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Abstract:  A new and fast approximate Hilbert 
transform based on subband decomposition is 
presented. This new algorithm is called the subband 
(SB)-Hilbert transform.  The reduction in complexity is 
obtained for narrow-band signal applications by 
considering only the band of most energy.  Different 
properties of the SB-Hilbert transform are discussed 
with simulation examples.  The new algorithm is 
compared with the full band Hilbert transform in terms 
of complexity and accuracy. The aliasing errors taking 
place in the algorithm are found by applying the 
Hilbert transform to the inverse FFT (time signal) of 
the aliasing errors of the SB-FFT of the input signal.  
Different examples are given to find the analytic signal 
using SB-Hilbert transform with a varying number of 
subbands.  Applications of the new algorithm are given 
in single-sideband amplitude modulation and in 
demodulating frequency-modulated signals in 
communication systems. 
 
Key Words:  Fast Algorithms, Hilbert Transform, 
Analytic Signal Processing.   

1. INTRODUCTION 

The subband decomposition idea applied to both 
FFT[1,2] and DCT[3,4] is used in this paper for computing 
the Hilbert transform.  The discrete Hilbert transform is 
related to the discrete Fourier transform, and both of 
them can be computed using the fast Fourier transform 
FFT [5].  The Hilbert transform of a signal is equivalent 
to a ±90° phase shift in all frequency components of 
the signal.  Considering a signal x(t) with Fourier 
transform X(f), the Hilbert transform of x(t), denoted 
by ˆ( )x t , is defined [6]: 

1 ( )ˆ( ) xx t d
t

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From this equation, we note that the Hilbert transform 
ˆ( )x t may be interpreted as the convolution of x(t) with 

the time function h(t) =1/(π t).  So for a discrete 
sequence x(n), Eq. (1) can be represented as: 
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Also we know that the convolution of two functions in 
time domain is transformed into the multiplication of 

their Fourier transforms in the frequency domain [7].  
For the time function 1/(πt), we have a Fourier 
transform of -jsgn(f), where sgn(f) is the signum or sign 
function defined as 
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Then, the Fourier transform ˆ ( )X f of ˆ( )x t is given by 

ˆ ( ) sgn( ) ( )X f j f X f   (3) 

The Hilbert transform signal ˆ( )x t  is obtained by taking 

the inverse Fourier transform of ˆ ( )X f . The analytic 
signal for a discrete sequence x(n) has a one sided-
Fourier transform since negative frequencies are zero.  
It can be determined by calculating the FFT of the 
input sequence, replacing those FFT coefficients that 
correspond to negative frequencies with zeros, and 
calculating the inverse FFT of the result.  The 
analytical signal of a real sequence is a complex 
sequence with a real part, which is the original data, 
and an imaginary part that contains the Hilbert 
transform [5].  
The following procedure is to be followed to compute 
the Hilbert transform for a discrete signal[8]:  

 
1. Calculating the FFT X(k) of the input 

sequence x(n).  
2. Creating a vector h(k) whose elements have 

the values: 
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3. Calculating the element-wise product of X 
and h. 

4. Calculating the inverse FFT (IFFT) of the 
sequence obtained in step 3. 

5. Taking the imaginary part of the result of 
the above step. 

For narrow-band signals, the subband FFT [1], [2] can be 
obtained by decomposing the input sequence into two 
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bands corresponding to low- and high-pass sequences. 
The band with the greater energy is transformed while 
the other band is ignored leading to a fast and 
approximate FFT. In this work the subband 
decomposition idea is applied to compute the Hilbert 
transform. 
The organization of the paper is as follows:  In the next 
section, the idea of the subband FFT[1], [2] is reviewed.  
Section 3 introduces the basic idea of the fast 
approximate Hilbert transform with its properties. 
Section 4 compares the complexity of the subband 
Hilbert transform with that of the full-band Hilbert 
transform.  The aliasing errors in the subband Hilbert 
transform are discussed in section 5.  Section 6 
contains applications of the fast approximate Hilbert 
transform in analytic-signal generation, in SSB-
modulation, and in FM demodulation.  In section 7, 
concluding remarks are given. 

2. SUBBAND-FFT  

In Fig. 1, a(n) and b(n) are the low-pass and high-pass 
filtered versions of x(n), with g(n) and h(n) denoting 
their factor-2 down-sampled versions, respectively: 
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nxnxnh
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 (4) 

Fig. 1:  Two-band decomposition of the subband DFT. 

