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ABSTRACT: Several low-cost force plates have been proposed as alternatives for laboratory-

grade force plates. Nevertheless, the inability to quantify bilateral ground reaction force 

(GRF) prevents these inexpensive force plates from being used for biomechanical analysis 

and certain clinical metric acquisition. This study developed deep-learning models, such as 

autoencoder and U-net, to predict bilateral GRF from vertical GRF measured using a low-

cost custom force plate during sit-to-stand, gait initialization, and gait. Results indicated that 

the U-net model, which utilized STFT vertical GRF as input, performed the best. In addition 

to predicting the mediolateral GRF measured during sit-to-stand, the model accurately 

predicted the anterior-posterior and mediolateral GRF for sit-to-stand, gait initialization, and 

gait in the test dataset, achieving high Pearson's correlation coefficient, coefficient of 

determination, and intraclass correlation coefficient values of over 0.90, 0.79, and 0.89, 

respectively. The model demonstrated a higher Pearson's correlation coefficient compared to 

three related previous studies that utilized different methods to predict anterior-posterior GRF 

and six studies in inferring mediolateral GRF. The results demonstrated the potential of TFU 

and custom force plate as a GRF measurement tool to perform bio-mechanical analysis. 

ABSTRAK: Beberapa plat daya kos rendah telah dicadangkan sebagai alternatif kepada plat 

daya berkualiti makmal. Walau bagaimanapun, ketidakmampuan untuk mengukur daya reaksi 

tanah (GRF) secara bilateral menghalang plat daya yang murah ini daripada digunakan untuk 

analisis biomekanik dan pengambilan metrik klinikal tertentu. Kajian ini membangunkan 

model pembelajaran mendalam, seperti autoencoder dan U-net, untuk meramalkan GRF 

bilateral daripada GRF menegak yang diukur menggunakan plat daya khas kos rendah semasa 

pergerakan duduk-ke-berdiri, permulaan berjalan, dan berjalan. Hasil menunjukkan bahawa 

model U-net, yang menggunakan GRF menegak STFT sebagai input, memberikan prestasi 

terbaik. Selain meramalkan GRF mediolateral yang diukur semasa duduk-ke-berdiri, model 

ini juga meramalkan dengan tepat GRF anterior-posterior dan mediolateral untuk duduk-ke-

berdiri, permulaan berjalan, dan berjalan dalam set data ujian, mencapai nilai koefisien 

korelasi Pearson, koefisien penentuan, dan koefisien korelasi intrakelas yang tinggi melebihi 

0.90, 0.79, dan 0.89, masing-masing. Model ini menunjukkan koefisien korelasi Pearson yang 

lebih tinggi berbanding tiga kajian terdahulu yang berkaitan yang menggunakan kaedah 

berbeza untuk meramalkan GRF anterior-posterior dan enam kajian dalam menyimpulkan 

GRF mediolateral. Hasil kajian menunjukkan potensi TFU dan plat daya khas sebagai alat 

pengukuran GRF untuk melakukan analisis biomekanik. 
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1. INTRODUCTION

The force plate is the gold standard for measuring the ground reaction force (GRF) and the 

center of pressure (CoP) exerted by a person's movement, where the obtained data can be 

utilized for biomechanical analysis. The GRF represents external forces acting on the human 

body from the ground, while the CoP represents the position upon which the GRF works. A 

laboratory-grade force plate usually consists of a six-axis load cell enclosed in a flat rectangular 

case, which measures the three-dimensional GRF and moments. The CoP is then computed 

based on the recorded GRF and moments. Both GRF and CoP are necessary for determining 

the forces and torques withstood by various human body components in biomechanical 

analysis. In addition, the force plate is essential in acquiring various GRF- or CoP-derived 

metrics that assess the elderly or patients' health conditions in clinical settings. These 

applications demonstrate the importance of force plates in biomechanical and clinical domains. 

In laboratory-grade force plates, the high production cost remains one of the concerns. For 

example, AMTI, Bertec, and Kistler force plates cost between USD 10,000 and 20,000. These 

prices restrict the availability of force plates in clinical or biomechanical fields, mainly when 

the budget is tight. The costing issue frequently occurs in clinical facilities worldwide, where 

the spending is directed towards other instruments with a higher return on investment than the 

force plate. In third-world countries, the affordability problem is even more severe, where less 

capital is invested in research. As a result, the clinical and biomechanical research that employs 

force plates is hampered in developing countries. On the other hand, the scalability of a force 

plate is infeasible due to the high cost. An example that demands force plate scalability involves 

a task under study, which must be performed over a long distance, requiring many force plates 

to provide sufficient coverage. 

Several techniques that avoid the use of force plates have been introduced to address the 

concerns. This usage often involves inverse dynamic optimization and machine learning 

models. Accelerometers are also used instead of a complete inertial motion capture system to 

simplify the GRF prediction [6] further. However, when external pressures other than GRF are 

applied to the participants, the accuracy of these methods may be compromised [7]. Therefore, 

pressure-sensing insoles offer another alternative that can consider external forces [8-10]. 

