
IIUM Engineering Journal, Vol. 26, No. 1, 2025 Hakim et al. 
https://doi.org/10.31436/iiumej.v26i1.3547 

IMPROVING MODEL PERFORMANCE FOR PREDICTING 

EXFILTRATION ATTACKS THROUGH RESAMPLING 

STRATEGIES 

ARIF RAHMAN HAKIM, KALAMULLAH RAMLI*, 

MUHAMMAD SALMAN, ESTI RAHMAWATI AGUSTINA 

Department of Electrical Engineering, Faculty of Engineering, 

Universitas Indonesia, Depok, Indonesia  

*Corresponding author: kalamullah.ramli@ui.ac.id

(Received: 17 November 2024; Accepted: 1 January 2025; Published online: 10 January 2025) 

ABSTRACT: Addressing class imbalance is critical in cybersecurity applications, particularly 

in scenarios like exfiltration detection, where skewed datasets lead to biased predictions and 

poor generalization for minority classes. This study investigates five Synthetic Minority 

Oversampling Technique (SMOTE) variants, including BorderlineSMOTE, 

KMeansSMOTE, SMOTEENC, SMOTEENN, and SMOTETomek, to mitigate severe 

imbalance in our customized tactic-labeled dataset with dominant majority class influence 

and weak class separability class imbalance. We use seven imbalance metrics to assess each 

SMOTE variant's impact on class distribution stability and separability. Furthermore, we 

evaluate model performance across five classifiers: Logistic Regression, Naïve Bayes, 

Support Vector Machine, Random Forest, and XGBoost. Findings reveal that SMOTEENN 

consistently enhances performance metrics (accuracy, precision, recall, F1-score, and 

geometric mean) on an average of 99% across most classifiers, establishing itself as the most 

adaptable variant for handling imbalance. This study provides a comprehensive framework 

for selecting resampling strategies to enhance classification efficacy in cybersecurity tasks 

with imbalanced data. 

ABSTRAK: Menangani ketidakseimbangan kelas adalah penting dalam aplikasi keselamatan 

siber, terutama dalam senario seperti pengesanan eksfiltrasi, di mana set data yang condong 

membawa kepada ramalan yang berat sebelah dan generalisasi yang lemah untuk kelas 

minoriti. Kajian ini menyiasat lima varian Teknik Sintetik Pencontohan Lebihan Minoriti 

(SMOTE), termasuk BorderlineSMOTE, KMeansSMOTE, SMOTEENC, SMOTEENN, dan 

SMOTETomek, untuk mengurangkan ketidakseimbangan teruk dalam set data berlabel taktik 

yang disesuaikan dengan pengaruh kelas majoriti dominan dan ketidakcerahan kelas yang 

lemah. Kami menggunakan tujuh metrik ketidakseimbangan untuk menilai kesan setiap 

varian SMOTE terhadap kestabilan dan ketidakcerahan taburan kelas. Selain itu, kami menilai 

prestasi model merentasi lima pengelas: Regresi Logistik, Naïf Bayes, Mesin Vektor 

Sokongan, Hutan Rawak, dan XGBoost. Penemuan menunjukkan bahawa SMOTEENN 

secara konsisten meningkatkan metrik prestasi (ketepatan, ketepatan, pengingatan, skor F1, 

dan purata geometri) sebanyak 99% secara purata merentasi kebanyakan pengelas, 

menegaskan dirinya sebagai varian yang paling boleh disesuaikan untuk menangani 

ketidakseimbangan. Kajian ini menyediakan rangka kerja komprehensif untuk memilih 

strategi pencontohan semula bagi meningkatkan keberkesanan klasifikasi dalam tugas 

keselamatan siber dengan data yang tidak seimbang. 

KEYWORDS: Machine Learning, Imbalance Data, SMOTE, and Exfiltration 

420



IIUM Engineering Journal, Vol. 26, No. 1, 2025 Hakim et al. 
https://doi.org/10.31436/iiumej.v26i1.3547 

 

 

1. INTRODUCTION 

Cybersecurity has become a critical issue across various sectors, affecting businesses, 

government entities, and individuals. The rapid advancement of technology has created new 

opportunities but also facilitated increasingly sophisticated cyber threats. The frequency of 

cyber-attacks has surged, with a notable rise in global incidents. Projections estimate that 

cybercrime will cost USD 9.5 trillion by 2024, growing at an annual rate of about 15%, 

reaching USD 10.5 trillion by 2025 [1]. 

The evolution of cyber threats requires organizations to assess their cybersecurity posture 

and adapt strategies accordingly and proactively. Common Vulnerabilities and Exposures 

(CVEs) are vital for identifying and responding to potential cyber incidents. CVEs provide a 

structured framework for categorizing vulnerabilities, aiding effective threat management and 

incident response. Integrating CVEs with frameworks like MITRE ATT&CK helps 

organizations understand adversary tactics and prioritize vulnerabilities based on their impact. 

Automated tools for vulnerability detection and remediation can reduce the time and resources 

required for effective cybersecurity management. Machine Learning (ML) also plays a crucial 

role in combating sophisticated cyber threats. ML algorithms improve accuracy by learning 

from new data and adapting to evolving threats. Additionally, ML is essential for incident 

response, automating threat mitigation to reduce the attack window and limit damage.  

However, implementing ML in cybersecurity faces challenges from imbalanced datasets, 

which impact classification model performance. Imbalanced datasets occur when one class 

(usually the majority) outnumbers the other (minority) class. This imbalance can lead to biased 

predictions, poor generalization, and higher error rates for the minority class, which is often 

critical in cybersecurity, such as fraud or intrusion detection systems [2]. Several resampling 

methods have been developed to address class imbalance and improve classifier performance. 

