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ABSTRACT: Rapid technological advancements have led to the widespread deployment of 

wireless sensor networks (WSNs) in industrial environments, making cybersecurity a critical 

concern in cloud computing. This paper presents a predictive framework for cloud-based 

intrusion detection and prevention for WSNs. It integrates machine learning models—

Multilayer Perceptron (MLP), Decision Tree, and Autoencoder—to precisely classify and 

mitigate various impacts of cyber intrusions on a cluster of wireless sensors. An intelligent 

prioritization and prevention system is also proposed, categorizing attacks—blackhole, 

grayhole, flooding, and scheduling—based on their impact on industrial processes. 

Experimental results indicate robust detection capabilities, with the Decision Tree achieving 

99.48% accuracy, slightly outperforming MLP at 99.37%. The Autoencoder demonstrated 

superior binary classification, distinguishing between normal and anomalous instances with 

high precision and recall rates. This framework leverages the WSN-DS dataset to simulate 

and validate its efficiency in mitigating real-time threats. Future work will focus on refining 

the prioritization model and integrating advanced machine learning techniques for enhanced 

adaptability and resilience. 

ABSTRAK: Kemajuan pesat dalam teknologi telah membawa kepada penggunaan meluas 

rangkaian penderia wayarles (WSN) dalam persekitaran industri, menjadikan keselamatan 

siber sebagai kebimbangan kritikal dalam pengkomputeran awan. Kajian ini membentangkan 

rangka kerja ramalan bagi mengesan dan mencegah pencerobohan berasaskan awan untuk 

WSN. Ia menyepadukan model pembelajaran mesin—Perseptron Berbilang Lapis (MLP), 

Pokok Keputusan (Decision Tree) dan Enkoder Automatik (Autoencoder)—bagi klasifikasi 

tepat dan pengurangan pelbagai kesan pencerobohan siber pada kelompok penderia wayarles. 

Sistem keutamaan dan pencegahan pintar turut dicadangkan, mengkategorikan serangan—

lubang hitam, lubang kelabu, banjir dan penjadualan—berdasarkan kesan terhadap proses 

industri. Dapatan eksperimen menunjukkan keupayaan pengesanan yang mantap dengan 

Decision Tree mencapai ketepatan 99.48%, sedikit mengatasi prestasi MLP pada 99.37%. 

Autoencoder menunjukkan klasifikasi binari yang unggul, membezakan antara kejadian biasa 

dan anomali dengan ketepatan tinggi dan kadar ingatan semula. Rangka kerja ini 

memanfaatkan set data WSN-DS bagi simulasi dan pengesahan kecekapan dalam 

mengurangkan ancaman masa nyata. Kajian akan menumpukan pada memperhalusi model 

keutamaan dan menyepadukan teknik pembelajaran mesin lanjutan pada masa hadapan bagi 

kebolehsuaian dan daya tahan yang tinggi. 
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1. INTRODUCTION  

Wireless Sensor Networks (WSNs) have emerged as a critical technology in various 

domains, including environmental monitoring, healthcare, industrial automation, and military 

applications. However, the clusters of wireless sensor nodes are vulnerable to multiple security 

threats due to their inherent characteristics, such as limited computational power, energy 

constraints, and wireless communication. With the increasing adoption of cloud computing, it 

becomes essential to explore its potential for enhancing the security of WSNs. Technological 

innovations like artificial intelligence (AI), machine learning, and augmented reality are 

integral to Industry 4.0. These technologies provide intelligent assistance, streamline processes, 

and increase productivity across various industrial tasks [1]. A Wireless Sensor Network 

(WSN) is the interconnection of wireless sensors and devices. These networks are vital for 

collecting, transmitting, and analyzing real-time data essential for process optimization and 

decision-making. WSNs act as the industrial setup’s nerve center, gathering data on motion, 

temperature, pressure, and other parameters. They enable seamless communication between 

devices, systems, and people, offering greater scalability and flexibility than traditional wired 

systems. WSNs can be easily expanded, reconfigured, and adapted to various industrial 

environments [2]. However, WSNs face several Internet security challenges. The increased 

number of device connections raises vulnerability to cyberattacks, necessitating strong 

cybersecurity measures to protect sensitive data. Signal interference and reliability issues in 

complex industrial environments affect network performance. Using battery-powered sensors 

poses challenges, as maintaining prolonged battery life and energy efficiency is crucial for 

consistent and reliable operation.  

Due to the convergence of digital technologies, WSNs are crucial for real-time data 

transfer. This research is motivated by the dynamic and evolving nature of cyber threats. This 

requires framework development with well-defined priorities. Several Internet attacks pose a 

greater danger and have a more significant impact on the cloud environment. This research 

addresses the dynamic nature of cyber threats in WSNs, proposing a framework that leverages 

predictive techniques to prioritize and mitigate attacks based on their severity and impact. 

