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Abstract: The active force control (AFC) method is 
known as a robust control scheme that dramatically 
enhances the performance of a robot arm particularly in 
compensating the disturbance effects. The main task of 
the AFC method is to estimate the inertia matrix in the 
feedback loop to provide the correct (motor) torque 
required to cancel out these disturbances. Several 
intelligent control schemes have already been 
introduced to enhance the estimation methods of 
acquiring the inertia matrix such as those using neural 
network, iterative learning and fuzzy logic. In this 
paper, we propose an alternative scheme called 
Knowledge-Based Trajectory Error Pattern Method 
(KBTEPM) to suppress the trajectory track error of the 
AFC scheme. The knowledge is developed from the 
trajectory track error characteristic based on the 
previous experimental results of the crude 
approximation method. It produces a unique, new and 
desirable error pattern when a trajectory command is 
forced. An experimental study was performed using 
simulation work on the AFC scheme with KBTEPM 
applied to a two-planar manipulator in which a set of 
rule-based algorithm is derived. A number of previous 
AFC schemes are also reviewed as benchmark. The 
simulation results show that the AFC-KBTEPM scheme 
successfully reduces the trajectory track error 
significantly even in the presence of the introduced 
disturbances. 

Key Words:  Active force control, estimated inertia 
matrix, robot arm, trajectory error pattern, knowledge-
based. 

1. INTRODUCTION 

Robot control is a challenging research area in the field 
of robotic in which a number of problems need to be 
addressed or solved in order to acquire good 
coordinated motion and force controlled performance of 
the robotic system while it is performing specific task. 
One of the major problems encountered is the 
inherent non-linear dynamic characteristics of the 
robotic system that often needs rigorous and 
complex mathematical model analysis. 
Implementing the model directly into the system 

controller is often complicated. The most popular 
and proven method that is widely employed is the 
classical control method such as the Proportional-
Integral-Derivative (PID) controller. Although this 
method is simple, practical and robust (to a certain 
degree), it possesses severe limitation when it 
comes to high-speed operation or in the presence 
of significant ‘noises’ in the system [1] as the 
control system losses its effectiveness in the 
process. These two undesirable conditions 
normally trigger further non-linearity effects and 
uncertainties into the system. Thus, it is an obvious 
indication that pure classical control alone is not 
enough to address and overcome the problem. 
Eventually, many researchers have tried other 
methods which usually include the classical 
method alongside their proposed strategies as 
means to realize an overall robust, efficient and 
effective controller[2-6]. One of these methods is 
based on the incorporation of intelligent control 
mechanism. Some researchers in this area claim to 
have achieved a degree of enhancement (value-
added) in terms of performance when applied to 
robotic system using features such as neural 
network [7], fuzzy logics [8], and iterative learning 
algorithm [9].  Most of the proposed intelligent 
control methods focus on the computation or 
estimation of the robot inverse dynamics via 
suitable intelligent algorithm or structure while in 
some other application, it is used to estimate 
parameter/s of interest. 
In this paper, we propose another intelligent method to 
indirectly control a robot arm using a knowledge-based 
method.  In a number of cases for non-linear system 
(including robotic), the knowledge-based element is 
found to be useful in enhancing the decision support 
system [10].  Using the knowledge component of a 
particular system, a semantic network analysis was 
successfully implemented [11], [12]. Once the knowledge 
component is clearly defined, the probability of the 
occurrence of event should also be determined. One of 
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the popular method to approximate the probability of an 
event is Bayes Rule [13]. 

The technique is applied to an active force control of a 
robotic manipulator. We call the system Active Force 
Control with Knowledge-Based Trajectory-Error-
Pattern Method (AFC-KBTEPM). The first part of the 
paper highlights the fundamental concepts of AFC and 
KBTEPM followed by a brief review of other AFC 
methods including AFC based on crude approximation 
(AFCCA)[14], the AFCANN (AFC And Neural 
Network) [15], and AFCAFL (AFC And Fuzzy Logic) 
[16]. Simulation study of the AFC schemes was then 
performed. Consequently, the analysis and discussion of 
the obtained results obtained are given followed by 
conclusion and further works that could be carried out.  

2. ACTIVE FORCE CONTROL 

Application of AFC to robot arm is first proposed by 
Hewit and Burdess [4]. The aim of this control method is 
to ensure that the system is stable and robust even in the 
presence of known or unknown disturbances. The main 
advantage of the method is that it provides a 
compensating action using mainly the estimated or 
measured values of certain parameters. This method 
gives benefits on reducing the mathematical complexity 
of the robot system that is known to be highly coupled 
and non-linear[4]. 