These methods include undersampling, oversampling, and hybrid techniques. Our study 

focuses on addressing the class imbalance in a custom dataset designed to classify whether a 

sequence of tactics indicates exfiltration. We used a tactic-labeled dataset from CVE 

descriptions, which shows severe imbalance, with the minority class comprising less than 1%. 

This paper examines the dataset's imbalance characteristics in detail and investigates 

oversampling-based solutions to address this issue. Oversampling was chosen for its ease of 

implementation and wide applicability. The most popular oversampling technique, SMOTE 

[3], is commonly used to balance class distribution and has proven effective in many studies 

and real-world applications. We investigate how five SMOTE variants affect imbalance 

characteristics: BorderlineSMOTE [4], KMeansSMOTE [5], SMOTEENC [6], SMOTEENN 

[7], and SMOTETomek [8]. We evaluate each dataset's imbalance using seven metrics: class 

distribution, imbalance ratio, minority class percentage, Coefficient of Variation (CV), Gini 

index, entropy, and Fischer's ratio. These metrics are applied to both the original and resampled 

datasets to assess the impact of each SMOTE variant. 

The datasets from the five SMOTE variants are also used to assess model performance 

across five classifiers: Logistic Regression (LR) [9], Naïve Bayes (NB) [10], Support Vector 

Machine (SVM) [11], Random Forest (RF) [12], and Extreme Gradient Boosting (XGBoost) 

[13]. Performance is measured using six metrics: accuracy, precision, recall, specificity, F1-

score, and geometric mean. These metrics facilitate a comparative analysis across models. The 

evaluation of imbalance characteristics is enhanced by including both seven imbalance metrics 

and six classifier performance metrics. 
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Our study provides the following contributions: 

• A customized tactic-labeled dataset for exfiltration classification and measuring its 

imbalance characteristics: Developed a new dataset specifically for classifying the 

Exfiltration tactic from ten other tactics. This dataset was derived from the originally used 

for mapping CVE description into MITRE Tactics and Techniques. Additionally, a 

focused analysis is conducted to identify and understand imbalance characteristics within 

a dataset using seven metrics (class distribution, imbalance ratio, minority class 

percentage, Coefficient of Variation, Gini index, entropy, and Fischer's ratio). 

• Investigation of SMOTE Variants: Five SMOTE variants (BorderlineSMOTE, 

KMeansSMOTE, SMOTEENC, SMOTEENN, and SMOTETomek) are applied, and their 

impact on dataset characteristics is systematically assessed. 

• Multi-Metric Evaluation of Imbalance: The imbalance of the original and resampled 

datasets is evaluated using the seven imbalanced metrics, providing an in-depth view of 

resampling effects. 

• Cross-Classifier Performance Comparison: The impact of SMOTE resampling on model 

performance is assessed across five classifiers (LR, NB, SVM, RF, and XGBoost) using 

six classifier performance metrics (accuracy, precision, recall, specificity, F1-score, 

geometric mean) to establish a benchmark on how resampling strategies influence model 

efficacy. 

This paper is divided into the following five sections. Section 2 reviews existing studies, 

focusing on existing studies that utilized the CVE dataset. Section 3 outlines the creation of our 

dataset and analysis of its imbalance characteristics. Section 4 investigates SMOTE variants 

by providing an in-depth view of resampling effects on imbalanced characteristics. In addition, 

we provide cross-classifier performance comparisons to establish a benchmark on how 

resampling strategies influence model efficacy. Lastly, conclusions are presented in Section 5. 

2. RELATED WORKS 

This section provides a review of existing methods or models that leverage the mapping 

of tactics from CVEs. Our review focuses on the aims, method used, how CVEs play a role in 

the method, and key findings, as provided in Table 1. 

Table 1. Tactics distribution in the created dataset 

Study Aims & Methods Role of CVEs Key Findings 

[14] 

Systematic mapping of CVEs to 

ATT&CK techniques using 

neural networks and 

unsupervised labeling. 

CVEs are systematically 

connected to techniques for 

efficient threat mitigation. 

Enhanced prioritization and 

threat management. 

[15] 

ML and DL approach for multi-

label classification of CVEs to 

ATT&CK techniques. 

CVEs form the basis for linking 

vulnerabilities to adversarial 

approaches. 

Improved accuracy and 

reliability in mapping. 

[16] 

Transformer-based models (e.g., 

SecRoBERTa) for mapping 

CVEs to ATT&CK techniques. 

CVEs are utilized for improving 

cybersecurity measures. 

SecRoBERTa achieves 

78.88% weighted F1; 

improved cybersecurity 

understanding. 

[17] 

BERT-based models with 

TextAttack for data 

augmentation to map CVEs to 

ATT&CK techniques. 

CVEs are used to create a 

tagged corpus for ATT&CK 

Enterprise Matrix strategies. 

F1-score of 47.84%; improved 

training set balance with 

augmentation. 
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A study in [14] developed a systematic approach for mapping CVEs to MITRE ATT&CK 

techniques to enhance the understanding and management of cybersecurity threats. CVEs are 

crucial to the paper's investigation of how vulnerabilities might be systematically connected to 

attack strategies, improving defenders' ability to prioritize and mitigate threats efficiently. The 

research method combines advanced neural network modeling, unsupervised labeling, and 

enriched data representation to effectively map CVEs to ATT&CK techniques, enhancing 

cybersecurity threat management. Here are some research limitations: reproducibility and 

inconsistencies, concept drift, limited coverage of techniques, lack of granular categories, and 

dependence on unsupervised labeling. 