However, these commercialized insoles are usually costly [8; 10]. Moreover, when fewer 

pressure sensors are used during movements (such as calf raises), the GRF prediction model 

applied with a low-cost customized insole may be unreliable [9]. 

Meanwhile, previous studies suggested low-cost force plates as alternatives to laboratory-

grade force plates [11; 12]. A low-cost force plate typically consists of four single-axis load 

cells positioned vertically to measure the vertical GRF. However, no load cell faces the lateral 

direction to measure the bilateral GRF. When an individual performs tasks that generate 

perceivable bilateral GRF, the bilateral GRF will not be identified and analyzed. 

The reaction of a single-axis load cell to off-axis loading may provide insight into 

addressing the issue of low-cost force plates. The load cell strain gauge generates values that 

depend on the force-induced strain. Generally, strain is highest in the direction of the primary 

applied force, while the off-axis loading creates minor strain. This minor strain is due to the 

Poisson effect, which influences the signals. The changes in readings can then determine the 

extent of off-axis loading. In other words, the vertical GRF readings from the four independent 

load cells on the inexpensive force plate estimate the off-axis bilateral GRF. To the authors' 

knowledge, no previous studies have investigated the algorithm for computing the bilateral 

GRF from the vertical GRF recorded using low-cost force plate load cells. 
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This study aimed to develop a low-cost custom force plate to acquire bilateral GRF, in 

which deep learning models were trained to predict bilateral GRF from vertical GRF. 

Considering the necessity of bilateral GRF in biomechanical analysis and clinical settings, the 

prediction of bilateral GRF for sit-to-stand, gait initialization, and gait was investigated. With 

the proposed method, the low-cost force plates, which previously were unable to measure 

bilateral GRF, could now be applied to predict bilateral GRF. The improved low-cost force 

plates, which were more affordable and easily accessible to clinicians and researchers with 

tight budgets, could potentially be used for biomechanical analysis with enhanced accuracy 

and acquisition of bilateral GRF-derived clinical assessment metrics. The scalability issue in 

biomechanical analysis could be overcome by acquiring multiple low-cost force plates at a 

reasonable price as compared to laboratory-grade force plates. 

2. MATERIALS AND METHOD 

2.1. Participants 

As the intraclass correlation coefficient (ICC) was applied to evaluate the model accuracy 

in this study, as mentioned in Section "Statistical Analysis," the sample size to achieve an ICC 

precision of ±0.02 was calculated [13]. The expected ICC was set at 0.98 based on a study on 

low-cost force plates in measuring GRF during sit-to-stand [11]. The confidence interval was 

set as 95%, with two raters (laboratory-grade and custom force plates). The following criteria 

were used for participant selection: 

• Being 18 years of age or older; 

• Being able to stand for more than one hour; 

• Being able to engage in physical activity without restriction; 

• Not having a musculoskeletal or neurological disorder; 

• Not taking medication that affects body balance; 

• Not being pregnant; 

• Being able to provide informed consent. 

This study, with the protocol code USM/JEPeM/PP/23020164, was approved by the Ethics 

Committee of Universiti Sains Malaysia. Table 1 summarizes an overview of the participants' 

information. 

Table 1. Summary of the information regarding the participants in this study 

Information Value 

Gender (male/female) 10 / 10 

Age (year, mean ± standard deviation) 30.65 ± 8.48 

Height (cm, mean ± standard deviation) 165.05 ± 7.99 

Weight (kg, mean ± standard deviation) 63.59 ± 10.68 

2.2. Apparatus 

The custom force plate with dimensions of 676 mm × 400 mm × 49 mm comprised a 

rectangular board, an ESP32, four HX711, and four half-bridge strain gauge single-axis load 

cells, which were used in typical digital bathroom scales. The cost of the custom force plate 

was less than USD$50, at least 200 times cheaper than a laboratory-grade force plate. The 

custom force plate has been granted an exemption from the registration of medical devices by 

the Medical Device Authority (MDA), Ministry of Health Malaysia, under protocol number 
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CIU-20230226-11. Figure 1 exhibits the top and bottom views of a custom force plate. A 4060-

05 Bertec (laboratory-grade force plate) was used as the gold standard to evaluate the accuracy 

of the model. 

 

Figure 1. (a) The top view of the custom force plate. (b) The bottom view of the custom 

force plate. 

2.3. Experimental Procedures 

Before the experiment began, the custom force plate was placed on the Bertec force plate. 

The participants were asked to perform three tasks on the stacked force plates based on the 

procedures described in previous works: sit-to-stand [12], gait initialization [14], and gait [15]. 

When the participants conducted the tasks, forces were transmitted through the contact surfaces 

of the feet to the stacked force plates. Subsequently, vertical and bilateral GRF, which acted on 

the participants's feet, were generated according to the types of tasks. The three-dimensional 

GRF readings from the Bertec force plate and vertical GRF measurements from the custom 

force plate were then recorded at 500 Hz and 80 Hz sampling rates, respectively, and each task 

was repeated 10 times. 