Figure 1 shows a schematic diagram of an AFC 
scheme. AFC show that the system subjecting to a 
number of disturbances remains stable and robust via 
the compensating action of the control strategy.  

The detailed mathematical analysis of the AFC scheme 
is obtained[4].  

From the Newton’s second law of motion for a rotating 
mass, the sum of all torques (T) acting on the body is 
the product of the mass moment of inertia (I) and the 
angular acceleration () of the body in the direction of 
the applied torque,  

��T = I �  ������ 

For a robot system with serial configuration,  

T + Q = I() 

where,  

T is the applied torque 

Q is the disturbance torques 

I() is mass moment of inertia or the robot arm and  is 
the robot joint angle 

 is the angular acceleration of the robot arm 

We can obtain a measurement of Q' of Q as  

Q' = I' ' - T'  (3) 

where the superscript ' denotes a measured or 
computed (or estimated) quantity. T' can be measured 
by using a current sensor (with conversion) while ' 
with accelerometer. I' may be obtained by assuming a 
perfect model or simply crude approximation.  
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Fig. 1:  A schematic diagram of an AFC scheme 

 

 

For the above open loop system, the estimated variable 
Q' is passed through a function G(s) before subtraction 

from a command vector C at a summing junction. If 
there is a suitable choice of G(s), the output X can be 
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made invariant with respect to the disturbances Q. In 
this case the selection of proper estimated inertia matrix 
I' becomes very important. 

Thus, the main computational burden in AFC is the 
multiplication of the estimated inertia matrix with the 
angular acceleration of the arm before being fed into the 
AFC feed forward loop. Apart from that, the output X 
needs to be computed from the joint angle  via 
forward kinematics and also the controller Gc(s) be 
determined.  

3. MATHEMATICAL MODEL OF THE 
ROBOT ARM  

The general equation of motion (or dynamic model) of a 
robot arm can be described as follows [14]: 

Tq = H()dd  +  h(, d) + G() + Q  (4) 

where,  

Tq is the vector of actuator torques 

H() is the N N dimensional manipulator and actuator 
inertia matrix 

h(, d) is the vector of the Coriolis and centrifugal 
torques 

G() is the vector of the gravitational torques 

Q is the vector of the external disturbance torques 

For a horizontal two-link rigid planar manipulator as 
shown in Fig. 2, its dynamic model is given by, 

Tq1 =  H11dd  + H12dd  - hd
  - 2hdd   (5) 

Tq2 =  H22dd + H21dd - hd
  (6) 

where, 

H11= m2lc12+I1 + m2(lc12+ lc22+ 2 l1lc2 cos �2 ) + 
I2  (7) 

H12 = H21 = m2l1lc2cos �2 + m2lc22  + I2 (8) 

H22  = m2lc22  +  I2 (9) 

 h =  m2l1lc2 sin �2 (10) 

m is the vector of link masses 

l is the vector of link lengths 
lc is the vector of link lengths from the joint to the center 
of gravity of the link 

2

1

l1

l2

 

Fig. 2:  A representation of a two-link robot arm 

In this study, the gravitational term in Equation (6) has 
been omitted since the arm is assumed to move only in a 
horizontal plane.  Fig. 3 shows the complete schematic 
diagram of the robot arm including the AFC for the 
robot arm shown in Fig. 2.  
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Fig. 3:  Two-link robot arm with AFC
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The notation used in Fig. 3 is as follows: 

 Ktn is the motor torque constant 

Kp and Kd are the controller gains 

x is a vector of  positions in Cartesian space 

is a vector of positions in joint space 

Ic is the current command vector 

Ia is the compensated current vector 

It is the armature current for the torque motor 

IN is the estimated inertia matrix 

Q* is the estimate of all the disturbance torques  

Tq is the applied control torque 

The subscript d expresses the velocity vector while dd is 
for the acceleration vector. The left hand side of Fig. 3 
represents the x vector (shown by subscript extension - 
bar) of the desired trajectories and the extension ref 
represents the reference vector. The controller Gc(s) 
chosen here is a resolved-motion-acceleration-control 
(RMAC) using a proportional-derivative (PD) element. 
The RMAC produces the acceleration command vector 
signal ddref which when multiplied by a decoupling 
transfer function will give the required command vector 
to the main AFC loop.  