Unlike traditional reactive systems, this framework aims to proactively detect and neutralize 

threats, ensuring minimal disruption to industrial processes. 

Integrating cloud computing with wireless sensor networks (WSNs) has become 

increasingly prevalent among researchers due to the enhanced processing capabilities and 

scalable resources that the cloud infrastructure provides. This integration simplifies collecting, 

storing, and analyzing large volumes of data generated by sensor nodes. However, the 

simplification also introduces additional security challenges, especially in situations involving 

limited computational resources and energy constraints of sensor nodes. To ensure data 

transmission security, storage, and processing, it is critical to have high integrity, 

confidentiality, and availability of sensitive information. This study leverages predictive 

techniques like machine learning and data analytics to identify potential security threats and 

vulnerabilities within a wireless sensor network. These algorithms can improve security by 

predicting and mitigating attacks before a system is compromised. However, implementing 

such an algorithm involves examining complex issues, such as trade-offs between security and 

performance, the accuracy of predictive models, and the efficient management of limited 

resources.  
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There are numerous open issues related to this research. These include the resource 

constraints of sensor nodes. The sensor nodes are challenged by processing power, memory, 

and battery life in this context. These constraints must be considered when implementing 

security mechanisms and predictive techniques to avoid node overload and resource depletion. 

Also, data storage and transmission challenges must be addressed by proposing an effective 

strategy or algorithm to minimize energy consumption while ensuring data integrity and 

security. The security of the internet cloud is paramount. This means data integrity and 

confidentiality must be assured when they are generated from the sensors. They must not be 

tampered with or be vulnerable to any threats during transmission. A Robust Access Control 

management strategy must be implemented to prevent unauthorized access to sensitive data 

stored in the cloud. The network system must have a better detection and mitigation strategy 

against attacks, such as denial-of-service (DoS), eavesdropping, and data tampering. 

Addressing these open issues in this paper will develop secure and efficient cloud computing-

based systems that manage wireless sensor node clusters. Using predictive techniques can be a 

promising avenue to enhance security.  

2. LITERATURE REVIEW  

This section reviews relevant literature on cloud computing-based security analysis for 

wireless sensor node clusters using predictive techniques. Integrating cloud computing with 

WSNs offers numerous benefits, including scalable storage, robust computational capabilities, 

and centralized management. However, the distributed nature and resource limitations of 

WSNs introduce significant security challenges. Recent studies highlight applying predictive 

techniques, such as machine learning and data analytics, to provide proactive security measures 

by identifying potential threats before they cause harm. This review also examines current 

trends, challenges, and solutions associated with leveraging cloud computing and predictive 

approaches for WSN security. 

2.1. Security Threats in WSN 

Wireless Sensor Networks (WSNs) are inherently vulnerable to various cybersecurity 

threats due to their distributed nature, limited computational resources, energy constraints, and 

typical deployment in hostile or unattended environments. Common threats include 

eavesdropping, where unauthorized parties intercept data transmissions, potentially leading to 

privacy breaches or data manipulation [3]. Another significant threat is node capture, where 

attackers physically access nodes to extract sensitive information, such as cryptographic keys, 

which can then be used to launch further attacks or manipulate network operations [4], [5]. 

Denial-of-Service (DoS) attacks overload networks or specific nodes with traffic, disrupting 

services and depleting resources, rendering nodes unavailable for legitimate tasks. 

More advanced threats include blackhole attacks, where compromised nodes drop all 

received packets, causing data loss and potential network isolation, and grayhole attacks, which 

selectively alter or drop packets, complicating threat detection [6]. Sybil attacks involve a 

malicious node presenting multiple identities to disrupt data aggregation, voting, or routing 

protocols. Wormhole attacks tunnel messages between network locations to create false views 

of the network, misleading routing protocols and disrupting operations. Sinkhole attacks occur 

when a compromised node falsely advertises an optimal route to attract traffic, leading to data 

interception or denial of service. Additionally, Hello flood attacks exploit routing protocols by 

sending or replaying numerous "Hello" packets, causing energy depletion as nodes attempt to 

respond. 
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Mitigation strategies for these threats include encryption, authentication, intrusion 

detection systems (IDS), secure routing protocols, redundancy, and multipath routing. 

However, given the resource constraints in WSNs, these solutions must be lightweight and 

efficient to ensure their practicality [6]. 

2.2. Cloud Computing in WSNs 

Integrating cloud computing with Wireless Sensor Networks (WSNs) brings significant 

advantages, opening new possibilities for data management, analysis, and application 

deployment [7]. By leveraging the cloud's computational power and storage capabilities, this 

integration addresses WSNs' inherent limitations, such as constrained processing power, 

memory, and energy efficiency. One of the key benefits of cloud computing in WSNs is its 

scalability, enabling administrators to efficiently handle the growing volumes of data generated 

by large-scale WSN deployments without overwhelming local resources. 