2.4. Data Preprocessing 

A median filter with a window size of five was applied to custom force plate readings to 

remove outliers. Bertec force plate values were low-pass filtered using a zero-phase fourth-

order low-pass Butterworth filter. The critical frequency was adjusted to half of the sampling 

rate of the custom force plate. The values measured with the Bertec force plate were then 

interpolated to match the sampling rate of the custom force plate. 

2.5. Dataset Preparation 

The complete dataset of 20 participants was randomly divided into training [fourteen 

participants (70 %)], validation [three participants (15 %)], and test datasets [three participants 

(15 %)], as shown in Figure 2. The dataset splitting ratio was applied according to previous 

research on gait cycle prediction models [16]. Each dataset included patches from the Bertec 

force plate's anterior-posterior and mediolateral GRF (model output) and the custom force 

plate's individual load cell vertical GRF (model input). To expand the dataset size, the readings 

were randomly cropped into smaller patches with a size of 𝑛𝑡𝑡. A total of 40 patches were 

cropped from each sit-to-stand trial recording, whereas 20 patches were generated from a 

recording of the gait initialization or a gait trial, as the sit-to-stand trial took longer. The 

training, validation, and test datasets comprised 16800, 3600, and 3600 patches, respectively. 
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Following the rule of 10 events per variable [17], the minimum amount of data required was 

10 times the amount of input required for the deep learning models. Considering the maximum 

length of model input, 𝑛𝑡𝑡 =  112, as indicated in Table 2, and channel number 4 

corresponding to the four load cell readings, the minimum number of training dataset readings 

was 4480 (10 × 112 × 4). Therefore, the number of training data utilized in this study, 16800, 

was deemed appropriate. The mean and standard deviation obtained from the training dataset 

were used to standardize the patches from all datasets. 

The Short-Time Fourier Transform (STFT) was used to convert the patches into the time-

frequency domain input and output to explore if representing the input in time-frequency form 

could enhance model accuracy. A Fourier transform window of 62 data points was employed 

to produce real and imaginary values, with 32 points on a frequency axis. The number of strides 

of the window sliding was set as 16, significantly less than the window size of 62, to generate 

a smooth output. An additional 62 subsequent data points from full trial readings were added 

to the patches to ensure enough data points were accommodated in the STFT window. 

2.6. Model Architecture 

Autoencoder [18] and U-net [19] were used in this study to predict bilateral GRF. The 

autoencoder was a neural network trained to compress input into a latent representation with a 

smaller dimension through an encoder. Later, a decoder was employed to reconstruct the output 

from the latent representation. Throughout the training process, the autoencoder acquired 

efficient representations, allowing for dimensionality reduction, feature extraction, anomaly 

detection, and even data generation through manipulation of the latent space. U-Net was similar 

in that it consisted of an encoder and a decoder. The difference was that the encoder's hidden 

layers were concatenated to the decoder's hidden layers with similar dimensions. This reduced 

the information loss, which may happen in an autoencoder [20], and allowed precise 

localization in generating the output [19].  
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Figure 2. A flow chart shows the dataset preparation for model training. 

Different model architectures were developed to receive input and produce output in the 

time and time-frequency domains (see Section "Data preparation"). Subsequently, four 

different model architectures, time domain autoencoder (TA), time domain U-Net (TU), time-

frequency domain autoencoder (TFA), and time-frequency domain U-Net (TFU), were 

constructed. Several hyperparameters related to the model architectures were then modified in 

the hyperparameter optimization to acquire the optimal model architectures (see Section 

"Hyperparameter optimization"). Figures 3 and 4 depict the optimal architectures for the TA, 

TU, TFA, and TFU models determined through hyperparameter optimization. The following 

discussion of the model architecture and hyperparameter optimization was conducted using the 

figures. 
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hyperparameter optimization. The dotted lines are not part of the model architectures. 
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Figure 4. The optimal U-net model architectures are determined from the 

hyperparameter optimization. The dotted lines are not part of the model architectures. 

The input for the time domain models (TA and TU) consisted of a two-dimensional patch 

with size 𝑛𝑡𝑡 × 4. Based on the random cropping operation described in Section "Data 

preparation," the first dimension represented the time axis with size 𝑛𝑡𝑡. The vertical GRF data 

points from the four custom force plate load cells were represented by the last dimension 

(channel having a size of four). The output was a two-dimensional patch with size 𝑛𝑡𝑡 × 2, 

where the anterior-posterior and mediolateral GRF of the models was predicted using the 

channel with size two. A three-dimensional 𝑛𝑡𝑡𝑓 ×  32 ×  8 patch functioned as the input for 

the time-frequency domain models (TFA and TFU). The time and frequency axes were 

represented by the first (which had a size nttf) and the second dimensions (which had a size 

32), respectively. Additionally, the real and imaginary values generated with STFT from the 

four custom force plate load cell measurements were stored in the eight channels. The output 
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was a three-dimensional patch with size 𝑛𝑡𝑡𝑓 ×  32 ×  4. The four channels also represented 

the real and imaginary values of the model-predicted STFT-transformed anterior-posterior and 

mediolateral GRF. Different ntt and nttf were applied in hyperparameter optimization to 

investigate the optimal input receptive field. 