From Fig. 3 we have, 

G(s)H(s) = 1  (11)  

where, G(s) = Ktn  and H(s) = 1/Ktn   

The equation for the estimate disturbance term is, 

Q* = IN dd - Tq  (12) 

where,  Tq = Ktn It.  From this expression, torque can 
be calculated by multiply the It to the motor constant 
Ktn, where It can be measured by using current sensor.  

4. THE NEW PROPOSED SCHEME 

The real environment of the robot system is often and 
most likely unpredictable. The system’s input error 
function may easily change whenever disturbance is 
introduced while performing a specific task. Ideally, this 
input function should be considered as one of the main 
parameter to be manipulated so that an accurate and 
robust control can be achieved by the proposed control 
strategy. The AFC schemes have been excellent in 
giving a high level of robust performance by 
minimizing this error function.  Here, we introduce a 
simplification and refinement of the input function 
using knowledge-based method applied to a two-link 
planar manipulator operated in a horizontal plane. This 
method is accomplished in view of getting better 
performance by means of suitably managing the error 
function. The idea of AFC-KBTEPM scheme can be 
seen in Fig. 4. A complete schematic diagram of the 
proposed scheme is shown in Fig. 5. The block 
containing the term KBTEPM is developed and 
modified from the fixed crude’s value of the estimated 
inertia matrix obtained in the previous study [14].  By 
giving an input function from the actual task, xbar, the 
estimated inertia matrix value IN depends on the 
‘characteristic’ of the actual task as well as the angular 
acceleration of the arm, �dd. The application of the 
new method is best demonstrated first by reviewing the 
result of the previous AFCCA method applied to the 
robot arm as described in the next section. All the 
results were based on the simulation works performed 
using the MATLAB and SIMULINK software packages 

 

 

 

 

 

 

 

 

 

Fig. 4:  The idea of AFC-KBTEPM scheme 
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4.1 KNOWLEDGE INVESTIGATION 
The knowledge that will be used as criterion-based rules 
in the proposed scheme is explored from the previous 
experimental results of AFCCA method [14]. For the 
purpose of showing the suggested method using 
knowledge-based, the same simulation of the AFCCA 

scheme is reviewed. Figure 6 shows the SIMULINK® 
model diagram of the scheme. 

A preliminary simulation of the AFCCA scheme should 
be first performed to explore the trajectory track error 
characteristic. For a fair and one-to-one comparison, all 
the simulation and other important common parameters 
for all the robot control schemes should be kept exactly 
the same. The mentioned parameters are as follows: 

 

Fig. 5:  A schematic of the AFC-KBTEPM 
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Fig. 6:  The SIMULINK® model of the AFCCA scheme 
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Robot parameters: 
Link length:  l1 = 0.25 m, l2 = 0.22 m 
Link mass: m1 = 0.3 kg, m2 = 0.25 kg 
Motor mass: mot11 = 1.3 kg ,mot21 = 0.8 kg 
Payload mass: mot22 = 0.1 kg 
Controller parameters of RMAC: 
Controller gain:  Kp = 750 /s, Kd = 500 /s2 
Motor torque constant: Ktn = 0.263 Nm/A 
Main simulation parameters: 
Integration algorithm:  Gear 
Simulation time start, tstart: 0.00s 
Simulation time stop, tstop: varies 
Minimum step size:  0.01s 
Maximum step size:   0.10s 

Sampling time:    0.01s 
Trajectory:  Circular form with centre (0.25, 0.2) in 
Cartesian space and a radius of 0.1m.  

Other parameters: 

Endpoint tangential velocity:  Vcut = 0.2 m/s 

Disturbances: a spring attached at the end of the second 
link with stiffness k = [0, 200, 400] N/m. k = 0 N/m 
denotes no disturbances. Figure 7a to 7c show the 
graphical results of the initial knowledge investigation 
experiments in AFCCA scheme considering three 
disturbance conditions; no disturbance, k = 200 N/m and 
k = 400 N/m. The Track Error (TE) represents the 
trajectory track error of the robotic arm. Figures 7b and 
7c both show a unique form of the curve consisting of 
the ‘hill and valley’ pattern that is repeated for each 
cycle of the circular-form trajectory command apart 
from the first cycle. 