Cloud platforms also provide robust storage and data management capabilities, allowing 

for long-term storage of sensor data and facilitating historical data analysis using tailored 

applications [8]. Furthermore, cloud-based solutions enhance data processing and analytics, 

offering powerful computational resources for real-time processing, machine learning, and big 

data analytics to extract actionable insights. The cloud’s remote accessibility further enables 

the centralized management and monitoring of WSNs without requiring physical proximity. 

However, these benefits come with potential security vulnerabilities, such as unauthorized 

access and data breaches, highlighting the necessity for secure transmission protocols and 

reliable intrusion detection mechanisms to safeguard sensitive data. 

2.3. Predictive Security Techniques 

Predictive security techniques utilize advanced analytics, machine learning (ML), and 

artificial intelligence (AI) to anticipate and mitigate cyber threats before they occur. These 

techniques identify vulnerabilities, anomalous patterns, and emerging threats by analyzing 

historical and real-time data [9]. To identify potential security risks, threat intelligence and 

analysis aggregate data from various sources, such as threat feeds, dark web monitoring, and 

incident reports. In application, threat intelligence helps create predictive models recognizing 

early indicators of potential attacks or vulnerabilities. 

Machine learning and AI-based anomaly detection algorithms identify deviations from 

normal network traffic and system process behavior. This approach is effective in detecting 

zero-day attacks, insider threats, and other unknown risks by recognizing unusual patterns that 

may signal malicious activity. Specifically, network traffic patterns are analyzed to detect 

anomalies, suspicious communications, or signs of a security breach [10]. This helps identify 

command-and-control communications, data exfiltration, and other malicious activities. 

In predictive security, machine learning models, such as neural networks, decision trees, 

and autoencoders, are particularly effective in identifying abnormal patterns in network traffic. 

These models enable proactive defenses, reducing the likelihood of successful cyberattacks. 

Research into predictive techniques for security analysis, especially in wireless sensor 

networks (WSNs), has shown promising results for threat identification and mitigation. For 

example, a machine learning-based approach for anomaly detection in WSNs, using supervised 

learning algorithms to classify normal and abnormal behaviors, is presented in [14]. The study 

demonstrates the high accuracy of predictive models in detecting intrusions. Additionally, [15] 

examines neural networks for intrusion detection in WSNs, proposing a hybrid model that 

combines feature selection with neural network classifiers to enhance detection performance 

while minimizing computational overhead. Furthermore, predictive analytics in cloud 
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environments, focusing on cloud-based machine learning models to analyze large volumes of 

sensor data, is demonstrated in [15], aiming to predict and prevent security incidents in real-

time. 

2.4. Summary of Related Work 

Cloud computing-based analysis of security has been leveraged in WSNs to overcome 

resource constraints. It is also leveraged to mitigate scalable storage and enable sophisticated 

data processing on the internet. In [11], the authors develop a cloud-based architecture to 

manage WSNs. It also highlights how cloud services can centralize data storage and processing. 

In addition, it examines offloading computational tasks from resource-limited sensor nodes. 

Research in [12] discusses the advantages of using cloud computing for data aggregation and 

analytics. This facilitates additional efficiency in network management and decision-making 

processes. However, considering security threats and challenges in WSNs, some vulnerabilities 

of sensors with limited energy resources, inefficient computational capabilities, and 

susceptibility to physical tampering have been extensively studied. Some common security 

threats in WSNs are examined in [13]. These include eavesdropping, data injection, node 

compromise, and denial-of-service (DoS) attacks. In the research, more emphasis is placed on 

lightweight security mechanisms to operate within WSN constraints. 

Table 1. Summary of Related Works 

Ref Contribution Results Limitation 

[1] 

The paper examines potential 

replay-attack vulnerabilities in 

SECS/GEM systems by 

proposing a detection and 

prevention system against 

attacks. 

Achieved an effective 

mechanism that identifies 

and prevents replay attacks 

on SECS/GEM 

communications. 

However, the authors were unable 

to propose an effective 

mechanism that resists security 

attacks such as DoS, forgery, 

modification, and man-in-the-

middle attacks. These are 

suggested for future work.  

[2] 

The paper proposed a 

hierarchical intrusion detection 

algorithm to group sensor nodes 

based on functional assignment 

to lessen energy consumption 

during threat detection. 

 Presented an ideal system 

for WSNs with limited 

resources. The detection 

interval is moderate, and 

detection accuracy is high. 

