550 23 3 30 

LiNbO3 1553 25.3 2.2 15 

Tellurite 1530 20 4 28 

Sodium niobium phosphate 1540 12.9 2 20 

Oxyfluoride silicate 1540 39 1 21 

Al2O3 1530 33.37 3.5 22 

Fluoride phosphate 1530 29 0.1 23 
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