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ABSTRACT:  Detection of anomalies within video streams continues to be challenging, 

mostly due to the complexities involved in distinguishing abnormal activities from normal 

ones. This study aimed to enhance anomaly detection performance by evaluating different 

deep learning models and optimizers. Utilizing the Keras framework and Python on a Kaggle 

notebook, the experiment explored the effectiveness of DenseNet121, VGG19, ResNet50, 

and InceptionV3 models in conjunction with Adam, SGD, RMSprop, and Adagrad 

optimizers. A UCF Crimes dataset subset focused on Accuracy, F1 Score, and AUC 

evaluation metrics. The results establish that the InceptionV3 model paired with the Adam 

optimizer outperforms the other combinations, attaining AUC scores of 0.9918. In contrast to 

other state-of-the-art models such as DenseNet121 and ResNet50, InceptionV3 presents 

enhanced precision and adaptability in handling the variability found in video anomaly 

datasets. This study enhances security by providing insights into enhanced model-optimizer 

combinations, advancing video surveillance approaches, and providing support for 

developing robust anomaly detection systems. 

ABSTRAK: Pengesanan anomali dalam strim video terus mencabar, kebanyakan disebabkan 

oleh kerumitan yang terlibat dalam membezakan aktiviti tidak normal dari biasa. Kajian ini 

cuba meningkatkan prestasi pengesanan anomali dengan menilai model dan pengoptimum 

pembelajaran mendalam yang berbeza. Menggunakan rangka kerja Keras dan Python pada 

komputer riba Kaggle, eksperimen ini meneroka keberkesanan model DenseNet121, VGG19, 

ResNet50 dan InceptionV3 bersama pengoptimum Adam, SGD, RMSprop dan Adagrad. 

Subset data Jenayah UCF digunakan, memfokuskan pada ketepatan, Skor F1 dan metrik 

penilaian AUC. Dapatan kajian menunjukkan bahawa model InceptionV3 bersama 

pengoptimum Adam, mengatasi kombinasi lain, mencapai skor AUC 0.9918. Berbeza dengan 

model canggih lain seperti DenseNet121 dan ResNet50, InceptionV3 mempunyai ketepatan 

dan kebolehsuaian yang tinggi dalam mengendalikan kebolehubahan yang terdapat dalam set 

data anomali video. Kajian ini menyumbang kepada peningkatan keselamatan dengan 

memberi gabungan pengoptimum bersama model yang dipertingkatkan, memajukan 

pendekatan pengawasan video dan menyediakan sokongan bagi pembangunan sistem 

pengesanan anomali yang teguh. 

KEYWORDS: Deep learning models, Video anomaly detection, Optimization Techniques, Video 

Surveillance, Performance Evaluation 

1. INTRODUCTION

Modern surveillance systems have become increasingly indispensable for protecting the 

public, especially in anomaly detection or suspicious behavior in videos. Technological 
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advancements have transformed video surveillance into a component of security systems, 

providing critical functions in public places, transportation hubs, and other critical 

infrastructure. Anomalies in video streams, like unattended baggage or abnormal human 

behaviours [1], can hint at potential threats that demand immediate attention. Swift and precise 

detection of these abnormalities can prevent minor disruptions from significant safety breaches. 

However, real-time monitoring of video feeds is an overwhelming undertaking for human 

operatives, especially in dynamic and crowded environments. Automating video anomaly 

detection systems enhances security personnel's ability to identify potential threats in real time, 

where manual monitoring is challenging [2]. 

Despite its cybersecurity roots, the term "anomaly detection" has been widely employed 

in video analysis. Numerous studies have been conducted on anomaly detection in videos, 

highlighting its applicability in circumstances such as detecting suspicious behaviour [3], 

monitoring traffic violations [4], and identifying harmful objects in sensitive places [5]. 

However, video anomaly detection faces unique challenges, such as anomalies' rarity, 

appearance variability, and the complexity of describing abnormal behaviours [[6]]. These 

challenges necessitate employing adaptable and robust techniques to address the complexity 

and imbalances in video data. 

This study addresses these concerns by evaluating the performance of four cutting-edge 

deep learning models — ResNet50, DenseNet121, VGG19, and InceptionV3 — for video 

anomaly detection. In addition, we evaluate the effects of four optimization algorithms — 

SGD, RMSprop, Adam, and Adagrad—on the models' performance. Using Python and the 

Keras framework on the Kaggle notebook, this study analyses key evaluation metrics, such as 

accuracy, F1 Score, and AUC, to reveal the most efficient model-optimizer pairings. By 

investigating these combinations, we aim to provide insights into enhancing the reliability and 

accuracy of video anomaly detection systems. 

This study’s primary contributions are as follows: 

• A comparative assessment of four popular deep learning models for video anomaly 

recognition. 