Authors in [15] enhanced the process of linking CVEs to MITRE ATT&CK techniques 

using ML and deep learning (DL) approaches. They highlight the role of CVE as a foundational 

piece for linking vulnerabilities to adversarial approaches, hence improving organizations' 

ability to defend against cyber-attacks effectively. They employed multi-label classifications, 

Multi-Layer Perceptron (MLP), data augmentation, cross-validating techniques, 

hyperparameter tuning, reproduction, and comparison to enhance accuracy and reliability. The 

research limitations include dataset limitations, reproducibility issues, framework updates, 

limited technique coverage, and model comparison challenges. 

Transformer-based models are used to automatically map CVEs to MITRE ATT&CK 

techniques to better cybersecurity understanding and protection measures [16]. An extended 

dataset of 9985 entries, security auditing tools, and MITRE ATT&CK methods are included in 

the study. The top models were SecRoBERTa, SecBERT, CyBERT, and TARS, with 

SecRoBERTa scoring 78.88% in weighted F1. Their study's main shortcoming is that 

conceptual linkages between tactics make it difficult to deduce a technique sequence from 

textual descriptions for specific vulnerabilities. Likewise, BERT-based language models are 

used to match 1813 MITRE ATT&CK-annotated CVEs to approaches in the study [17]. 

TextAttack-based data augmentation algorithms correct the training set imbalance, achieving 

an F1-score of 47.84%. The methodology creates a tagged corpus by manually mapping CVEs 

to MITRE ATT&CK Enterprise Matrix strategies and procedures, while the F1-score measures 

model performance. 

Table 1 highlights that prior research has predominantly leveraged CVEs as a critical 

source for mapping MITRE ATT&CK tactics or techniques. However, these studies have 

largely overlooked the potential of analyzing sequences of tactics derived from CVEs to predict 

attacker objectives. To address this gap, our work focuses on processing CVE data into 

actionable sequences that predict specific attack goals, such as exfiltration. Moreover, existing 

literature emphasizes the lack of consensus on the optimal approach to handle data imbalance 

[18]. This variability underscores the pressing need for standardized evaluation frameworks to 

ensure consistency and comparability across datasets. 

3. DATASET CREATION FOR EXFILTRATION CLASSIFICATION 

AND IMBALANCE CHARACTERISTICS 

This section explains the dataset processing steps we employed and details the imbalance 

characteristics of the dataset. Additionally, we introduce the seven metrics used to measure the 

imbalance characteristics of the initial dataset in this section and the various datasets generated 

by the resampling methods discussed in the subsequent section. Furthermore, we present the 

measurement results of the imbalanced characteristics of the initial dataset using these seven 

metrics. These results serve as a baseline for analyzing the impact of resampling methods on 

imbalance characteristics by examining changes in the measured metrics. 
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3.1. Modifying Tactics Mapping Dataset Based on CVE Description 

The dataset source used in this study is created by the study [19] aimed to automatically 

map CVEs to the 14 MITRE ATT&CK tactics using transformer-based models and is publicly 

available in [20]. The data cleaning phase involved filtering out rows with missing tactic labels. 

In this research, two tactics, Reconnaissance, and Resources, were excluded as they 

predominantly occur on the attacker's side. We retained the tactic Initial Access to represent 

how attackers infiltrate the target environment. Consequently, ten tactics were chosen as 

features for this study: (1) Initial Access, (2) Execution, (3) Persistence, (4) Privilege 

Escalation, (5) Defense Evasion, (6) Credential Access, (7) Discovery, (8) Lateral Movement, 

(9) Collection, and (10) Command and Control. We also excluded the impact since we focused 

on exfiltration as the adversarial objective and designated exfiltration as the target variable. 

This custom-built dataset was selected to capture patterns within these ten tactics and assess 

whether their presence leads to exfiltration tactics. Fig. 1 shows 14 tactics derived from MITRE 

ATT&CK, where in this study, ten tactics were used as features, one tactic as a target feature, 

and three tactics were excluded. 

 

Figure 1. Adversarial tactics and features mapping in our modified dataset. 

Table 2. Tactics distribution in the created dataset 

Features Tactics Number of 1 

Feature_1 Initial Access 722 

Feature_2 Execution 264 

Feature_3 Persistence 3016 

Feature_4 Privilege Escalation 3218 

Feature_5 Defense Evasion 7552 

Feature_6 Credential Access 614 

Feature_7 Discovery 2369 

Feature_8 Lateral Movement 1932 

Feature_9 Collection 663 

Feature_10 Command and Control 427 

Target Exfiltration 51 

 

On the other hand, Table 2 shows the distribution of the ten tactics used as features, with 

the Exfiltration Tactic serving as the target feature in our 9602-row dataset. The table shows 

that "Defense Evasion" is the most frequently occurring tactic among the features, while 

"Command and Control" is the least frequent tactic in the dataset. On the other hand, 

"Exfiltration," as the target feature, appears only 51 times. The created dataset is referred to as 

the initial dataset, particularly in comparative analyses with datasets produced by various 

resampling methods to provide a sense of the initial state versus the post-resampling conditions. 
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3.2. Imbalance Characteristics of the Initial Dataset 

This section explains the characteristics of the initial dataset as measured by seven 

commonly used metrics to illustrate dataset imbalance. Each metric explains its purpose, 

accompanied by its calculation formula. Additionally, we provide an interpretation of the 

calculation results for each metric as applied to the initial dataset. 