In a typical convolutional layer, l, the value of the output feature, yi,j,k
l  located at the ith 

row and jth column in the kth feature map was calculated with Eq. (1) [21], 

 𝑦𝑖,𝑗,𝑘
𝑙 = 𝒘𝑘

𝑙 𝑇
𝒙𝑖,𝑗

𝑙 + 𝑏𝑘
𝑙  (1) 

where 𝒘𝑘
𝑙  is the weight, 𝑏𝑘

𝑙  is the bias of the kth filter, and 𝒙𝑖,𝑗
𝑙  is the input value at the ith row 

and jth column of the lth layer. Gaussian error linear unit (GELU) activation function is shown 

in Eq. (2) [22], where x is the function input while y is the function output. 

 𝑦 = 0.5x (1 + tanℎ (√
2

π
(x + 0.044715x3))) (2) 

A fully-connected layer is the matrix multiplication between a one-dimensional input 

vector, 𝑥, and a two-dimensional weight matrix, 𝑊, as stated in Eq. (3) [23], 

 𝑦 = 𝑊𝑥 + 𝑏 (3) 

where b is the scalar bias, and y is the one-dimensional output vector. Bilinear interpolation is 

described by Eq. (4) and (5) [24], 

 𝜔(𝑡) = {
1 − |t|, 0 ≤ |t| ≤ 1

0, otℎers
 (4) 

 𝑦 = [ω(∆i) ω(1 − ∆i)] [
x00 x01

x10 x11
] [

ω(∆j)
ω(1 − ∆j)

] (5) 

where 𝑦 is the interpolated value, x represents the values at the four adjacent corners of a square 

with coordinates (0, 0), (0, 1), (1, 0), (1, 1), Δi and Δj denote the positions of y in relative to x 

with coordinate (0, 0). The maximum pooling layer is defined by Eq. (6) [21], 

 yI,j,k
l = pool(xm,n,k

l ), ∀(m, n) ∈ ℛI,j (6) 

where yi,j,k
l  is the maximum value located at the ith row and jth column in the kth feature map 

of the lth layer obtained from ℛi,j, which is a group of adjacent values around the location (i, 

j). 

In Figures 3 and 4, nlc1 represents the number of the first hidden layer channels. Following 

a dimensional reduction of the time or frequency axis, the number of channels in the subsequent 

encoder hidden layers was consistently doubled. In autoencoder models like TA and TFA, 𝑛𝑐𝑠1 

signifies the number of convolutional layers with stride as one applies after each dimensionality 

reduction. The hyperparameters 𝑛𝑙𝑐1, 𝑛𝑑𝑟, and 𝑛𝑐𝑠1 are optimized in the hyperparameter 

optimization to achieve adequate model capacity and complexity [25]. The hyperparameter 

optimization was conducted on U-net models (TU and TFU) to identify the optimal dropout 

rate (𝑟𝑑) for reducing overfitting in the training dataset [19]. 

Autoencoder and U-net were selected as they performed effectively in the signal analysis. 

[26-28]. Even though there were several previous studies that applied machine learning models 

to predict GRF [3; 6; 8; 9; 29], these models were not used as they only accepted data points 

from a single time frame. It was doubted that a data point of vertical GRF recorded with the 

four load cells on a custom force plate could provide enough information to carry out bilateral 
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GRF prediction. On the other hand, as compared to recurrent neural network (RNN)-based 

models, autoencoder and U-net models were relatively less computationally expensive to train, 

considering the backpropagation in the time dimension, especially when the RNN sequence 

was long [30]. 

2.7. Model Training 

Google Jax and the NVIDIA RTX 2060 Super GPU were used to implement the model 

training. During each training iteration, a batch of inputs with a size of 64 was fed into the 

model to generate the expected outputs. A batch size of 64 was chosen for its positive impact 

on model accuracy and its compatibility with a higher learning rate, facilitating accelerated 

model training [31]. The loss was calculated using the mean square error. The weight decay 

rate (rwd) was implemented across all models to apply L2 norm regularization to the weights, 

reducing overfitting to the training dataset.  

In the case of the autoencoder models (TA and TFA), L1 norm regularisation of hidden 

unit activations was conducted with a sparsity constant (ks) to explore whether a sparse 

autoencoder could generalize more effectively than one without sparse representation. Only 

the bottleneck hidden unit activations were considered in the L1 norm regularisation to prevent 

excessive regularization of the models. The values of rwd and ks were optimized using 

hyperparameter optimization. The losses of the autoencoder (lossA) and U-net (lossU) are 

obtained using Eq. (7) and (8), respectively, as follows: 

 lossA = ‖Ŷ − Y‖
2

+ rwd ∙ ‖W‖2 + ks ∙ ‖H‖1 (7) 

 lossU = ‖Ŷ − Y‖
2

+ rwd ∙ ‖W‖2 (8) 

where Ŷ is the predicted output; 𝑌 is the actual output, 𝑟𝑤𝑑 is the weight decay rate; 𝑊 refers 

to all layer weights; 𝑘𝑠 is the sparsity constant; 𝐻 refers to the bottleneck hidden unit 

activations. 