• An investigation of the impact of four different optimization algorithms on these models' 

performance. 

• Optimal model-optimizer combinations identification to address variability and imbalance 

issues in video data. 

• Providing insights to develop robust anomaly detection systems that can handle real-world 

scenarios. 

The remaining sections of this paper are arranged as follows: The Related Works section 

explores current studies, focusing on advancements in research in video anomaly detection. 

The Method section covers the experimental setup, dataset preparation, preprocessing, and 

model selection. The Results section provides the findings and compares the models' 

performance. The Discussion section presents the interpretation of the results in context, and 

the Conclusion section highlights key insights, limitations, and proposes future work. 

2. RELATED WORKS 

Video anomaly detection has attracted much attention thanks to its significance in 

surveillance and security systems. Recent advances in deep learning enable the development 

of powerful models trained to recognize anomalies in complex video data. However, the choice 
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of optimization techniques has major effects on their performance. This section reviews recent 

studies evaluating model-optimizer combinations for video anomaly detection. 

2.1. Technology in Anomaly Detection Using Deep Learning 

Deep learning models, especially CNNs, have successfully detected video anomalies. Pre-

trained models such as ResNet [17], DenseNet [16], and InceptionV3 [20] have been widely 

used to extract hierarchical features from video frames. Wu et al. [13] assessed pre-trained 

CNNs on the UCSD dataset, revealing that transfer learning notably enhances anomaly 

detection efficiency. Wang et al. [9] also offered spatiotemporal improvements to correct the 

data imbalance, attaining state-of-the-art results on benchmark datasets such as UCSD Ped2 

and Avenue. 

Optimization methods are essential for training deep learning models. Stochastic Gradient 

Descent (SGD) is a primary optimization technique; however, it frequently has difficulties with 

noisy gradients and poor convergence. Adaptive optimizers such as Adam, RMSprop, and 

Adagrad mitigate these restrictions by dynamically modifying learning rates. Lydia and Francis 

[14] extensively assessed optimization approaches, emphasizing Adam's advantages in 

managing large-scale datasets with sparse gradients. Pawar and Attar [8] compared Adam and 

RMSprop for video anomaly detection, indicating that Adam attains rapid convergence and 

better accuracy. 

Recent studies demonstrated how important it is to pair specific models with optimizers 

suited for their designs. For example, InceptionV3, with factorized convolutions and 

supplementary classifiers, gains substantial benefits from Adam's adaptive learning rates [20]. 

Conversely, ResNet50, which utilizes residual connections, demonstrates effective 

performance with both Adam and RMSprop, thanks to its ability to cope with vanishing 

gradients [17]. DenseNet121, characterized by its dense connections, demonstrates uniform 

performance across various optimizers, attaining optimal results with RMSprop [16]. These 

outcomes demonstrate reasons for the rigorous evaluation of model-optimizer pairings to 

optimize performance. 

Numerous other recent studies have explored various methods for detecting unusual or 

suspicious activity in video streams, establishing a foundation for automated security solutions. 

[7] reviewed about 290 articles, claiming that unsupervised learning is the most frequently 

adopted method. Deep learning techniques, in particular, have demonstrated strong promise. 

For instance, in [8], they investigated deep learning applications for video-based anomaly 

detection, analyzing deep learning methods. The authors introduced a graphical taxonomy, 

addressed spatial anomalies, and compared frameworks. Other studies, such as [9] and [10], 

they proposed enhancements in spatiotemporal relations to tackle data imbalance, attaining 

significant results on popular UCSD Ped1, Avenue, and UCSD Ped2 datasets. 

Traditional anomaly detection techniques, such as classical and statistical machine 

learning algorithms, still have a key role in certain scenarios, even though they often depend 

on manually crafted features. On the contrary, deep learning models can autonomously learn 

features from large datasets; however, they have higher computational requirements. Research 

on video-based anomaly detection, like [11] and [12], presented a framework for understanding 

the strengths and weaknesses of these methods, which we employ in this study. These studies 

are valuable resources for researchers and experts seeking to understand and apply deep 

learning techniques for anomaly detection. 

Pre-trained deep learning models have proven to be useful in anomaly detection. For 

instance, [13] confirmed the efficiency of pre-trained convolutional neural networks (CNN) for 
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video-based anomaly detection on the UCSD dataset. Others, such as [14], emphasize the 

significance of optimizers in realizing high performance, which we further investigated in this 

study by evaluating four optimizers across four pre-trained deep-learning models. 

2.2. Open Challenges in Video-Based Anomaly Detection 

Deep learning techniques have demonstrated outstanding possibilities in detecting 

anomalies, showing the ability to understand complex patterns and relationships within video 

data. Nonetheless, notable limitations and obstacles exist in using deep learning to detect 

human anomalies. 