However, the authors were unable 

to enhance the detection of 

multiple intrusion patterns.  

[3] 

The paper presented a 

framework that combines 

preventative and deterrent 

strategies to reduce the danger 

of insider attacks.  

Achieved a better regulatory 

framework on information 

security ethics. 

However, the authors were unable 

to examine intrusion detection 

and prevention. The focus was 

only centered on the human and 

behavioral aspects of cyber 

misconduct and security. 

[4] 

The paper presented a detection 

strategy for creating an active 

defense system using deception 

technology. The framework can 

be used to conceptualize a 

Hybrid Threat Model.  

Illustrated how deception is 

used to validate network 

resilience. Using in-network 

deception for threat 

detection exhibits how 

attack information can be 

generated to accelerate 

incident response and 

strengthen network defenses.  

However, the authors were unable 

to manage the issues of reactive 

defenses, such as intrusion 

detection systems, which are 

prone to false positives and 

potentially lead to analyst alert 

fatigue and decreased 

effectiveness. 

2. METHODOLOGY 

This section provides a framework design for developing a cloud-based architecture that 

uses predictive techniques to integrate WSN with the Internet cloud service. This includes a 
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dataset aggregation design pattern using a communication protocol to effectively transmit data 

from a sensor node to the Internet cloud and prevent attacks and intrusions. During 

implementation, integrating machine learning algorithms such as decision trees, support vector 

machines, multilayer perceptrons (MLP), autoencoders, and neural network models to 

accurately detect and classify different types of attacks, including blackhole, grayhole, 

flooding, and scheduling attacks, is also conducted. This can potentially predict security threats 

on sensor data. In terms of implementation, we deployed the designed predictive model in a 

testbed environment using a cluster of wireless sensor nodes and the Internet cloud. 

2.1. Design of the Proposed Methodology 

The design describes the dataset, system architecture, block diagram of the system, flow 

chart, and components required for successful implementation. 

2.1.1. Dataset 

The models implemented in this framework will be evaluated with WSN-DS. This open-

source dataset from Kaggle is for intrusion detection systems in wireless sensor networks. This 

dataset simulates various denial-of-service (DoS) attacks in WSNs using the LEACH (Low 

Energy Adaptive Clustering Hierarchy) protocol. We further determine the impact of the 

framework dataset by dividing it into two sections. These are: the training set and the test set. 

The training set comprises 80% of the total records in the dataset and will be used to train our 

models. However, the test set comprises 20% of the records and will be used to test and validate 

the model.  

 

Figure 1. Intrusion Detection Systems Dataset for Wireless Sensor Networks  

2.1.2. Block Diagram 

The block diagram provides a high-level overview of the components' interactions within the 

wireless sensor network system. The primary components include the Raspberry Pi 3 

microcontroller, sensors, power source, and the MCP 3008 Analog-to-Digital converter. 
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Figure 2. Block Diagram for Cloud-based WSN using Deep learning 

Based on Figure 2, the Raspberry Pi microcontroller implements the intrusion detection and 

prevention logic. The Raspberry Pi is ideal for this project due to its affordability, versatility, 

and built-in connectivity, which make it suitable for prototyping and deploying IoT-based 

systems. It has extensive community support that provides valuable resources for 

troubleshooting and development. The Raspberry Pi has built-in Wi-Fi and Ethernet 

connectivity, which is essential for creating networked systems. This feature is vital for 

simulating real-world Industry 4.0 environments, where seamless communication between 

devices is a cornerstone. The Raspberry Pi can also run various AI and machine learning 

frameworks, such as TensorFlow and scikit-learn. This compatibility is essential for 

implementing the AI-driven detection and classification models integral to the project. Using 

the Raspberry Pi allows for the development of a prototype that can be scaled and implemented 

in real-world industrial settings. Its portability and ease of use make it an ideal choice for testing 

and demonstrating the proposed cybersecurity framework. 

For the MCP 3008 Analog-to-Digital Converter, since the Raspberry Pi is fundamentally a 

digital device, any I/O done through its GPIO pins will happen through high (one) and low 

(zero) states. When input signals are analog (as in the case of our WSNs), they need to be 

converted to the digital domain so the Raspberry Pi can understand them. The MCP3008 is a 

10-bit 8-channel analog-to-digital converter chip that performs this operation. 

The Stop Button is connected to one of the Raspberry Pi’s GPIO pins. Its function serves as an 

interrupt/end button for the code's implementation. The algorithm is set to run continuously until a 

high-priority threat is detected and preventive actions are implemented. The user can end the 

program/system at their convenience by providing a stop button. 