The weights and biases were tuned using the Adam optimizer. The learning rate (𝑟𝑙) was 

optimized using hyperparameter optimization. Two phases constituted the model training, 

during which the models were trained for 100 epochs in the initial phase. Early stopping was 

performed using the epoch number determined in the first phase to reduce the overfitting of the 

training dataset. 

2.8. Hyperparameter Optimization 

Hyperparameter optimization was necessary to tune hyperparameters, which must be fixed 

before model training and could not be estimated through data learning [32]. The optimal 

hyperparameters for training models that produced good outcomes were obtained after 

employing hyperparameter optimization. Table 2 tabulates the list of hyperparameters that are 

optimized in this study. Remarkably, the range of 𝑟𝑙 was determined based on the learning rate 

used in the previous work that analyzed signals with autoencoder, 10-4, 10-3, and 10-2 [33]. 

Apart from these values, smaller numbers such as 10-6 and 10-5 were used for 𝑟𝑙 to avoid 

exploding gradient as the number of layers applied in the models could be more than that in 

the previous work [33]. The limited time and computational resources required to train the 

models led to the implementation of Bayesian optimization [34]. The training of 50 models 

was conducted for each architecture, including TA, TFA, TU, and TFU. The model with the 

lowest minimal validation loss score was then selected as the most effective model for the 

corresponding architecture. Minimal validation loss was used as the model selection metric 

because it accounted for overfitting to the training dataset compared to training loss [35]. Even 

though test loss exhibited a similar characteristic to minimal validation loss, test loss was not 
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applied in model selection to avoid train-test contamination in evaluating the performance of 

the selected models [36]. 

Table 2. Summary list of the hyperparameters to be optimized, description, targeted 

models, and the values. 

Hyperparameter Description 
Targeted 

Models 
Values 

ntt 
Dimension of time axis for time-

domain input and output 
TA, TU 16, 48, 112 

nttf 
Dimension of time axis for time-

frequency domain input and output 
TFA, TFU 

2, 4, 8 (corresponded to 16, 

48, and 112 values of ntt 

after STFT) 

nlc1 
Number of channels of first hidden 

layer 

TA, TFA, 

TU, TFU 
16, 32, 64, 128 

ndr 
Number of dimensional reductions in 

time and frequency axis of encoder 

TA, TFA, 

TU, TFU 
2, 3, 4, 5 

ncs1 

Number of convolutional layers with 

stride as one after each dimensional 

reduction 

TA, TFA 1, 2, 3 

rd Dropout rate TU, TFU 0, 0.25, 0.5, 0.75 

rwd Weight decay rate 
TA, TFA, 

TU, TFU 
10-8, 10-7, 10-6, 10-5, 10-4 

ks Sparsity constant TA, TFA 0, 10-7, 10-6, 10-5, 10-4 

rl Learning rate 
TA, TFA, 

TU, TFU 
10-6, 10-5, 10-4, 10-3, 10-2 

2.9. Model Deployment 

The best model of each architecture was employed to predict the bilateral GRF readings 

of complete sit-to-stand, gait initialization, and gait trials in the training dataset (inclusive of 

the validation dataset) and test dataset. Initially, if a time-frequency domain model (such as 

TFA and TFU) was used, STFT was applied to the complete vertical GRF readings of the 

individual load cell. The trial readings were then cropped into patches with 𝑛𝑡𝑡 or 𝑛𝑡𝑡𝑓 input 

size and fed into the model. For the cropping operation, sliding windows with a stride of 50% 

of the input size were applied. Subsequently, the average of the overlapping outputs for the 

model was calculated. If the time-frequency domain model was implemented, inverse STFT 

was applied to the averaged output. Lastly, the expected time series bilateral GRF represented 

the model's output. 

2.10. Statistical Analysis 

Prior to the analysis, the bilateral GRF was normalized using the participant's weight to 

obtain a value expressed as a percentage of body weight (% BW). To determine the extent of 

the difference between predicted readings and their actual counterparts, the Root Mean Square 

Error (RMSE) and relative RMSE (rRMSE) between the actual and predicted bilateral GRF 

readings were computed [37]. The Pearson correlation coefficient (ρ) was also calculated to 

evaluate the linearity between predicted and actual readings. The value of ρ was important for 

assessing the accuracy of predicted readings. If predicted readings showed a strong linear 

correlation with actual readings, the model could infer the trend of actual readings with minimal 

residual noise. The equation of ρ is shown in Eq. (9) [38], 

 ρ =
∑(xp−x̅p)(xa−x̅a)

√(∑(xp−x̅p)2 ∑(xa−x̅a)2)
 (9) 
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where 𝑥𝑝 is predicted reading, x̅p is the mean of predicted readings, 𝑥𝑎 is actual reading, and 

x̅a is the mean of actual readings. Based on the ranges of ρ, the strength of the correlation is 

considered [39] as follows:  

