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Abstract:  Near field distribution, propagation constant and dispersion characteristics 
of nonlinear single-mode optical fibers have been investigated. Shooting-method 
technique is used and implemented into a computer code for both profiles of step-
index and graded-index fibers. An error function is defined to estimate the 
discrepancy between the expected electric-field radial derivative at the core-cladding 
interface and that obtained by numerically integrating the wave equation through the 
use of Runge-Kutta method. All of the above calculations done under the ocean depth 
in which the depth will affect the refractive index that have a direct effect on all the 
optical fiber parameters. 
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1.  INTRODUCTION 

 The attractiveness of the lightwave communications is the ability of the silica-optical 
fibers to carry large amount of information over long repeaterless spans. To utilize the 
available bandwidth, numerous channels at different wavelengths can be multiplexed on 
the same fiber and higher transmitter powers are required to increase system margins. 
All these attempts to fully utilize the capabilities of silica fibers will ultimately be 
limited by nonlinear interactions between the information-bearing light waves and the 
transmission medium. These optical nonlinearities can lead to interference, distortion 
and excess attenuation of the optical signals, resulting in the systems degradation [1]. 
Refractive index as a function of the pressure is very important for all the fiber 
parameters like the electric field, the normalized propagation constant and all dispersion  
types. So, it plays a vital role in the optical fiber communication system in particular for 
the undersea submarine optical fiber cables which are used to transmit optical signals 
from one continent to another. Up to now, most of the researches are  focused  on the 
waveguide structure mentioned above. Boardman and Egan [4] developed a general 
dispersion equation for nonlinear optical waveguides of the second kind with a Kerr-
type nonlinearity. This equation has been used in the investigation of guided 
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characteristics for a saturable case.[3] The dispersion equation has been modified to 
exclude possible spurious modes by dividing the two types of dispersion equations. The 
results are considered to be exact when compared with results obtained numerically in 
the present work. Yuan performed calculations above the sea level without taking into 
account the influence of pressure and temperature on the refractive index for planner 
waveguide [5]. 
 Throughout this paper, the second-order differential equation for nonlinear optical 
fibers has been solved by the Runge-Kutta numerical integration and the secant method, 
using the concept of the shooting method. All effects of the various fiber parameters on 
the modal field distribution, the propagation constant and the dispersion characteristics 
have been studied for both step and graded index fibers. Calculations were done after 
taking into account the refractive index as a function of pressure and temperature.  

2. BASIC MODEL AND ANALYSIS 

 The nonlinear refractive index of the fiber, n, can be represented as a sum of two 
terms:  

n = no + nII I, (1) 
where no is the ordinary refractive index associated with the material, nII is the intensity 
dependent refractive index and I is the optical intensity. Equations used for determining 
the exact value for no due to pressure dependence have the form:  
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and P is the pressure in MN/m2. The effect of temperature on the refractive index can 
also be calculated from: 
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in which To = 27 °C and T is the ambient temperature.  The pressure and temperature 
can be calculated as a term of the ocean depth (D in km) from the relation: 
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 The controlling differential equations for the radial field component in both core and 
cladding are respectively written as [5]:  
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where a is the core radius, b is the normalized propagation constant, V is the normalized 
frequency, αc is the nonlinearity term and f(r) is an assumed function that defines 
whether the fiber under consideration is step or graded index. For step index f(r) = 0 and 
for graded index f(r) = (r/a)2. So, using the shooting method, two initial guesses, β1 and 
β2 for the propagation constant are used. 
The core differential equation is integrated step-by-step using the fourth order Runge-
Kutta method. The electric field and its derivatives are calculated each step till reaching 
the core-cladding interface.  
 A certain problem appeared in the numerical integration process due to the 
cylindrical geometry. An approximation must be used to overcome this problem. The 
Gaussian approximation has been used to estimate both the electric field and its 
derivative at the radial coordinate as an initial condition. The used Gaussian function 
has the form:  

E= Eo exp (-r2/ωo
2),  (10) 

where Eo is the axial value of the electric field and ωo is the spot size of the fundamental 
mode.  Both E and dE/dr obtained from Gaussian approximation are used as initial 
values in the numerical integration process. Performing the integration, a matching 
condition may be represented as the formula in: 