Based on the prototype sensors, the WSN comprises four different sensor types, each of which 

outputs an analog signal. The choice of these four specific sensors was made with several 

considerations. Each sensor is meant to simulate one of the four attack types. This framework is 

trained to conduct smart detection, which means blackhole, flooding, gray hole, and scheduling 

attacks. 
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2.1.3. Flowchart 

The flowchart outlines the sequential steps in the system's operation, from data acquisition 

to decision-making and action execution, as shown in Figure 3. 

 

Figure 3. Flowchart for cloud-based WSN using deep learning 

We initialize the Raspberry Pi microcontroller and other design components in the 

simulation process. The dataset from a different Excel application is loaded and uploaded using 

the import command on the WSN-DS dataset. For data preprocessing, we run commands such 

as clean, normalize, and prepare a dataset for analysis. This includes extracting features (X) 

and labels (y) from the data frame. Data is split into training and testing sets, and 

standardization is applied. The next process is model training. This is where the core logic of 

the framework is implemented. Three models are used to train the framework comprehensively: 

the autoencoder, decision tree, and multilayer perceptron. We present additional information 

for the model training discussion in this paper's implementation section. Also, data is read from 

the sensors and preprocessed. If there is no command from the user to halt execution, then 

proceed to intrusion detection; otherwise, terminate. We then check input from sensors against 

the trained data from the models. If the result comes back as positive, i.e., intrusion/threat is 

detected, then check for the type of attack and the priority assigned to it. The priority of an 

attack depends on what kind of industry the system is being used in, and as such, is dynamic. 

Also, if the attack is of high priority, preventive actions should be immediately implemented, 

and the program should end. Then, if the attack is of lower priority, raise a warning and closely 

monitor the inputs from that sensor while continuing to take inputs. 

2.2. Implementation 

Implementing the proposed methodology involves using a simulation tool to model the 

cloud-based intrusion detection and prevention framework using predictive techniques and a 
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deep learning algorithm on wireless sensors. We also conduct performance evaluations of some 

parameters to deploy on a functional system prototype. 

2.2.1. Simulation Tool 

The implementation utilizes a QEMU-based simulation environment to replicate real-

world scenarios. Python libraries, including TensorFlow and scikit-learn, support developing 

and testing machine learning models. The simulation evaluates the system’s performance under 

various cyberattack scenarios, ensuring its robustness and reliability. 

2.2.2. Data Collection & Preprocessing 

The WSN-DS dataset underwent preprocessing steps to improve data quality and 

consistency. These steps included: 

➢ Normalization: Ensuring uniform data scales. 

➢ Feature Extraction: Identifying relevant attributes for model training. 

➢ Splitting: Dividing the dataset into 80% training and 20% testing sets. 

This is done to have reliable information supplied on the wireless sensors fully secured in 

the cloud environment. Both real-time and historical data are used. The process of loading the 

dataset and preprocessing for the wireless sensors is presented based on the script in Figure 4. 

 

Figure 4. Loading the WSN-DS dataset and preprocessing 

The historical data helps understand patterns, while real-time data detects ongoing threats 

in the cloud environment. Data preprocessing includes cleaning, filling gaps, removing 

duplicates, correcting inconsistencies, and normalizing data for machine learning. Based on 

cybersecurity techniques and cloud services, extracting relevant features from raw data 

involves various algorithm choices and identifying potential threats or anomalies. 
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2.2.3. AI-Based Detection and Classification for Cloud Intrusions 

An AI-driven intrusion detection and classification system safeguards Industry 4.0 WSNs. 

Three different AI models, namely, Decision Tree, Multilayer Perceptron (MLP), and 

Autoencoder, are implemented using a publicly available WSN dataset. Cybersecurity 

intrusions are detected and classified with a particular emphasis on flooding, scheduling, black 

hole, and gray hole attacks. Each selected model has a distinct function in recognizing and 

categorizing cyberattacks, as shown in Figure 5. The Python library and dynamic AI libraries 

were leveraged due to their strong AI modeling support, particularly (sklearn, Tensorflow, 

Pandas, Numpy, and Keras). 

 

Figure 5. Importing AI and Machine Learning Libraries 

2.2.4. The Autoencoder 

This unsupervised learning approach is applied to data compression and feature learning. It 

is a powerful feature that presents adequate results for anomaly detection in the cloud 

environment. It also recognizes anomalies or deviations from the learned patterns by recreating 

the input data, as adopted in [1]. 
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Figure 6. The Autoencoder Model Definition and Training   

2.2.5. Autoencoder Model Definition: 

Sequential() initializes a linear stack of layers. 

Dense() layers are fully connected layers. 

input_dim=X_train.shape[1] specifies the input dimension for the first layer based 

on the number of features in X_train. 

activation='relu' uses Rectified Linear Unit activation function for hidden layers. 

activation='sigmoid' uses Sigmoid activation function for the output layer to 

reconstruct input data between 0 and 1. 

compile (optimizer='adam', loss='mean_squared_error') configures the model for 

training with Adam optimizer and Mean Squared Error loss function. 