• 0.9 is "very strong" 

• 0.7–0.9 is "strong" 

• 0.4–0.7 is "moderate" 

• 0.2–0.4 is "weak"  

• < 0.2 is "very weak"  

The coefficient of determination (R2) was calculated to assess the fit of the predicted 

readings to the actual readings. A good fit between predicted and actual readings was 

suggested, with R2 exceeding 0.8 [40]. The agreement between predicted and actual readings 

was assessed using the intraclass correlation coefficient [ICC (2, 1)] through the application of 

the two-way mixed-effects model (single rater type and defining the definition as absolute 

agreement) [41]. The definition is relevant to measuring the model performance, where the 

actual and predicted readings acquired from the same tasks must be equal to achieve absolute 

agreement. ICC (2, 1) is calculated according to Eq. (10), 

 ICC (2, 1) =
MSR−MSE

MSR+(kr−1)MSE+
kr
n

(MSC−MSE)
 (10) 

where MSR is the mean square for trial, MSE is the mean square for error, MSC is the mean 

square for actual and predicted readings, kr is the number of raters (which is one since only 

actual readings are used as the gold standard), and n is the number of readings. The agreement 

is rated based on the ICC (2, 1) ranges [41] as follows: 

• 0.9 is "excellent" 

• 0.75–0.9 is "good" 

• 0.5–0.75 is "moderate" 

• < 0.5 is "poor" 

3. RESULTS 

The optimal hyperparameter sets were obtained via hyperparameter optimization, as 

tabulated in Table 3. Model training with these hyperparameters yielded TA, TFA, TU, and 

TFU models with the lowest minimal validation loss. 

Table 3. Summary of the optimal hyperparameter sets for TA, TFA, TU, and TFU 

models 

Hyperparameter 
Autoencoder U-net 

TA TFA TU TFU 

ntt 112 - 112 - 

nttf - 8 - 8 

nlc1 64 64 64 128 

ndr 3 2 4 2 

ncs1 2 1 - - 

rd - - 0 0.5 

rwd 10-6 10-7 10-5 10-5 

ks 10-5 10-5 - - 

rl 10-4 10-4 10-4 10-3 
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Figure 5. Graphs of loss versus epoch for training of different models. 

The graphs of loss versus epoch are plotted in Figure 5 for the training of each model listed 

in Table 3. The training and validation losses during model training without and with early 

stopping, as highlighted in Section "Model training," are shown. For all models, the losses 

decreased and converged towards a horizontal level over training epochs, indicating that the 

configurations listed in Table 3 were suitable for conducting stable model training. Validation 

losses did not exhibit a clear U-shaped curve, indicating that overfitting to the training dataset 

did not occur to a significant extent. By implementing early stopping at the epoch when 

minimum validation loss was recorded, overfitting to the training dataset could be further 

reduced. 
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Figure 6. Graphs of RMSE, rRMSE, ρ, R2, and ICC (2, 1) versus task in measuring 

anterior-posterior GRF. The tasks include sit-to-stand (STS), gait initialization with the 

left foot (GIL), gait initialization with the right foot (GIR), gait with the left foot 

stepping on a force plate (GL), and gait with the right foot stepping on a force plate 

(GR). The validation dataset was included in the training dataset. 

537



IIUM Engineering Journal, Vol. 26, No.1, 2025 Yeo et al. 
https://doi.org/10.31436/iiumej.v26i1.3379 

 

Figure 6 portrays the RMSE, rRMSE, ρ, R2, and ICC (2, 1) between the predicted and 

actual anterior-posterior GRF readings. According to the figure, the TFU model yielded the 

best results for the test dataset. The TFU model surpassed the TA, TFA, and TU models, 

achieving lower RMSE and rRMSE for anterior-posterior GRF in all tasks. The TFU model 

also attained the highest test dataset ρ, R2, and ICC (2, 1) for all tasks. According to the test 

dataset, the TFU model demonstrated excellent agreement (ICC > 0.9), good fitting (R2 > 0.8), 

and very strong linear correlation (ρ > 0.9) for all tasks in predicting anterior-posterior GRF. 

According to Figure 7, the TFU model records the lowest RMSE and rRMSE in inferring 

the test dataset mediolateral GRF for all tasks, except the rRMSE obtained for sit-to-stand, 

where the TA model achieves the lowest value. Moreover, the TFU model obtained the highest 

values of ρ, R2, and ICC (2, 1) in the test dataset for all tasks. The TFU model demonstrated 

excellent agreement (ICC > 0.9), good fitting (R2 > 0.8), and very strong linear correlation (ρ 

> 0.9) in predicting the mediolateral GRF for gait initialization and gait with the right foot 

stepping on a force plate. A strong linear correlation (0.7 < ρ ≤ 0.9) and moderate agreement 

(0.5 < ICC ≤ 0.75) were also observed for the mediolateral GRF during sit-to-stand. In addition, 

the TFU model successfully predicted the mediolateral GRF during gait with the left foot 

stepping on a force plate, showing a strong linear correlation (0.7 < ρ ≤ 0.9) and good agreement 

(0.75 < ICC ≤ 0.9). The values of RMSE, rRMSE, ρ, R2, and ICC (2, 1) displayed in Figures 

6 and 7 are listed in Supplementary File 1 in the form of tables. 