The full-band size-N DFT X(k) can be obtained by 
combining the FFTs of g(n) and h(n)[1], [2]: 

).k(hF)k
NW1()k(gF)k

NW1()k(X 
 (5) 

Equation (5) is approximated for calculating only the 
low-pass band: 

( ) (1 ) ( ), (0,1, , / 4 1).N
kX k W F k k Ng» + Î -K  (6) 

The decomposition process in Fig. 1 can be repeated m 
times to get M = 2m subbands, out of which only one 
band is to be computed depending on information 
known or derived adaptively [9] about the input signal 
power distribution.  Two types of approximation errors 
(linear distortion and aliasing) are resulted from the 
decomposition and approximation processes [2].  

Substituting Fg(k) in Eq. (6) by the DFT of g(n), and 
taking g(n) from Eq.(4), we get: 
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Equation (7) can be also written as: 
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The two types of approximation errors in )(ˆ kX  can be 
taken into account in the following equation [2]: 

0 1
ˆ ( ) ( ) ( / 2)X k A X k A X k N= + +  (9) 

where A0 and A1 are two coefficients relating to linear 
distortions in the exact transform X(k) and aliasing 
error due to X(k+N/2), respectively. Noticing the first 
half of Eq. (8) shows that it is the exact transform X(k) 
multiplied by a factor of 1/2.  The value of X(k+N/2) 
can be found from X(k) by replacing each k in X(k) 
with k+N/2. Now substituting for X(k) and X(k+N/2) 
into Eq. (9) yields: 
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By comparing Eqs. 8 and 10 we obtain the following: 

0 1
1 (1 ),2

k
NA A W+ = +  (11) 

0 1
1 (1 )2

k
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Solving Eqs. 11 and 12 yields: 

0
1 (1 cos(2 / )) ,2A k Np= +  (13) 

and 

1
2sin( ) .2

j kA N
p= -  (14) 

Thus the one-stage approximation in Eq. (6) can be 
expressed as 

X1 2 2ˆ ( ) [1 cos( )] ( ) sin( ) ( )2 2 2
jk k NX k X k kN N
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where ˆ ( )X k  is the approximate, and X(k) is the true 
signal spectrum.  
For M = 2m bands of decomposition, there will be M-1 
aliasing terms, uniformly distributed on the frequency 
axis.  For the case of retaining only the low-low band 
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out of M=4 subbands in the approximation, Eq. (9) can 
be written [2]: 

10ˆ ( ) ( ) ( )4
NX k A X k A X k= + +  (16) 
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And the four aliasing coefficients are found to be:  
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3. SUBBAND HILBERT TRANSFORM 

The subband Hilbert transform is obtained using the 
following steps: 
1. Calculating the SB-FFT X of the input 

sequence, this results in a sequence of 
length 2

NL =  for half-band case, 

4
NL =  for quarter-band case, or 

generally NL M=  for M sub-bands.  

2. Creating a vector h with length L having 
the values: 
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3. Calculating the element-wise product of 
X and h 

4. Calculating the IFFT of length L for the 
sequence obtained in step 3. 

5. Taking the imaginary part of the result of 
step 4. 

All properties known for the full-band Hilbert 
transform are applicable also to the subband Hilbert 
transform if the signal to be transformed is a narrow-
band signal. Some of these properties are investigated 
in this section with simulation examples. In all these 
examples the input signal is plotted with solid-line and 
the output signal is plotted with dotted-line.  
1. The Hilbert transform of a constant is zero. Fig. 2 

shows that both full-band and half-band Hilbert 
transforms of a constant is zero.  

2. The Hilbert transform of the cosine function 
cos(2πfcnT) is equal to sin(2πfcnT). Where T is the 
sampling interval. Similarly, the function  
sin(2πfcnT) has a Hilbert transform equal to  -
cos(2πfcnT).  Both the full-band and the SB-Hilbert 
transformation produce this results, as shown in 
Fig. 3  
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Fig. 2:  Hilbert of a constant. 
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Fig. 3:  Hilbert of a cosine function. 

3. The energy content of a zero-mean signal is equal 
to the energy content of the Hilbert transform.  The 
property is tested by finding the energy of a 
sinusoidal signal (used in property 2) and the 
energy of its full-band Hilbert transform and 
subband Hilbert transform with M = 2 and M =4 
and M = 8.  It is found that the energy is almost the 
same in all cases depending on the approximation 
quality of the subband realization.  

4. The signal x(t) and its Hilbert transform are 
orthogonal.  For the same example used to prove 
the previous two properties, it is proved that, if 
ˆ( )x t is used as a full-band Hilbert transform, then: 

 ˆ( ) ( ) 0x t x t dt
¥

- ¥

=ò  (18) 

 and the result is almost zero if subband Hilbert 
transforms of M = 2 or M = 4 or M = 8 are used.  