3.2.1. The Imbalance Metrics 

The class distribution indicates the number of instances present in each dataset class. In a 

balanced dataset, the instances across classes are generally equal, while an imbalanced dataset 

exhibits a noticeable difference in instance counts. Recognizing the class distribution is critical 

for choosing the appropriate modeling techniques and evaluation metrics, as standard metrics 

like accuracy may not provide a reliable assessment in imbalanced situations. Meanwhile, the 

imbalance ratio is a quantitative measure to represent the imbalance between the majority and 

minority classes. This ratio is determined by dividing the count of instances in the majority 

class by that in the minority class. A higher imbalance ratio suggests a more pronounced 

disparity between classes, which can create additional challenges for classifiers. This metric is 

essential for assessing the imbalance's severity and informing the selection of techniques to 

address it effectively. In addition, the minority class percentage is a significant metric 

representing the proportion of instances in the minority class relative to the total dataset size. 

When the minority class percentage is low, models tend to favor the majority class, potentially 

causing reduced recall for the minority class. 

The CV quantifies the ratio of the standard deviation to the mean, offering insight into the 

variability within class distributions in imbalanced datasets. A high CV suggests significant 

variability relative to the mean, indicating an imbalance and inconsistent distribution within 

classes. The Gini index, commonly used to measure inequality, assesses class distribution 

disparity in imbalanced datasets. With values ranging from 0 (complete equality) to 1 

(maximum inequality), a higher Gini index reveals a more significant disparity between 

majority and minority classes. This metric is beneficial for evaluating sampling strategies or 

model adjustments aimed at reducing class imbalance. 

Entropy, measuring uncertainty or disorder, assesses the impurity of a dataset's class 

distribution. High entropy indicates a more balanced class distribution, while low entropy 

suggests dominance by a single class. When an excessive number of majority samples fall 

within the overlapping region, the probability for the majority class nears 1. In contrast, the 

minority class approaches 0, driving entropy toward its minimum value of 0. Conversely, as 

the count of majority samples approaches that of minority samples, entropy tends towards its 

maximum value of 1. Fischer's ratio, also known as Fischer's discriminant ratio [21], assesses 

class separability by comparing between-class variance to within-class variance. Higher 

Fischer's ratios indicate clearer class separability, an advantage in classification tasks. 

However, achieving high Fischer's ratios is more difficult with imbalanced datasets, as minority 

classes may be underrepresented 

3.2.2. The Initial Dataset 

The calculation results for the seven imbalance metrics of the initial dataset are presented 

in Table 3. Overall, the measurements indicate that the initial dataset exhibits severe imbalance 

characteristics. The class distribution is highly skewed, with 9,551 instances in the majority 

class and only 51 in the minority class. An imbalance ratio of 187 means that the majority class 

is 187 times larger than the minority class, accompanied by a minority class percentage of 

merely 0.53%. Additionally, a relatively high CV of 2.44 reflects a significant disparity 
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between the majority and minority classes. Likewise, the entropy value of only 0.05 shows a 

strong dominance by the majority class. Furthermore, a very low Fisher's ratio of 0.05 indicates 

poor class separability, which could result in an even more significant underrepresentation of 

the minority class. 

Table 3. Imbalance characteristics of the initial dataset 

Metrics Result 

Class Distribution 955:51 

Imbalance Ratio 187.27 

Minority Class Percentage 0.53 

Coefficient of Variation 2.44 

Gini Index 0.01 

Entropy 0.05 

Fischer's Ratio 0.05 

4. INVESTIGATION OF SMOTE VARIANTS 

This study employed five SMOTE variants: BorderlineSMOTE, KMeansSMOTE, 

SMOTEENC, SMOTEENN, and SMOTETomek. This section provides a detailed description 

of each SMOTE variant utilized, along with the post-resampling dataset size and the feature 

distribution within each resulting dataset. We then present the imbalance characteristics of each 

dataset, which are evaluated using seven metrics consistent with those applied to the initial 

dataset. Based on the values derived from these metrics, we conduct a comparative analysis 

between the initial and resampled datasets. Furthermore, we compare these metric values 

across the five SMOTE variants to determine the most suitable variant for our dataset. 

Additionally, we present a comprehensive evaluation of model performance across each 

of the five SMOTE variants using five commonly adopted classifiers: LR, NB, SVM, RF, and 

XGBoost. Model performance is assessed using six metrics: accuracy, precision, recall, 

specificity, F1-score, and geometric mean. By comparing model performance across the five 

SMOTE variants, we aim to identify the most effective resampling strategy for enhancing the 

model's efficacy with SMOTE techniques. Fig. 2 illustrates the block diagram of our study's 

investigation of SMOTE variants. 

 

Figure 2. Block diagram of our investigation on SMOTE variants. 

4.1. Resampled Datasets using SMOTE Variants 

The cleaned dataset from the previous stage is clearly imbalanced, with the majority class 

outnumbering the minority class by 93%:7%. Table 4 compares the initial dataset 
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characteristics without resampling and the five datasets generated from each SMOTE Variants. 

The table displays the number of rows for each dataset and the ratio of majority to minority 

class in percentages. 

Table 4. Comparison of dataset size and class distribution ratios after resampling 

Resampling # Rows *Ratio (%) 

Initial (without resampling) 9602 99.47:0.53 

BorderlineSMOTE 19102 50:50 

KMeansSMOTE 19104 50.1:49.9 

SMOTEENC 19102 50:50 

SMOTEENN 9520 74.61:25.39 

SMOTETomek 19102 50:50 

*Ratio between majority class and minority class 

Notably, BorderlineSMOTE, SMOTEENC, and SMOTETomek datasets have the same 

number of rows and a precisely balanced ratio. Meanwhile, the KMeansSMOTE dataset has 

the most significant number of rows and has an almost balanced ratio. On the other hand, the 

SMOTEENN dataset has the lowest number of rows, with the majority class 3 times more rows 

than the minority class. However, this does not guarantee optimal model performance.  