1( )1
( )O

K WdE W
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= , (11)  

where K1(W) is the modified Bessel function of first order and W2 = a2(n1
2k2 - β2) with k 

the wave number and  β  is the propagation constant. 
An error function is used to evaluate the mismatch between the predicted result of the 
first derivative of the electric field and that obtained by the numerical integration. This 
error function is defined as:  
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 The error function is estimated twice, once for each of the two initial guesses for βe 
using the secant method. The two obtained error values are used to estimate a correction 
term for a new guess of the effective index, βnew, through the formula:  
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where ERR1 and ERR2 are corresponding error values obtained. These new guesses 
together with one of the initial guesses, will give smaller error. Also, a second iteration 
process is necessary.  
 To obtain the first derivative of the normalized propagation constant b, Eq.(8) is 
differentiated with respect to V and to obtain the second derivative of b with respect to 
V, the wave equation differentiated twice, by obtaining the exact value for b, db/ dv and 
also d2b/ dv2, we can easily calculate the power normalized electric field, propagation 
constant and the dispersion properties. 

3. RESULTS 

3.1 Power normalized electric field 

We discuss the effect of the depth, D, on the normalized electric field in Fig. 1.  The 
normalized electric field is represented by the following equation: 

2
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where n2 is the cladding refractive index, ηo is the impedance of free space and P is the 
input power.  Changing the depth D from 0 to 5 km, we found an obvious change on the 
values of the normalized electric field.  
 
In Fig. 2, the change of core radius at 3 km depth, increasing the core radius (which 
increases the V-number in a direct manner) gives an obvious increase in the model field 
distribution.  This is achieved by taking the power equal to 1-mW. The effect of the 
depth appears also for the core radius of 4 and 5 µm by a shift up. The values of the 
normalized electric field behind the core appear closer to the sea level. Far from the core 
center and closer to the clad, there will be a wider change in the modal field at 3 km 
rather than that at the sea level. 

3.2 Normalized propagation constant 

For the step index fibers the variation of the normalized propagation constant as a 
function of the normalized frequency for both linear and nonlinear operation at 3 km 
depth (n2 = 1.44) is shown in Fig. 3.  It is shown that as the core radius or its refractive 
index is increased, the effect of nonlinearity begins to increase and then the nonlinearity 
effect slowly loses its strength. Increasing the core refractive index, that behavior is a 
normal behavior because of the increase of the refractive index due to the depth 
increase. For graded index fibers, similar to the case of step index fibers, the normalized 
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propagation constant for a certain V-value under nonlinear operation is dependent on the 
overall V-value and also its constituent parameters. Figure 4 represents the normalized 
propagation constant as a function of the normalized frequency, and the dotted curve 
represents the propagation constant at 3 km depth. 
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Fig. 1: The effect of the ocean depth from 0 to 5 km on the model field distribution 
along the core radial coordinate  
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Fig. 2: The effect of variation of the core radius on the model electric along the core 

radial coordinates
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Fig. 3: The variation of the propagation constant with the normalized frequency at 0 and 
3 km depths for the step index fibers 
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Fig. 4: The variation of the normalized propagation constant with normalized frequency 

at 0 and 3 km depths for the graded index fibers 
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3.3 Mode delay factor 

The mode delay factor, d, is a universal dispersion parameter which plays a major role 
in the theory of single mode fibers. It is defined through the formula: 

( )d Vb dbd V b
dV dV

= = + .  (15) 

The mode delay factor affects the group delay of the guided mode fibers as it described 
the change in-group delay caused by the changes in power distribution between the fiber 
core and cladding. The variation of the mode delay factor for the step index fibers as a 
function of the normalized frequency is illustrated in Fig. 5 under both cases above the 
sea level and at 3 km depth. It is clear from the graph that the effect of the ocean depth 
leads to the refractive index increase that gives an increase in the normalized 
propagation constant and also its derivative with respect to V ended with the increase in 
the mode delay factor. Calculations in this part will be done in two different ways: one 
of them uses the dependence of the refractive index on the pressure only which is 
represented in the graph by the solid line, and second uses the dependence of the 
refractive index on both the pressure and temperature represented by the dashed line. 
The dependence of the mode delay factor on the normalized frequency for the graded 
index fibers is illustrated in Fig. 6 for a depth change from 0 to 3 km taking into account 
both cases mentioned above for the pressure and temperature dependence. V number is 
increased by increasing the radius or the refractive index of the fiber core, d(V) begins 
to increase slowly at the small values of V, then increases till reaching a certain value of 
V, the d(V) values begin to be nearly constant.  
This behavior could be explained physically by considering the relation between the 
mode delay factor and the sharing of the optical power between the core and cladding. 
As either the core radius or the refractive index is increased from small values, the 
percentage of the power confined in the core region starts to rise up quickly and the 
normalized propagation constant does in consequence. 