5. The Hilbert transformation of a Hilbert transform 
produces a phase shift of  to the original signal.  
In Fig. 4, a sinusoidal signal of 50 Hz is applied to 
two stages of Hilbert transform.  In each stage 
either a full-band or a half-band Hilbert transform 
is used.  
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Fig. 4:  Hilbert of Hilbert transform. 

6. The Hilbert transform is a linear process. An input 
data sequence x(n) of length 1024 points is used 
with three impulses as follows: 

 ( ) ( 25) 1.5 ( 50) 2 ( 75)x n n n nd d d= - + - + -  

  (19) 

Knowing that the Hilbert transform of (t) is /a tp . 
Both full-band and SB-Hilbert transforms results in 
Fig. 5 prove the linearity theorem.  

4. COMPLEXITY 

The advantage of using subband decomposition 
transforms is the reduction of the complexity in com-
parison to full-band[1-4].  Reductions in complexity are 
obtained from all the steps of section 3. by using 
sequences of length L instead of N. The subband 
Hilbert transform is compared in computational 
complexity with the full-band Hilbert transform. Table 
1 shows the percentage reduction in complexity 
(measured as execution time) of the Hilbert transform, 
if SB-Hilbert transforms with different M are to be 
used instead of full-band transform.  
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Fig. 5:  Linearity Property of Hilbert Transform. 

 

Table 1:  Complexity reduction results. 
 

5. ACCURACY 

For N = 16 and M = 2 and if only the first band is 
calculated, Table 2 shows the values of the computed 
fast approximate (with aliasing errors) half-band 
Hilbert transform ˆ( )x n , assuming that the ratio of the 
frequency-transform points causing aliasing to the true 
components in the calculated band is fixed to .  
The values in Table 2 can be computed by calculating 
the aliasing errors of the SB-FFT and then finding the 
Hilbert transform of their time signal. The following 
numerical example describes this interesting result for 
N = 8 and M = 2: 
 
1. For a case of no aliasing error, a frequency signal 

of (1,1,0,0,0,0,0,1) is assumed.  The half-band 
Hilbert transform of the first two-points (the low-
band case) is found to be 0 and 0.5 respectively.  

Table 2: Approximate half-band Hilbert transform 
with aliasing errors. 

 )0(x̂  )1(x̂  )2(x̂  )3(x̂  
0 0 0.5 0 -0.5 

0.1 -0.0457 0.525 -0.0043 -0.475 
0.2 -0.0914 0.55 -0.0086 -0.45 
0.3 -0.1371 0.575 -0.0129 -0.425 

2. If an aliasing component α of 0.1 is assumed 
outside the low-frequency band, the corresponding 
frequency signal will be: 
(1,1,0.1,0.1,0.1,0.1,0.1,1).  The half-band Hilbert 
transform of the first two-points is found to be -
0.0457 and 0.525 respectively.  

3. Comparing the results of 1 & 2, the aliasing errors 
in the Hilbert transform of these two points are -
0.0457 and 0.025 respectively.  

4. The result in the last step can be found by finding 
first the aliasing errors in the subband-FFT from 
Eq. (15).  These errors are found to be (0, -0.0414j, 
-0.1j, -0.2414j) for (k = 0,1,2,3) respectively.  

5. The Hilbert transform of the corresponding time 
sequence of this error signal is found to be: -
0.0457 and 0.025 for the first two points. The 
values of the aliasing errors found from steps 3 
and 5 are the same.  

 
The following numerical example describes the 
analysis of the aliasing errors in quarter-band SB-
Hilbert transform for N = 16 and M = 4: 
 

M Reduction in Complexity 
Number of Input Points 

64 128 256 512 1024 
2 23.01% 25.91% 26.43% 28.93% 31.48% 
4 48.11% 50.45% 52.81% 54.82% 56.55% 
8 63.58% 65.61% 67.42% 69.14% 70.73% 
16 75.09% 76.38% 77.68% 79.01% 80.22% 
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1. For a case of no aliasing error, a frequency signal 
of (1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1) is assumed. The 
quarter-band Hilbert transform of the first two-
points (the low-low-band case) is found to be 0 
and 0.125 respectively.  

2. If an aliasing component of 0.1 is assumed outside 
the low-low-frequency band, and the frequency 
signal is represented as (1,1,0.1,0.1, 
0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,1), the 
quarter-band Hilbert transform of the first two-
points is found to be -0.0165 and 0.1328 
respectively.  

3. Comparing the results of 1 & 2, the aliasing errors 
in the Hilbert transform of these two points are -
0.0165 and 0.0078 respectively.  

4. The result in the last step can be found by finding 
first the aliasing errors in the-FFT from Eq. (17).  
These errors are found to be:  

  (0, -0.0153j, -0.354j, -0.077j) for (k=0,1,2,3)
 respectively.  