Figure 8 presents examples of anterior-posterior GRF versus time graphs for sit-to-stand, 

gait initialization, and gait. The trial data for the graphs was randomly chosen from the test 

dataset. Each predicted curve fitting to the actual measurements was demonstrated with the R2 

values. The TFU model generated the highest R2 values throughout all examined trials. 

Compared to other models, the TFU model fit more closely to the actual readings. The 

predicted measurements of the TFA model were obviously smoother than the actual 

equivalents. On the contrary, the prediction results of time domain models (TA and TU) 

suggested undesirable abrupt changes [see Figure 8(b) to 8(e)]. 
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Figure 7. Graphs of RMSE, rRMSE, ρ, R2, and ICC (2, 1) versus task in measuring 

mediolateral GRF. The tasks include sit-to-stand (STS), gait initialization with the left 

foot (GIL), gait initialization with the right foot (GIR), gait with the left foot stepping 

on a force plate (GL), and gait with the right foot stepping on a force plate (GR). The 

validation dataset was included in the training dataset. 
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Figure 8. Graphs of anterior-posterior GRF versus time for various tasks. AP represents 

anterior-posterior. 

The graphs of mediolateral GRF versus time plotted with randomly chosen trial data are 

shown in Figure 9. The TFU model achieved the highest R2 values for most of the selected 

trials, except in predicting the mediolateral GRF for gait where the right foot stepped on the 

force plate. Again, the TFA model-generated curves are the smoothest, while abrupt changes 

in TA and TU model readings can be observed based on Figures 9(b) and 9(d). The mediolateral 

GRF measured during sit-to-stand can barely be predicted by all the models based on Figure 

9(a) and the corresponding R2 values. 
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Figure 9. Graphs of mediolateral GRF versus time for various tasks. ML represents 

mediolateral. 

4. DISCUSSION 

Four deep learning models (TA, TFA, TU, and TFU) were developed in this study to 

predict the bilateral GRF from the vertical GRF measured using a cost-effective custom force 

plate. In Table 3, it was noted that inputs with the largest dimensions (𝑛𝑡𝑡 and 𝑛𝑡𝑡𝑓) were 

selected to train the best models, suggesting that these models needed data from the majority 

of vertical GRF readings to predict the bilateral GRF accurately. This shows that the 

autoencoder bottleneck's sparsity helped extract features from the input to improve the output 

inference. 

Figs. 6 and 7 highlight that the TFU model is the most accurate and demonstrates the most 

generalisability. Figs. 8 and 9 further indicated that, compared to other models, the prediction 

of the TFU model matched the actual readings to a closer extent. The absence of overshoot in 

TFU-predicted readings provided insight into the model architecture and hyperparameters 

applied, which helped mitigate overfitting through appropriate model complexity. 

Compared to other tasks, the actual pattern of mediolateral GRF recorded during sit-to-

stand was more amorphous. Thus, this observation explained the challenging prediction task 

for sit-to-stand movement. The satisfactory results indicated that the information extracted 

from four vertical GRF readings recorded using custom force plate load cells was insufficient 
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to accurately predict the mediolateral GRF during sit-to-stand. A subject may produce multiple 

sit-to-stand vertical readings that are similar but exhibit inconsistent mediolateral GRF patterns 

due to minor variations in sit-to-stand movements. To enhance accuracy, prediction models 

may require additional sources of information, such as human body posture and kinematics.  

The values predicted by the TFA were significantly smoother than the actual 

measurements, suggesting that the model could not capture the high-frequency components of 

the bilateral GRF. Conversely, the swift changes in outputs generated by the time-domain 

models (TA and TU) may have been due to distinct values at the boundaries of overlapping 

output that could not be smoothed out through the averaging process (refer to Section "Model 

deployment"). The absence of sudden changes in the time-frequency domain model, TFA, and 

TFU outputs may have been due to the extensive STFT sliding window overlap. The STFT 

sliding window size was 62, significantly larger than the number of strides of 16, resulting in 

a substantial overlap between consecutive sliding windows. This overlap prevented a decrease 

in reading magnitude at the window function's boundary, leading to smoother readings [42]. 

Reducing the undesirable quick changes in predicted readings allowed for a better fit between 

predicted and actual readings. This explained the accuracy improvement when STFT was 

applied. 

Two explanations were proposed to justify the accurate prediction. The initial explanation 

(refer to Section 1) suggested that the model could have extracted features from the strain gauge 

elongation caused by off-axis bilateral GRF exertion to make the prediction. Secondly, 

prediction could possibly be conducted due to the consistent patterns of model inputs and 

outputs. The vertical GRF readings obtained by individual load cells of the custom force plate 

during various tasks followed several recognizable and consistent trends (see Figure 10). For 

example, the vertical GRF readings for sit-to-stand obtained by load cells began with a 

decrease, progressed through a peak and a local minimum, and finally ended with decreasing 

fluctuation. In contrast, the vertical GRF readings recorded during gait initialization started 

with fluctuation, followed by a peak, and a drop to zero. Clear patterns were observed in gait 

vertical GRF readings, with values increasing from zero to a peak and then decreasing back to 

zero at varying rates. 