EarlyStopping is a callback that stops training when a monitored metric has stopped 

improving. 

monitor='val_loss' monitors validation loss. 

patience=5 waits for 5 epochs after the validation loss has stopped improving. 

restore_best_weights=True restores model weights from the epoch with the best value 

of the monitored quantity. 

2.2.6. Training the Autoencoder: 

fit() trains the autoencoder model on X_train with itself (X_train) as both input 

and output. 

epochs=20 specifies the number of training epochs. 

batch_size=32 determines the number of samples per gradient update. 

validation_data=(X_val, X_val) uses X_val for validation during training. 

callbacks=[early_stopping] applies early stopping during training to prevent 

overfitting. 

2.2.7. Encoding Data: 

Sequential(autoencoder.layers[:2]) creates an encoder model using the first two 

layers of the trained autoencoder. 
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encoder.predict(X_train) and encoder.predict(X_test) encode X_train and X_test 

data into compressed representations (X_train_encoded and X_test_encoded) using 

the trained encoder model. 

2.2.8. Multilayer Perceptron (MLP) 

A Multilayer Perceptron is a type of neural network that is highly accurate at finding 

complicated patterns and connections in data. Its ability to learn from both structured and 

unstructured data makes it useful for finding simple and complicated attack patterns [3]. As 

shown in Figure 7, the MLP Classifier Implementation is explained as follows. 

2.2.9. MLP Classifier Definition: 

MLPClassifier is a multi-layer perceptron classifier from sklearn.neural_network 

module. 

hidden_layer_sizes=(64, 32) defines two hidden layers with 64 and 32 neurons, 

respectively. 

max_iter=200 sets the maximum number of iterations for training. 

activation='relu' uses Rectified Linear Unit activation function for hidden layers. 

solver='adam' uses Adam optimizer for training. 

random_state=42 sets the random seed for reproducibility. 

2.2.10. Training the MLP Classifier: 

mlp.fit(X_train_encoded, y_train) trains the MLP classifier on the encoded training 

data (X_train_encoded) and corresponding labels (y_train). 

2.2.11. Evaluating the MLP Classifier: 

mlp.predict(X_test_encoded) predicts labels for the encoded test data 

(X_test_encoded). 

accuracy_score(y_test, mlp_predictions) computes the accuracy of predicted labels 

(mlp_predictions) compared to true labels (y_test). 

classification_report(y_test, mlp_predictions) generates a detailed classification 

report including precision, recall, F1-score, and support. 

2.2.12. Decision Tree 

We use this model to organize data into a tree-like structure to conduct AI-based decisions 

on the smart sensors using predetermined conditions. The decision tree classification model is 

intuitive and can handle numerical and categorical data, making it suitable for classifying 

different types of cloud intrusion and detection attacks based on the specific parameters and 

characteristics we mentioned. This research presents the decision tree for this cloud service as 

follows. 

120



IIUM Engineering Journal, Vol. 26, No. 2, 2025 Ahmed et al. 
https://doi.org/10.31436/iiumej.v26i2.3393 

 

 

 

Figure 7. MLP and Decision Tree Model Implementation 

The Decision Tree Classifier Implementation in Figure 7 is explained below: 

2.2.13. Decision Tree Classifier Definition: 

DecisionTreeClassifier is a classifier from sklearn.tree module. 

random_state=42 sets the random seed for reproducibility. 

2.2.14. Training the Decision Tree Classifier: 

dt.fit(X_train, y_train) trains the Decision Tree classifier on the training data 

(X_train) and corresponding labels (y_train). 

2.2.15. Evaluating the Decision Tree Classifier: 

dt.predict(X_test) predicts labels for the test data (X_test). 

accuracy_score(y_test, dt_predictions) computes the accuracy of predicted labels 

(dt_predictions) compared to true labels (y_test). 

classification_report(y_test, dt_predictions) generates a detailed classification 

report including precision, recall, F1-score, and support. 