5. The Hilbert transform of the corresponding time 
sequence of this error signal is found to be: -
0.0165 and 0.0078 for the first two points, and this 
result is the same as that found in step 3 of this 
example.  

Interpolating the resulting length-N/2 half-band SB-
Hilbert transform by a factor of 2, leads to a length-N 
approximated Hilbert transform )(ˆ nx . Table 3 shows 
the values of the full-band Hilbert transform with 
N=16 and half-band (M=2) subband Hilbert transform 
with and without interpolating the results by a factor of 
2. The input signal has a frequency transform of: 
(1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,1,1,1). 
Results show how well the subband Hilbert transform 
values approximate those of the full-band Hilbert 
transform.  

Table 3: Interpolating the approximated Hilbert 
transform results. 

Index: n Full-band Half-band Half-band Inter. 
0 0 -0.0223 -0.0223 
1 0.2894  0.2289 
2 0.2716 0.3122 0.3122 
3 0.1591  0.1717 
4 0 -0.0011 -0.0011 
5 -0.0103  -0.0127 
6 0.0466 0.0539 0.0539 
7 0.0699  0.0541 
8 0 -0.0006 -0.0006 
9 -0.0699  -0.0518 

10 -0.0466 -0.0497 -0.0497 
11 0.0103  0.0109 
12 0 -0.0011 -0.0011 
13 -0.1591  -0.1602 
14 -0.2716 -0.2914 -0.2914 
15 -0.2894  -0.2289 

 

6. APPLICATIONS 

6.1 Analytic Signal 
There are many applications in communication where 
it is necessary to perform a 90° phase shift to the fre-
quency components comprising a signal. One common 
application is the generation of the complex-valued 
analytic signal ( )x n% . Letting )(ˆ nx  be the Hilbert trans-
form of x(n) with all frequency components shifted by 
90°, the analytic signal is given by: 

)(ˆ)()(~ nxjnxnx   (20) 

So if x(n)=cos(0nT), )(ˆ nx  will be sin(0nT) and 
)(~ nx  will be cos(0nT) + j sin(0nT), which 

corresponds to only the positive-frequency component 
of x(n). In Fig. 6, both x(n) (solid line) and )(ˆ nx  
(dotted line) are shown for full-band Hilbert transform 
and subband Hilbert transform with three different 
values of M. In all cases the fundamental frequency is 
30 Hz, and the sampling frequency is 1024 Hz.  
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Fig. 6:  Analytic signal generation. 

6.2  Single Sideband Modulation 
A SSB-modulated signal is obtained by multiplying the 
Hilbert transform of the information signal x(n) by a 
sinusoid of frequency fc and adding (or subtracting) the 
result to (or from) the product of the signal x(n) and a 
90° phase shifted sinusoid of frequency fc

[11] for upper 
and lower SSB signals generation, respectively. Fig. 7 
shows the generation of a SSB-signal with fundamental 
frequency of 15 Hz and with transmitted carrier 
frequency 250 Hz with a sampling frequency of 1024 
Hz. Both full-band and SB-Hilbert transforms with 
different numbers of subbands are used. The frequency 
spectrum of the four generated SSB-signals of Fig. 7 
are shown in Fig. 8.  
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Fig. 7:  Single-sideband modulation examples. 
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Fig. 8:  Frequency spectrum of SSB examples. 
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Fig. 9:  Demodulated FM signal examples. 

6.3 FM Demodulation 
An FM signal may be demodulated by modulating the 
Hilbert transform of the waveform by a complex 
exponential of frequency -fc, and obtaining the 
instantaneous frequency of the result[8]. In Fig. 9 a 
demodulated sinusoidal signal with a frequency 50 Hz 
is shown, the carrier frequency being 200 Hz, while the 

sampling frequency is 1000 Hz. Both full-band Hilbert 
transform and half-band Hilbert transform are used.  

7. CONCLUSION 

A new application to the subband-decomposition idea 
in computing the Hilbert transformation is presented. 
The result is a fast and approximate Hilbert transform. 
A reduction in complexity of about 20% to 30% in 
half-band and about 45% to 55% in quarter--band 
Hilbert transforms is obtained with respect to the full-
band Hilbert transform of a discrete sequence of length 
N=16 to N=1024. Properties of the approximate 
Hilbert transform are examined with different 
examples. A very interesting relation between the 
aliasing errors of the SB-FFT used for computing the 
approximate Hilbert transform and the aliasing errors 
of the computed Hilbert transform is found. Different 
simulation examples of approximate Hilbert transforms 
with different numbers of subbands are given to 
describe this relation. Application examples in 
communication systems are also included.  
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