(a) 

(b)

(c) 
Fig. 7:  Track error of AFCCA scheme: (a) k = 0 N/m, (b) k = 200 N/m, and (c) k = 400 N/m. 
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Figure 8 shows that each loop (cycle) of the circular-
form trajectory which is generated by the control 
scheme and at the same time producing a trajectory 
track error with two ‘hills’ and two ‘valleys’ 
respectively at 0.5 or 1.5 for the hills and at  or 2 
for the valleys.  The error is maximum when it is in the 
form of a hill and becomes minimum when it is a valley. 
This phenomenon gives us an idea to suppress the error 
by estimating the probability of the hill and the valley 
patterns (evidences).By using Bayes Rule [13], the 
posterior probability, an expression is derived as 
follows: 

( | ). ( )
( | )

( | ). ( )
j i i

i j
j i i

i

p e H p H
p H e

p e H p H



  (13) 

where, 

Hi is a hypothesis (the occurrence of hill or valley) 

ej  is an item of evidence (hill and valley) 

The posterior probability of each hill or valley is 
determined by weighting the prior probability 
occurrence of the hill or valley. By evaluating the 
trajectory track error of the circular-form trajectory 
command, we can conclude that the probability of the 
‘hill error’ and or ‘the valley error’ is equal to 1 (in the 
study, a number of trials have been experimented 
involving loops tried for more than 10 cycles; which 
give consistent result). This fact (knowledge) of the 
characteristic can be used to construct an inference 
mechanism consisting of a set of suitable rules or 
reasons to be applied in the proposed scheme as 
expressed in Fig. 9. 

For the rules, the optimum parameter for a ‘crude value’ 
is set to be equal to 0.95 [14]. The adding/ subtracting 
values are denoted by (++) or (- -) signs and the 
proposed expression can be obtained as follows: 

Kgain
YoXo

YoKVkbs
22 

  (14) 

where, 

KVkbs:   add/subtract value of the crude value 

Kgain:  calibrating gain parameter  

Xo, Yo:  relative Cartesian coordinate axis measured 
from centre of the circular-form trajectory.  

The value of Kgain would be investigated in this 
study. In fact, the ‘bad’ setting of the KVkbs will 
cause an incidental instability for the multiple 
loops. This will be explained later in the paper. 

The MAIN KNOWLEDGE Rule: 

 

IF <The Trajectory Form> IS 
<Circular Form> 

THEN   DO  <Rule1>  

ELSE <Find others Knowledge Based 
Data’s Library>  

END 

Rule1: 

IF  Absolute (Yo/Xo)  INCREASE 

THEN  [Crude’s VALUE]new = [Crude’s                          
VALUE]old ++ 

ELSE   [Crude’s VALUE]new = [Crude’s 
VALUE]old - -  

END 
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Fig. 8:  The error generated over one cycle of the circular-form trajectory
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5. SIMULATION 

5.1 SIMULATION OF THE PROPOSED 
SCHEME 
Figure 10 shows a SIMULINK model of the proposed 
AFC-KBTEPM sch. Fig. 11 shows the simulation 
results when Kgain = 0.01. According to the 
experimental results when Kgain value ranging from 
0.005 to 0.050 and with a spring force disturbance, an 
optimum Kgain obtained is 0.02. The trajectory track 
error at k = 0 N/m, k = 200 N/m and k = 400 N/m are 
shown respectively in Fig. 12. 

5.2 SIMULATION OF THE AFCANN 
SCHEME 
To ensure a fairly comparison the simulation of the 
AFCANN[14] with the same parameters is presented.  

Figure 13 shows a SIMULINK® model of the AFCANN 
scheme. Besides the main common simulation 
parameters, the following parameters were used in the 
AFCANN scheme only: 

The result of the training process is shown in Fig. 14. 
Figure 15 shows the AFCANN simulation results for the 
same conditions 

Network type: Feed-forward Neural Network 

Architecture: 2-5-2 

Training algorithm: Error-Back Propagation 

Learning rate: lr = 2.5 

Momentum constant: mc = 1.75 

Error goal: eg = 0.05 

5.3 SIMULATION OF THE AFCANN 
SCHEME 
To ensure a fairly comparison the simulation of the 
AFCANN[14] with the same parameters is presented.  