Additionally, to assess the number of features present, we provide each dataset's 

distribution of features (tactics), including the initial dataset and the five resampled datasets 

generated using SMOTE variants in Table 5. The table illustrates a significant variation in the 

effectiveness of different SMOTE techniques in balancing class distributions across features 

(tactics), with "Exfiltration" as the target feature. For several tactics, such as "Initial Access," 

"Execution," and "Defense Evasion," most SMOTE variants, especially SMOTENC, 

KMeansSMOTE, and BorderlineSMOTE, demonstrate substantial increases in sample counts. 

This increase indicates the strategy of these techniques in addressing class imbalance across 

non-target tactics. 

Table 5. Comparison of features (tactics) distribution across the initial dataset and 

SMOTE variants 

Tactic Initial 
SMOTE Variants (Oversampling) 

B-SMOTE1 K-SMOTE1 SMOTEENC SMOTENN SMOTE-T1 

Initial Access 722 2367 3831 5451 1241 1453 

Execution 2642 8096 8721 7385 1366 4970 

Persistence 3016 5445 3016 4209 2206 4192 

Privilege Escalation 3218 6103 3218 4411 2404 4556 

Defense Evasion 7552 10085 7553 14238 7008 13925 

Credential Access 614 614 614 614 609 614 

Discovery 2369 3312 3150 6890 4284 6669 

Lateral Movement 1932 3737 1932 2717 840 2717 

Collection 663 3824 3578 2232 1163 2030 

Command and Control 427 627 427 553 498 505 

Exfiltration2 51 9551 9553 9551 7103 9551 
1 B-SMOTE (BordelineSMOTE), K-SMOTE (KMeansSMOTE), SMOTE-T (SMOTETomek) 
2 Target feature 

Notably, SMOTENC achieves the highest augmentation for "Defense Evasion," a tactic 

with high initial counts, while "Execution" also sees a marked rise under KMeansSMOTE and 

BorderlineSMOTE, reflecting these methods' responsiveness to the initial dataset's imbalance 

patterns. Interestingly, "Exfiltration," the target feature and the rarest class in the initial dataset 

(with only 51 samples), is consistently upsampled across all SMOTE variants. The substantial 

upsampling of "Exfiltration" by each SMOTE variant highlights the importance of this target 
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class in the resampling process. Fig. 3 shows the tactics count comparison across SMOTE 

variants datasets and the initial dataset. 

 

Figure 3. Tactics count comparison across SMOTE variants datasets and the initial 

dataset. 

4.2. Imbalanced Metrics Value Across All Datasets 

In this section, we employed a multi-metric evaluation of dataset imbalance 

characteristics. The imbalance of the original and resampled datasets is evaluated using the 

seven imbalanced metrics, including class distribution, imbalance ratio, minority class 

percentage, Coefficient of Variation, Gini index, entropy, and Fischer's ratio. This investigation 

provides an in-depth view of the resampling effects. 

4.2.1. Comparison of Imbalance Metric Values 

We present the imbalance metric measurements for the initial dataset and the five SMOTE 

variant datasets in Table 6. The table shows that the initial dataset exhibits a severe imbalance, 

with a class distribution ratio of 9551:51, resulting in a high imbalance ratio of 99.47:0.53. This 

leads to a minority class percentage of only 0.53%, indicating the rarity of the "Exfiltration" 

feature. Consequently, the metrics of the Gini Index and Entropy are shallow at 0.01 and 0.05, 

respectively, reflecting the minimal uncertainty and high predictability due to the 

overwhelming presence of the majority class. The low Fischer's Ratio (0.05) suggests limited 

separability between the majority and minority classes in the initial dataset. 

Substantial changes are observed in the class distribution and associated metrics after 

applying different SMOTE variants. BorderlineSMOTE, SMOTENC, and SMOTETomek 

successfully achieve a balanced class distribution with a 1:1 imbalance ratio and a 50% 

minority class percentage. These methods also show uniform Gini Index and Entropy values 

(0.5 and 1, respectively), representing increased class uncertainty and balance. However, 

variations in the CV indicate that SMOTETomek has a higher variability in class distribution 

at 2.77, compared to SMOTENC (2.49) and BorderlineSMOTE (2.49), suggesting differing 

impacts on the distribution's stability across these techniques. Fischer's ratio is slightly higher 

for BorderlineSMOTE (0.14), indicating better class separability than SMOTETomek (0.05). 
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Table 6. Imbalances metric values 

Dataset CD* IR* MCP* CV* GI* E* FR* 

Initial (without resampling) 9551:51 99.47 : 0.53 0.53 2.44 0.01 0.05 0.05 

BorderlineSMOTE 9551:9551 50 : 50 50 2.49 0.50 1 0.14 

KMeansSMOTE 9551:9553 50.1 : 49.9 49.99 2.82 0.50 1 0.57 

SMOTENC 2417:7103 50 : 50 25.39 2.42 0.38 0.82 0.32 

SMOTEENN 9551:9551 74.61 : 25.39 50 2.49 0.50 1 0.12 

SMOTETomek 9551:9551 50 : 50 50 2.77 0.50 1 0.05 
*CD (class distribution), IR (imbalance ratio), MCP (minority class percentage), CV (Coefficient of Variation), GI (Gini 

index), E (entropy), FR (Fischer's ratio) 

In contrast, KMeansSMOTE and SMOTEENN result in distinct class distributions. 