Figure 10. Graphs of vertical GRF recorded by individual load cells of custom force 

plate versus time for various tasks. The readings recorded exhibit perceivable patterns. 
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On the other hand, the bilateral GRF recorded for most tasks also illustrated predictable 

patterns (see Figures 8 and 9). For instance, the anterior-posterior GRF measurements during 

gait initialization indicated a deep valley, showing the propulsive force exerted by the 

participant's feet as they moved forward. The anterior-posterior GRF during gait included a 

peak representing the peak braking force and a valley indicating the peak propulsive force. 

Distinct trends were noticeable in mediolateral GRF, particularly during gait initialization, 

where the readings started with a peak or valley, followed by an 'M' or 'W' pattern, depending 

on the foot used to start the gait. Thus, the model could have linked the input pattern to the 

corresponding output trend. 

The findings of this study were compared with those of earlier studies. In previous studies, 

RMSE stated in the unit "N/kg" was transformed into % BW. Due to the limited information 

in previously published studies, the sit-to-stand findings were not compared. Only one previous 

study investigated the GRF prediction during gait initialization [1]. The RMSE of the anterior-

posterior GRF (0.83–1.01 % BW) and mediolateral GRF (0.52–0.68 % BW) recorded in this 

study for gait initialization using the TFU model were lower than the previous study (1.63–

2.96 % BW for anterior-posterior GRF and 1.73–1.94 % BW for mediolateral GRF) [1]. 

Consequently, the ρ values of gait initialization anterior-posterior GRF (0.97–0.98 versus 0.94–

0.97) and mediolateral GRF (0.98 versus 0.84–0.90) values obtained in this study were greater 

than the earlier study [1]. Hence, the bilateral GRF prediction during gait initialization was 

improved in this work as compared to before. 

 Figure 11 reveals the comparison of the result for gait between this work and previous 

studies, in which the TFU model prediction results are concluded as follows when anterior-

posterior GRF during gait is taken into consideration: 

• Lower RMSE range than seven studies [1; 2; 4; 5; 9; 10; 29]  

• Lower rRMSE range than three studies [5; 8; 29] 

• Higher ρ range than the three studies [4; 5; 29] 
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Figure 11. The RMSE, rRMSE, and ρ in this study and previous studies. The data 

investigates bilateral GRF prediction in gait. The results from this study are derived 

from the test dataset. 

Furthermore, the mediolateral gait GRF results achieved in this study are observed to 

exhibit the following: 
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• Lower RMSE range than five studies [1; 2; 4; 5; 10] 

• Lower rRMSE range than two studies [1; 5]  

• Higher ρ range than six studies [1; 4-6; 8; 29] 

Therefore, the comparison showed that the method in this study generated a relatively good 

prediction. 

A larger dataset could be collected to improve the model performance and generalization 

in future work. By collecting more data from different individuals, the models could learn the 

various patterns of bilateral GRF that do not exist in the current dataset. This could potentially 

improve the prediction accuracy and generalization of data from different subjects, especially 

for the outputs that were challenging to infer, such as mediolateral GRF during sit-to-stand 

tasks. Furthermore, the larger dataset could include GRF recorded during other tasks, such as 

running and jumping. This enhanced the model's ability to generalize across a wider range of 

tasks, thereby improving its applicability in various research settings. 

In dealing with noisy input, high-frequency noises, and outliers were suppressed with low-

pass and medium filters, as highlighted in the Section "Data preprocessing." However, the 

application of external force on the subjects who performed tasks on the force plates could 

cause perturbation in GRF readings, which could not be reduced with low-pass and medium 

filters. In future studies, sensitivity analysis will be conducted to identify the effect of the noises 

due to the application of external forces. The model would be trained to generate the correct 

bilateral GRF readings under this condition. 

5. CONCLUSION 

The bilateral GRF predictions in this study were successfully implemented for sit-to-stand, 

gait initialization, and gait. The best model was determined to be the TFU model. Based on the 

test dataset readings for all tasks, apart from the mediolateral GRF readings for sit-to-stand, the 

model could generalize to a good extent with a high ICC (2, 1) of more than 0.88. The accuracy 

of the low-cost custom force plate and TFU model in bilateral GRF prediction was 

demonstrated to be comparable with and even higher than other previous alternatives. The 

results could encourage biomechanical studies even in budget-limited conditions by using a 

low-cost bilateral GRF sensing force plate. The proposed method could enhance the accuracy 

of force and torque acting on musculoskeletal models calculated during biomechanical analysis 

compared to any other low-cost force plate that cannot quantify bilateral GRF. Moreover, the 

bilateral GRF-based metrics used to assess health conditions may soon be obtained using a 

low-cost force plate. 
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