2.2.16. Intelligent Prioritization and Prevention System 

This paper implemented a smart prioritization and prevention system framework in a cloud 

environment, as shown in Figure 8. Based on their significance, this system categorizes various 

types of attacks (blackhole, grayhole, flooding, and scheduling). Blackhole attacks, for 

instance, are deemed critical in sectors like robotics control and energy management due to 

their potential to disrupt vital systems. Grayhole attacks, which selectively alter packets, are 

common in quality assurance and asset tracking, affecting data accuracy. Flooding attacks, 

prevalent in smart logistics and supply chain visibility, overload networks with excessive 

traffic. Scheduling attacks target manufacturing processes and healthcare equipment, 

impacting timing and scheduling systems. To proactively prevent such threats, attacks are 

prioritized based on their impact on Industry 4.0 scenarios. Prevention measures include setting 

up verification environments, utilizing validation tools, deploying traffic analysis and rate-

limiting methods, and employing time synchronization procedures. These tailored prevention 

plans aim to enhance the safety and reliability of Wireless Sensor Networks (WSNs). 
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3. RESULTS AND DISCUSSION 

This paper uses deep learning to implement a predictive framework for cloud-based 

intrusion detection and prevention in wireless sensor networks. The concept of the deep 

learning algorithm used has significantly improved the accuracy and efficiency of cloud 

intrusion detection and prevention in WSNs. This simulation will demonstrate three distinct 

machine learning models implemented based on the cloud-based intrusion and prevention 

system for wireless sensors. These are: Decision Tree, Multilayer Perceptron (MLP), and 

Autoencoder. The evaluation results are highlighted below: 

3.1. Multilayer Perceptron (MLP) 

MLP presented the best classification approach for cloud-based WSN intrusions. As 

evidenced in Figure 9, this research achieves 99.37% simulation accuracy.  

 

Figure 8. Intelligent Prioritization and Prevention Logic   

 

Figure 9. Accuracy, precision, recall, and F1 score for the MLP model  
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Based on Figure 9, a simulation is conducted for accuracy, precision, recall, and F1 score 

for different attack types in the cloud computing environment. In the MLP model, Normal and 

TDMA classes were examined. This is to indicate high accuracy in positive predictions. 

However, the TDMA class has a slightly lower recall rate, suggesting that some real TDMA 

instances are missed. The Blackhole, Flooding, and Grayhole classes show a good balance 

between precision and recall, reflected in their high F1-Scores. The 'Macro Avg' and 'Weighted 

Avg' rows highlight the MLP model's consistently high performance across the dataset. This 

indicates the robust classification capabilities of the MLP model in this multiclass problem. In 

addition to the MLP model's precision, recall, and F1 scores per class, Figure 9 presents the 

Normal class with an exceptional precision of 99.7%, and the TDMA class also achieves 

99.7%, demonstrating the model's effectiveness in reducing false positives. The Grayhole class 

has a precision of 94%, while the Blackhole and Flooding classes show strong precisions of 

93% and 99.9%, respectively, indicating effective reduction of false positives. 

3.2. Decision Tree (DT) 

DT in this simulation presents effective accuracy during attack identification and 

prediction in cloud-based networks, which is crucial for cybersecurity (see Figure 10). The 

macro average and weighted average metrics demonstrate our model's overall high 

performance across the dataset, underscoring the robust capability of DT handling multiclass 

classification problems. 

 

Figure 10. Impact of Decision Tree Classifier   

Figure 10 shows a simulation based on accuracy, precision, recall, and F1 score for 

different attack types in the cloud environment. The results measure the precision score per 

class, where the Decision Tree is robustly classified in all instances. For precision, 99% is 

achieved for the "Normal" class. This indicates high accuracy in detecting typical occurrences 

and reducing false positives. For Blackhole and Grayhole classes, we achieved precisions of 

95.82% and 98.89%. This shows its effectiveness in classifying all kinds of intrusions. The 

flooding class achieves a precision of 92%. This suggests a slightly higher chance of false 

positives. Overall, the Decision Tree model shows strong performance across all classes. In 

addition, the recall score per class is presented to indicate the model's ability to classify each 

class accurately. With high recall values for "Normal" (98%) and "Blackhole" (95%), the model 
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effectively captures most real occurrences in these classes. For the Grayhole class, we achieved 

a recall of 98%. That means the model minimizes false negatives by efficiently identifying 

instances of network intrusions. 

3.3. Autoencoder 

As shown in Table 2, Autoencoder results highlight the performance metrics of a binary 

classification model that distinguishes between normal and anomalous instances. This 

simulation's precision for normal and anomalous instances is high, at 0.95 and 0.88. This 

indicates the model predicts an instance as normal or anomalous. The recall for normal and 

anomalous instances is 0.88 and 0.95, showing the model captures 88% of actual normal 

instances and 95% of actual anomalous instances. The F1-score for the Autoencoder model is 

0.91 for normal instances and 0.92 for anomalous instances. This indicates enhanced balance 

between precision and recall. Therefore, the Autoencoder model outperforms other models 

during instance identification. Overall accuracy of the Autoencoder model is 0.91. This means 

it can correctly identify 91% of the total instances. For sensitivity, the Autoencoder model is 

88%, and thus performs well in identifying positive instances out of all positive ones. For 

specificity, the Autoencoder model, being 95%, performs well in identifying negative instances 

out of all actual negative instances. Considering sensitivity and specificity, the Autoencoder 

model effectively identifies positive and negative instances. These results are presented in 

Table 2. 