KMeansSMOTE achieves a near-perfect 1:1 class distribution with a slight minority deviation, 

yielding a high Fischer's Ratio of 0.57, suggesting strong class separability. Meanwhile, 

SMOTEENN produces an imbalance ratio of 2.94 with a minority class percentage of 25.39%, 

positioning it as a less balanced but potentially more stable approach for specific models. The 

Entropy (0.82) and Gini Index (0.38) values for SMOTEENN indicate a moderate increase in 

class uncertainty and separability, highlighting its unique impact on dataset structure compared 

to other SMOTE techniques. 

4.2.2. Best Strategy Based on Imblalance Metric Values Across SMOTE Variants 

This section focuses on identifying the most effective SMOTE variant based on the results 

of the imbalance metrics measurements. Based on the comparison metrics presented in Table 

5, KMeansSMOTE demonstrates the most effective performance in balancing the target class, 

"Exfiltration." This method nearly achieves a 1:1 distribution with a class ratio of 9551:9553, 

yielding an Imbalance Ratio close to 1. Additionally, the Minority Class Percentage reaches 

49.99%, closely approximating 50%, indicating an almost perfect balance between the majority 

and minority classes. This balance is essential for enhancing the quality of training data, 

enabling the model to better recognize patterns within the minority "Exfiltration" class. 

Moreover, KMeansSMOTE achieves the highest CV at 2.82, reflecting consistent 

distribution across classes after rebalancing. Its Gini Index and Entropy values are near optimal 

at 0.5 and 1, respectively, indicating a balanced level of uncertainty between classes. With the 

highest Fischer's Ratio (0.57), this method also exhibits superior separability between majority 

and minority classes, which is critical for improving the model's ability to distinguish between 

them. Based on these metrics, KMeansSMOTE provides an optimal balance of distribution 

consistency, separability, and class uncertainty, making it the preferred choice for addressing 

the imbalance in the target class, "Exfiltration." We further examine cross-classifier 

performance comparison using model performance metrics to investigate resampling strategies 

and their impact on model efficacy. 

4.3. Cross-Classifier Performance Comparison 

In this section, we investigate the impact of SMOTE resampling on model performance 

assessed across five classifiers (LR, NB, SVM, RF, and XGBoost) using six classifier 

performance metrics (accuracy, precision, recall, specificity, F1-score, geometric mean) to 

establish a benchmark on how resampling strategies influence model efficacy. We present each 

classifier's model performance individually, then compare SMOTE variant performance based 

on six performance metrics within each classifier. This approach focuses on comparing the 

performance of the five SMOTE variants rather than identifying the best classifier among the 

five used. This way, we can further determine which SMOTE variant performs most effectively 

for these models. 
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4.3.1. Logistic Regression Classifier 

Based on the performance metrics across different resampling methods using LR in Fig. 

4, several insights emerge regarding the efficacy of each SMOTE variant. The initial dataset 

without resampling exhibits high accuracy (0.995) and specificity (1) but has zero values for 

precision, recall, F1 score, and geometric mean, indicating that it fails to detect minority class 

instances. This outcome underscores the limitations of unbalanced data in handling minority 

classes effectively. Among the resampling methods, KMeansSMOTE and SMOTEENN stand 

out, as they yield superior metrics across the board, with KMeansSMOTE achieving a balanced 

performance across accuracy (0.962), precision (0.933), recall (0.996), and specificity (0.929). 

Meanwhile, SMOTEENN produces the highest F1 score (0.979) and an impressive recall 

(0.989), suggesting a robust ability to detect minority instances effectively while maintaining 

good overall accuracy. 

 

Figure 4. Model performance of SMOTE variants using LR classifier. 

When examining the overall effectiveness of each SMOTE variant, SMOTEENN emerges 

as the most effective method for this classifier model. It balances detection performance across 

metrics with high precision, recall, and F1 score values while achieving a notable geometric 

mean of 0.946, indicating balanced performance across both classes. KMeansSMOTE, with a 

slightly lower F1 score and geometric mean, still performs admirably and may be a suitable 

alternative depending on specific goals. In contrast, BorderlineSMOTE, SMOTENC, and 

SMOTETomek exhibit lower values in several metrics, particularly in recall and F1 score, 

suggesting they are less effective for minority class detection in this context. Consequently, 

SMOTEENN and KMeansSMOTE are recommended for optimizing this model's performance 

across balanced metrics. 

4.3.2. Naïve Bayes Classifier 

Fig. 5 shows that the NB classifier yields varying results across resampling methods, with 

KMeansSMOTE and SMOTEENN demonstrating substantial improvements compared to 

others. Without resampling, the classifier achieves high specificity (0.945) but performs poorly 

in terms of recall (0.067), precision (0.006), and F1 score (0.012), highlighting its 

ineffectiveness in capturing the minority class. Among the resampling techniques, 

KMeansSMOTE shows the most balanced performance, with high scores across accuracy 

(0.950), precision (0.912), recall (0.996), and F1 score (0.952). This balanced metric profile 
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reflects its ability to handle class imbalance effectively in NB. SMOTEENN also performs 

well, particularly in recall (0.989) and F1 score (0.907), but its lower specificity (0.436) 

suggests some trade-offs in its balance between classes. 

 

 

Figure 5. Model performance of SMOTE variants using NB classifier. 