3.4 Waveguide dispersion coefficient 

 The third parameter, which governs the dispersion behavior of the optical fiber, is the  
waveguide dispersion coefficient, which is defined as: 

( )2

2 2
d Vb db dbg V V

dV dV dV
 = = + 
 

.  (16) 

For step index fibers, the variation of the normalized waveguide parameter, as a 
function of the normalized frequency is shown in Fig. 7. For larger values of  V, the 
values of the waveguide coefficient begin to be much closer for both cases. It is noted 
that, for the single mode operation, where the normalized frequency is less than 2.404, 
the waveguide dispersion is always positive which means that the waveguide dispersion 
parameter is always negative.  

 Figure 8 represents the relation between the waveguide parameter and the V-number 
for the graded index fibers. Calculations are performed two times as mentioned in the 
step index discussion. One can deduce from the two figures that, for any V value, the 
step index has a greater value of the waveguide parameter than the graded index under 
any chosen depth.  
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Fig. 5: The effect of the ocean depth from 0 to 3 km on the mode delay factor as a 

function of normalized frequency for the step index fibers, the dashed line is due to the 
dependence of the refractive index on pressure and temperature, the solid one is due to 

the pressure dependence only 
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Fig. 6: The effect of the ocean depth from 0 to 3 km on the mode delay factor as a 

function of normalized frequency for the graded index fibers, the dashed line is due to 
the dependence of the refractive index on pressure and temperature, the solid one is due 

to the pressure dependence only. 
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Fig. 7: The effect of the ocean depth from 0 to 3 km on the normalized waveguide 

coefficient as a function of normalized frequency for the step index fibers, the dashed 
line is due to the dependence of the refractive index on pressure and temperature, the 

solid one is due to the pressure dependence only 
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Fig. 8: The effect of the ocean depth from 0 to 3 km on the normalized waveguide 

coefficient as a function of normalized frequency for the graded index fibers, the dashed 
line is due to the dependence of the refractive index on pressure and temperature, the 

solid one is due to the pressure dependence only 
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3.5  Material dispersion 

Material dispersion results from the variation of the velocity of light in a medium, and 
hence, its refractive index, with the optical wavelength, and is given by: 

2

2DM = -   
c

d n
d

λ
λ

 
 
 

  

where n is the refractive index of the core or cladding. 
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Fig. 9: The variation of the material dispersion as a function of the wavelength at 3 km 
depth (dashed line) and above the sea level (solid line) 

3.6 Waveguide Dispersion 

The waveguide dispersion coefficient, g, estimated before is used now to estimate the 
waveguide dispersion parameter DW as: 

2
1 2

2

- ( )- ( )W
n n d VbD V

c dVλ
=  , (18) 

The waveguide dispersion is illustrated as a function of the wavelength in Fig. 10 for 
two chosen depths, 0 and 3 km. From Fig. 10, the waveguide dispersion above the sea 
level has a greater shift up than at 3 km depth. This shift will decrease with the 
increasing of the wavelength. 

The same behavior for the step and graded index fibers is expected because of the same 
change in the waveguide dispersion parameter which is the only parameter affecting the 
waveguide dispersion. 
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Fig. 10: Effect of the ocean depth (from 0 to 3 km) on the waveguide dispersion 
parameters as a function of the wavelength for the step index (SI) and graded index (GI) 

fibers 

4.  CONCLUSION 

 Below sealevel the refractive index increases, and this increase will affect all the 
parameters related to performance of the optical fiber including the power normalized 
electric field, propagation constant and especially the dispersion parameter. Also, 
calculations done above sealevel show that the effect of the refractive index increase 
due to  temperature and pressure cannot be neglected.  
 In the nonlinear operation (in the core of the optical fiber), the characteristic curves 
of the normalized propagation constant, the mode delay factor, and the normalized 
waveguide dispersion coefficient are found to depend on the way by which the value of 
V is varied, the injected power, Kerr nonlinearity coefficient.  
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