Table 2. Training and Validation Results of Autoencoder 

Class Precision Recall F1-Score Accuracy Sensitivity Specificity 

Normal 99% 88% 91% 

91% 88% 95% 
Anomaly 88% 95% 92% 

Macro Average 92% 91% 91% 

Weighted Average 92% 91% 91% 

 

As shown in Table 2, the training and validation of the Autoencoder model are conducted 

across 20 epochs, along with the reconstruction error report. An enhancement is noted for 

accuracy from 84.90% in the first epoch to 87.81% in the final epoch, with corresponding 

decreases in loss values. The validation accuracy mirrors this trend, reaching 87.81% by the 

end of the training period (this is only one of many iterations). This indicates that the model 

learns effectively and generalizes well to unseen data. The mean reconstruction error is 

0.250247, which is presented using a standard deviation of 0.238110, suggesting that most 

reconstruction errors are low, though there is some variability. The minimum error is 0.038404, 

and the maximum error is 26.071553. The 25th, 50th, and 75th percentiles are 0.094400, 

0.128891, and 0.233322, respectively, indicating that most reconstruction errors are below 

0.233322. Furthermore, the Autoencoder Reconstruction Error Report is presented in Figure 

11. 

The performance of the Multilayer Perceptron (MLP) model significantly enhances the 

effectiveness of the Decision Tree model, resulting in improved accuracy, precision, recall, and 

F1 scores. This improvement is particularly evident in detecting and classifying cloud-based 

cybersecurity intrusions, underscoring the models' potential for robust threat identification. The 

findings indicate optimizing the MLP model yields better precision in detecting cloud-based 

intrusions within wireless sensor networks. Additionally, the results for the Decision Tree 

model are analyzed using various averaging methods, including micro, macro, weighted, and 

sample averages, to comprehensively evaluate its performance. These insights highlight the 
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complementary strengths of the MLP and Decision Tree models in addressing cybersecurity 

challenges in cloud and wireless sensor network environments. 

 

Figure 11. Autoencoder Reconstruction Error Report 

3.4. Limitations 

Observed limitations include increased computational delays on the Raspberry Pi during high-

traffic scenarios. Addressing these limitations through hardware upgrades or algorithmic 

optimization will enhance the system’s efficiency. 

3.5. TESTING AND EVALUATION 

Testing is conducted to evaluate the precision of the implemented predictive system. The 

evaluation considers a cloud computing scenario involving wireless sensor clusters in the cloud 

during intrusion detection and prevention actions. The technique involves, first, the use of an 

Internet cloud-based framework to secure and analyze real-time wireless sensor clusters. This 

includes detecting and classifying a wide range of cloud-based cybersecurity intrusions, such 

as data exfiltration, denial-of-service attacks, and unauthorized access attempts. Second, we 

perform intelligent prediction and prioritization to assess the framework’s accuracy. This 

ensures that the model can accurately identify potential threats in the Internet cloud under 

specific algorithmic conditions. Finally, proactive measures are implemented to prevent attacks 

on the system's capacity, mitigating the impact of cloud-based breaches and enhancing real-

time defense mechanisms through adaptive security approaches. 

4. CONCLUSION AND FUTURE WORK 

This paper outlined a comprehensive research study investigating cloud computing-based 

security analysis on wireless sensor node clusters using predictive techniques. It actively 

implements an intelligent and robust predictive framework for cloud-based intrusion detection 

125



IIUM Engineering Journal, Vol. 26, No. 2, 2025 Ahmed et al. 
https://doi.org/10.31436/iiumej.v26i2.3393 

 

 

and prevention for Industry 4.0 using wireless sensor networks as follows. Firstly, an AI-based 

detection mechanism is implemented to recognize and classify wireless sensors using a cloud 

computing strategy and cybersecurity intrusions. Three distinct machine learning models 

(multilayer perceptron, autoencoder, and decision tree) are implemented for cybersecurity 

intrusion detection and classification within WSNs. Secondly, an intelligent prioritization 

model is implemented to give priorities to cyber threats based on their nature and impact. 

Finally, a prevention system is implemented to mitigate the impact of cybersecurity intrusions 

on the cloud effectively. The result presents significant advancements in WSN security, with 

implications for various applications. Leveraging advanced algorithms such as machine 

learning algorithms, intelligent prioritization mechanisms, and proactive safety measures 

enhances the framework's security and resilience against evolving cyber threats. Future 

research will explore advanced ensemble techniques to improve model performance, adaptive 

learning algorithms to enhance resilience against evolving threats, and real-time deployment 

scenarios to validate the framework’s effectiveness in industrial environments. 
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