Figure 13 shows a SIMULINK® model of the AFCANN 
scheme. Besides the main common simulation 
parameters, the following parameters were used in the 
AFCANN scheme only: 

The result of the training process is shown in Fig. 14. 
Figure 15 shows the AFCANN simulation results for the 
same conditions 

Network type: Feed-forward Neural Network 

Architecture: 2-5-2 

Training algorithm: Error-Back Propagation 

Learning rate: lr = 2.5 

Momentum constant: mc = 1.75 

Error goal: eg = 0.05 
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Fig. 10:  A SIMULINK model of the AFC-KBTEPM scheme 
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(c)  

Fig. 11:  Track Errors of AFC-KBTEPM for various loading conditions at Kgain = 0.01: (a) k = 0 N/m, (b) k = 200 
N/m, and (c) k = 400 N/m 
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(c) 

Fig. 12:  Track errors of AFC-KBTEPM at Kgain = 0.02: (a) k = 0 N/m, (b) k = 200 N/m, and (c) k = 400 N/m. 
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Fig. 13:  The SIMULINK® model of AFCANN 
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Fig. 14:  Training results .
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(a) 
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(c)  

Fig. 15:  Track errors for the selected AFCANN schemes: (a) k = 0 N/m, (b) k = 200 N/m, and (c) k = 400 N/m 
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6. RESULTS AND DISCUSSION 

By evaluating the results shown in Figs. 7, 10, 11, 14 
and 15, a number of points can be highlighted for the 
purpose of comparison. We divided this analysis into 
three groups according to various types of the applied 
disturbances, i.e. for no disturbances, disturbance with k 
= 200 N/m and disturbance with k = 400 N/m. The latter 
disturbance is deliberately considered to verify the 
effectiveness of the proposed scheme. 

6.1  CASE 1: NO DISTURBANCES (K = 0 
N/M) 
Figure 16 shows the superimposed track errors of the 
AFCCA, AFCANN and AFC-KBTEPM schemes when 
there are no applied disturbances. 

It is clear that the AFCANN scheme has the least track 
error while the AFC-KBTEPM scheme shows more 
irregularity in shapes compared to others. However, it is 
useful to note that the peaks of the error pattern are less 
than 1 mm (after 2 s). The AFCANN scheme seems to 
produce the least error with the initial error registered at 
approximately 1 mm compared to an amplitude of more 
than 2 mm for the other two schemes. Although AFC-
KBTEPM has a series of higher peak errors throughout 
the simulation period, its starting error is slightly lower 
than those produced by AFCCA. 

6.2 CASE 2: DISTURBANCE WITH K = 200 
N/M 
Figure 17 shows a comparison of the track errors for 
various AFC schemes with the spring stiffness, k = 200 
N/m. 

The trajectory track errors for all the schemes increase 
significantly when a spring disturbance with k = 200 
N/m is applied to the end-effector of the robot arm. The 
most significant error pattern with high peaks is 
observed in the AFCANN scheme as shown in Fig. 16. 
The series of peak reaches more than 3 mm in 
amplitude. This is an indication of the system’s 
declining performance in terms of its robustness. This is 
followed by the AFCCA scheme. On the other hand, 
AFC-KBTEPM produces a very stable performance 
with the error pattern below the 2 mm margin.  

6.3  CASE 3: DISTURBANCE WITH K = 400 
N/M 
Figure 18 shows the track error patterns of the AFC 
schemes under study; this time considering a 
disturbance with k = 400 N/m. 

Again, it can be seen that the AFCANN scheme exhibits 
the worst performance; generating the largest error 
pattern compared to the other two schemes. Evidently, 
the AFC-KBTEPM scheme is the best performer with 
the peak errors reaching only the 2 mm mark while the 
performance of the AFCCA scheme lies in between the 
two schemes. 
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Fig. 16:  The track errors of various schemes at no disturbances

Note: 
                : AFCCA 
                : AFCANN 
                : AFC-KBTEPM 
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Fig. 17:  Comparison of the track errors at k = 200 N/m 
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Fig. 18:  Comparison of the track errors at k=400N/m 

7. CONCLUSIONS 

The advantage of using of the feature of trajectory-form 
of the robot as knowledge for reasoning investigation 
that will be applied as basis of rule-based algorithm has 
been proven in the application of the AFC within the 
simulation study. Although the AFCCA itself is 
basically suitable enough implemented at any condition 
however it still needs to be more precise in certain job. 
This investigation has shown that the AFC-KBTEPM is 
able to enhance the performance of the AFC 

significantly. The trajectory track error of the AFC-
KBTEPM scheme has marginally increased in the range 
of 1 to 2 mm only when the disturbance is applied. This 
means the proposed control scheme is proven to be very 
robust in handling the effect of the disturbances. 
However, the trajectory-form (task) features extraction 
and the proper adjustment of the parameter Kgain of the 
proposed scheme seem to provide fresh challenges for 
the researchers to fully explore the potentials of the 
method. This will be the main subject of further 
investigation.  

Note: 
                : AFCCA 
                : AFCANN 
                : AFC-KBTEPM 

 

Note: 
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                : AFC-KBTEPM 
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