Scalability presents a challenge, for example. Deep learning models typically demand 

significant processing power, especially with video data. The more the data grows or varies 

exponentially, the more deep learning systems face the challenge of efficiently handling the 

processing, especially regarding computing resources. The more complex the models become, 

the longer the training time, the greater the need for more hardware, and the higher the energy 

demand. Ensuring that low-latency and real-time processing capabilities are taken care of while 

preserving the performance and accuracy of the model is a decisive scalability issue. 

Another constraint is the interpretability of deep learning models. Despite their outstanding 

performance, these models are often naturally considered "black boxes," making them difficult 

to interpret. This can impede practical deployment and regulatory compliance. Understanding 

the rationale behind a model's decision is essential for establishing trust and obtaining 

actionable insights. However, most deep learning models do not inherently provide this 

interpretability. 

Likewise, deep learning models characteristically require large, labeled datasets for 

training. In the context of human anomaly detection, this involves having video data where 

anomalous and normal behaviors are correctly labeled. However, obtaining such labeled data 

can be difficult and time-consuming. Likewise, the labeling process can be subjective and 

susceptible to errors. 

As these deficiencies persist in generalizing to real-world surveillance contexts, this study 

attempts to address these drawbacks by assessing model-optimizer synergies using the UCF 

Crime dataset, highlighting adaptation to real-world unpredictable conditions. This will 

culminate in figuring out which of the different ways of enhancing anomaly detection 

techniques proves economically and realistically viable. In this study, we investigated by 

pairing four pre-trained deep learning models and four optimizers to determine which 

combinations enhance anomaly detection. 

3. METHODOLOGY 

This study employs a quantitative experimental approach, investigating model-optimizer 

pairings via empirical metrics (Accuracy, F1 Score, AUC). 

3.1. Datasets and Preprocessing 

3.1.1. Data Structure and Subfolders 

The UCF Crime Dataset [15] serves as the study’s foundation, consisting of 1,900 real-

world surveillance videos, with a total runtime of 128 hours. These videos are uncut and 

categorized into thirteen (13) distinct types of realistic anomalies, such as Arrest, Abuse, Arson, 
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Assault, Robbery, Road Accident, Explosion, Burglary, Stealing, Fighting, Shooting, 

Shoplifting, and Vandalism. 

The dataset used in this study is a subset of this dataset, which was divided into Train and 

Test subfolders, each containing seven different subfolders. The subfolders in the Train and 

Test folders represent distinctive classes representing individual criminal activities and normal 

behaviours (‘Abuse’, ‘Arson’, ‘Assault’, ‘Fighting’, ‘NormalVideos’, ‘Robbery’, and 

‘Shooting’).  

3.1.2. Preprocessing Steps 

As shown in Figure 1, the preprocessing process ensures that raw video data is prepared 

for model evaluation. The workflow comprises the following blocks: 

1. Video Frames and Feature Extraction: The videos were pre-processed, extracted frames, 

and converted to .png format. The frames were resized to 64×64 pixels for DenseNet121, 

VGG19, and ResNet50 models, and 75×75 pixels for the InceptionV3 model. 

2. Model Training: This process comprised integrating pre-trained CNNs for fine-tuning, 

testing individual optimizers, and iteratively training the models with the selected 

optimizers to improve performance and minimize loss. 

3. Anomaly Detection: The trained models were employed to predict anomaly scores for input 

videos, and a threshold was established to determine detected patterns as normal or 

abnormal. 

4. Model Evaluation: Performed using AUC, accuracy, and F1 Score, followed by a 

comparison of model-optimizer combo to discover the best-performing configurations. 

 

Figure 1. Anomaly Detection Process 

3.2. Experimental Setup and Design 

The experimental setup involves a structured workflow to evaluate the effectiveness of 

pre-trained deep learning models and optimization methods in video anomaly detection. The 

design of the experiment, as depicted in Figure 2, outlines the flowchart of the methodology: 

1. Model Selection: This stage involves choosing the pre-trained CNN models (ResNet50, 

DenseNet121, VGG19, and InceptionV3) for their capabilities in image-based 

classification tasks. 

2. Optimizer Variation: This stage tests four optimization algorithms—Adam, SGD, 

RMSProp, and Adagrad—on the selected models to analyze their impact on convergence 

and performance. 

3. Training on Keras API: Leveraging the Kagle framework to streamline the training of 

models with diverging optimizers. 
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4. Performance Evaluation: The evaluation metrics include Accuracy, F1 Score, and AUC to 

evaluate the effectiveness of the model-optimizer combinations. 

5. Best Model Found (Objectives Achieved): Confirm whether the study objectives, such as 

identifying optimal combinations, are met. 

6. Results and Insights: Reveal which model-optimizer combinations yield the highest 

performance metrics and explain conclusions on model behaviors and optimization 

methods that enhance anomaly detection. 