Considering the overall metrics, KMeansSMOTE is the best-performing variant for the 

NB classifier. It maintains high precision, recall, F1-score, and geometric mean (0.949), 

indicating stable and reliable performance across different metrics. While SMOTEENN also 

shows strong recall and F1-score, its reduced specificity could impact performance in specific 

applications. BorderlineSMOTE, SMOTENC, and SMOTETomek display lower accuracy and 

specificity values, making them less effective for NB in this context. KMeansSMOTE is 

recommended for optimal model efficacy with NB, as it provides balanced detection across 

both minority and majority classes. 

4.3.3. Random Forest Classifier 

The RF classifier shows substantial improvement across various metrics when combined 

with resampling methods, particularly in recall and F1-score. Without resampling, RF achieves 

perfect specificity (1.0) but fails to identify any instances of the minority class, resulting in zero 

values for precision, recall, F1 score, and geometric mean. This demonstrates that the model is 

highly imbalanced and fails to generalize to the minority class. When resampling methods are 

applied, metrics like precision, recall, and F1 score improve significantly, with SMOTEENN 

and KMeansSMOTE showing the most robust results, as illustrated in Fig. 6. 

Among the resampling methods, SMOTEENN provides the best performance across all 

metrics, achieving near-perfect values for accuracy (0.997), precision (1.0), recall (0.996), 

specificity (1.0), F1 score (0.999), and geometric mean (0.999). This indicates that 

SMOTEENN allows RF to balance minority and majority classes exceptionally well. 

KMeansSMOTE also performs well, with high scores in precision (0.944), recall (0.995), F1 

score (0.969), and geometric mean (0.968), showing a solid balance across metrics, though 

slightly lower than SMOTEENN. Other methods, like BorderlineSMOTE and SMOTENC, 

show good but comparatively lower performance, particularly in recall and F1 score, while 

SMOTETomek lags with a lower overall balance. Therefore, SMOTEENN is the most 

effective resampling technique for the RF classifier, followed closely by KMeansSMOTE for 

robust, balanced performance across metrics. 
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Figure 6. Model performance of SMOTE variants using RF classifier. 

4.3.4. Support Vector Machine Classifier 

Using the SVM classifier, we can see in Fig. 7 that the performance metrics improve 

considerably when resampling methods are applied, particularly regarding recall and F1 score. 

Without resampling, the classifier achieves a high specificity (1.0) but ultimately fails to detect 

the minority class, resulting in zero values for precision, recall, F1 score, and geometric mean. 

This highlights that the model is severely biased toward the majority class. However, applying 

resampling techniques will significantly enhance the classifier's ability to capture the minority 

class, reflected by notable improvements in recall and F1 score across most methods. 

 

Figure 7. Model performance of SMOTE variants using SVM classifier. 

Among the resampling techniques, SMOTEENN yields the best results, with near-perfect 

scores in accuracy (0.999), precision (1.0), recall (0.999), specificity (1.0), F1 score (0.999), 

and geometric mean (0.999). This indicates that SMOTEENN provides the SVM classifier an 

exceptional balance between both classes. KMeansSMOTE also performs well, showing high 

precision (0.944), recall (0.995), F1 score (0.969), and geometric mean (0.967), though slightly 

lower than SMOTEENN across these metrics. BorderlineSMOTE and SMOTENC offer 
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moderate performance, with BorderlineSMOTE achieving a good balance (e.g., precision of 

0.945 and F1 score of 0.876) but still falling short of SMOTEENN and KMeansSMOTE. 

SMOTETomek has the lowest performance across metrics, indicating a relatively weaker 

balance in addressing class imbalance. Overall, SMOTEENN stands out as the optimal 

resampling technique for SVM, followed closely by KMeansSMOTE for strong and balanced 

results across metrics. 

4.3.5. XGBoost Classifier 

Using the XGBoost classifier and applying resampling techniques will significantly 

improve capturing the minority class compared to the baseline model (without resampling). 

Without resampling, XGBoost performs similarly to the SVM classifier, achieving perfect 

specificity (1.0) but with zero values for precision, recall, F1 score, and geometric mean, 

indicating that the model is heavily biased toward the majority class. This result highlights the 

necessity of resampling methods to enable XGBoost to recognize and classify instances from 

the minority class effectively. 

 

Figure 8. Model performance of SMOTE variants using XGBoost classifier. 

Based on Fig. 8, we can see that among the resampling techniques, SMOTEENN again 

emerges as the best-performing method, achieving near-perfect metrics across the board with 

an accuracy of 0.9996, precision of 1.0, recall of 0.9995, specificity of 1.0, F1 score of 0.9998, 

and geometric mean of 0.9998. This suggests that SMOTEENN provides XGBoost with an 

optimal balance, allowing it to perform exceptionally well in both classes. KMeansSMOTE 

also performs strongly, with high values across precision (0.9434), recall (0.9951), F1 score 

(0.9686), and geometric mean (0.9673), making it a close alternative to SMOTEENN. 

BorderlineSMOTE and SMOTENC yield moderate performance, with BorderlineSMOTE 

achieving a good balance between metrics (e.g., F1 score of 0.8761), though lower than 

SMOTEENN and KMeansSMOTE. SMOTETomek shows the lowest performance, with lower 

scores across all metrics, indicating it may be less effective for balancing the dataset in this 

context. Overall, SMOTEENN is the optimal resampling technique for XGBoost, followed by 

KMeansSMOTE, as these two methods provide the most balanced and robust performance 

across all metrics. 
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4.3.6. Results Across Different Classifiers 

Based on the analysis results across different classifiers in Section 4.4.1. to 4.4.5, 

SMOTEENN consistently outperforms other SMOTE variants across four classifiers, 

demonstrating its strong effectiveness in handling class imbalance across different model types. 

SMOTEENN achieved near-perfect accuracy, precision, recall, F1 score, and geometric mean 

for most classifiers, demonstrating its ability to create a balanced representation of majority 

and minority classes. KMeansSMOTE, although not consistently dominant, excels in one 

classifier and provides a reliable alternative with high performance in most metrics, especially 

in recall and F1 scores. The comparison in Table 7 highlights SMOTEENN as the most 

versatile and reliable variant of SMOTE across a wide range of classifiers, making it the 

preferred choice for unbalanced data sets in various machine-learning models. 

Table 7. The six model performance metrics of five SMOTE variants across five classifiers 

Classifiers SMOTE variants Accuracy Precision Recall Specificity F1-score G-Mean 

LR 

 

Initial 0.995 0.000 0.000 1.000 0.000 0.000 

BorderlineSMOTE 0.823 0.895 0.732 0.914 0.806 0.818 

KMeansSMOTE 0.962 0.933 0.995 0.928 0.963 0.961 

SMOTEENN 0.968 0.968 0.989 0.905 0.979 0.946 

SMOTENC 0.814 0.897 0.710 0.919 0.793 0.808 

SMOTETomek 0.720 0.720 0.720 0.720 0.720 0.720 

NB 

 

Initial 0.941 0.006 0.067 0.945 0.012 0.251 

BorderlineSMOTE 0.526 0.514 0.989 0.064 0.676 0.252 

KMeansSMOTE 0.950 0.912 0.995 0.904 0.952 0.949 

SMOTEENN 0.849 0.838 0.989 0.436 0.907 0.657 

SMOTENC 0.549 0.526 0.988 0.111 0.687 0.331 

SMOTETomek 0.551 0.527 0.992 0.111 0.688 0.331 

RF 

 

Initial 0.995 0.000 0.000 1.000 0.000 0.000 

BorderlineSMOTE 0.885 0.945 0.817 0.953 0.877 0.882 

KMeansSMOTE 0.968 0.944 0.995 0.941 0.969 0.968 

SMOTEENN 0.997 1.000 0.996 1.000 0.999 0.999 

SMOTENC 0.869 0.918 0.811 0.928 0.861 0.868 

SMOTETomek 0.761 0.749 0.785 0.737 0.766 0.760 

SVM Initial 0.995 0.000 0.000 1.000 0.000 0.000 

BorderlineSMOTE 0.885 0.945 0.817 0.953 0.876 0.882 

KMeansSMOTE 0.968 0.944 0.995 0.941 0.969 0.968 

SMOTEENN 0.999 1.000 0.999 1.000 0.999 0.999 

SMOTENC 0.869 0.893 0.838 0.900 0.865 0.868 

SMOTETomek 0.760 0.748 0.785 0.736 0.766 0.760 

XGBoost Initial 0.995 0.000 0.000 1.000 0.000 0.000 

BorderlineSMOTE 0.884 0.944 0.817 0.952 0.876 0.882 

KMeansSMOTE 0.968 0.943 0.995 0.940 0.969 0.967 

SMOTEENN 1.000 1.000 1.000 1.000 1.000 1.000 

SMOTENC 0.869 0.918 0.811 0.927 0.861 0.867 

SMOTETomek 0.760 0.748 0.785 0.736 0.766 0.760 

In terms of F1-scores the very low initial results are primarily due to severe class imbalance 

in the dataset, where the minority class is vastly underrepresented. This imbalance causes 

classifiers to prioritize the majority class, resulting in high specificity (1.000) but near-zero 

recall and precision, leading to F1-scores of 0.000. The classifiers struggle to learn patterns for 

the minority class without sufficient examples, highlighting their limitations when applied to 

imbalanced datasets without preprocessing. The marked improvement in F1-scores after 

applying resampling strategies, such as SMOTEENN and KMeansSMOTE, underscores the 

critical role of addressing class imbalance to enhance model performance. 
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5. CONCLUSION 

This study addresses the class imbalance problem in datasets labeled with tactics derived 

from CVE descriptions for exfiltration classification. Our analysis highlights the severe 

imbalance in the initial dataset, marked by skewed class distribution, dominant majority 

classes, and poor separability between classes. By applying five SMOTE variants and 

evaluating their impact on imbalance characteristics and model performance, we identify 

SMOTEENN as the most effective method for achieving consistent, near-perfect performance 

across multiple classifiers. SMOTEENN's ability to maintain balance while enhancing 

accuracy, precision, recall, and F1 scores demonstrates its adaptability to diverse model types. 

Among alternative approaches, KMeansSMOTE also shows potential, particularly for 

scenarios requiring high recall and class separability. These findings underline the importance 

of selecting appropriate resampling techniques based on specific use cases. Moreover, our 

study contributes to addressing the lack of consensus on the best imbalance handling method 

by providing a multi-metric evaluation framework that reveals the strengths and weaknesses of 

each technique across different classifiers. This framework establishes a foundation for 

standardized evaluation metrics, promoting comparability and reproducibility across datasets. 

While resampling strategies offer a promising solution to address data imbalance, several 

challenges remain. These include computational overhead and training time, the sequence and 

proportion of oversampling and undersampling steps that can significantly influence 

classification outcomes, and the scalability and generalizability of methods across varying 

datasets and attack types. Additionally, the handling of sensitive data and the development of 

privacy-preserving approaches for imbalanced datasets are critical challenges that warrant 

further research. Future work will focus on integrating these techniques into real-world 

enterprise environments and advancing privacy-preserving SMOTE methods for sensitive data, 

ensuring both accuracy and privacy. By addressing these challenges, this research contributes 

to the development of more robust machine learning models capable of handling imbalanced 

datasets effectively. 
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