 

 

Figure 2. Flowchart illustrating the methodology: (1) Dataset preprocessing, (2) Model 

selection (DenseNet121, ResNet50, VGG19, InceptionV3), (3) Optimizer variation 

(Adam, SGD, RMSprop, Adagrad), (4) Training on Keras, (5) Evaluation using AUC, 

Accuracy, F1 Score. 

3.3. Description of Deep Learning Models 

In this study, we employed four major pre-trained deep learning models. 

3.3.1. DenseNet121  

DenseNet (Densely Connected Convolutional Networks) [16] is a pre-trained CNN model 

that achieved recognition due to its effectiveness in image-related classification. It gets its name 

by forward propagation by connecting every layer to another layer. There are 121 layers in this 

version. The bottleneck layer comprises two convolutional layers with a batch normalization 

layer in the middle. The initial convolutional layer is a 1x1 convolution, which decreases the 
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number of input feature mappings for the bottleneck layer. The following convolutional layer 

is a 3x3 convolution that generates the output feature maps. The feature maps generated by 

both layers in a dense block are determined by the hyperparameter growth_rate, which is set to 

four times the inner_channel parameter. DenseNet's transition layer comprises a 1x1 

convolutional layer, a 2x2 average pooling layer, and a batch normalization layer. The batch 

normalization layer normalizes the activations, the 1x1 convolutional layer decreases the 

feature maps, while the spatial dimensions are reduced by the feature maps' average pooling 

layer. The global average pooling layer output is passed through a fully connected (FC) layer 

with an activation function (ReLU), and a small number of neurons (e.g., 256). This layer 

decreases the feature vector dimensionality and extracts higher-level features. The FC layer’s 

output is passed through the activation function (softmax), which gives class probabilities. 

3.3.2. ResNet50 

ResNet-50 (residual neural network, ResNet variant) [17] is a pre-trained CNN that is 50 

layers deep (i.e., 48 convolution layers, 1 average pool layer, and 1 MaxPool layer). ResNet is 

an artificial neural network (ANN) that piles residual blocks on top of each other to make up a 

network. The model has 50 layers, comprising convolutional, batch normalization, activation, 

pooling, and FC layers. Residual connections are used to enable easier training of deep neural 

networks. This model is among the most popular variants of the ResNet architecture, having 

50 layers that show impressive performance on a range of classification tasks (images). The 

model comprises five stages, each with convolution and identity blocks. Each convolution 

block has three convolutional layers, and each identity block has three. The trainable 

parameters of ResNet50 are more than 23 million parameters. 

3.3.3. VGG19  

Created by Zisserman and Simonyan of Oxford University, VGG19 has 19 layers (16 

convolutions and 3 fully connected layers) [18]. It is a CNN model that uses strictly 3×3 filters 

with a stride of 1 and padding, alongside 2×2 max-pooling layers with a stride of 2. The model 

is deeper and has more layers than AlexNet. To lower the parameter count in such deep 

networks, it utilizes small 3×3 filters in all convolutional layers and is best used with its 7.3% 

error rate. This model uses (3 × 3) kernels with a 1-pixel stride size, and spatial padding is 

applied to preserve the image's spatial resolution. Furthermore, a 2 × 2-pixel window with a 2-

pixel stride is used for max pooling. The model in question is quite complex, having undergone 

training on millions of photos with complicated classification tasks. With an enormous 19.6 

billion FLOPs [19], it is a potent tool for picture classification and recognition.  

3.3.4. InceptionV3 

As a member of the Inception family, InceptionV3 [20] is an architecture of CNN 

introduced by Google. Compared to its predecessors, the architecture is more technologically 

advanced and optimized. It includes several techniques to enhance model adaptation. Among 

such techniques is Label Smoothing, which provides regularization and keeps the model from 

becoming unduly confident in its class assignments. To lower the number of parameters and 

computational expense, factorized 7×7 convolutions are also utilized. Similarly, an auxiliary 

classifier is used to convey label information to lower layers of the network. This increases the 

gradient signal and provides regularization. Batch normalization is also implemented in 

InceptionV3 at the network's side head. InceptionV3 retains excellent efficiency without 

sacrificing speed, even though it is deeper than its versions. Deeper networks can be created 

thanks to their design, which also limits parameter expansion for an increasingly effective 
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model. It works better than another well-known convolutional neural network, AlexNet, with 

fewer than 25 million parameters compared to 60 million. 

3.4. Optimizers Used in the Study 

Optimization is a crucial aspect of deep learning, influencing model performance. In this 

study, we investigated the deep learning models with the following optimizers: 

1. Adam (Adaptive Moment Estimation) is an efficient optimization algorithm for large-scale 

problems with extensive parameters and/or data. It utilizes adaptive estimates of lower-

order moments and first-order gradients to optimize stochastic objective functions. It is 

easy to implement and has been empirically proven effective. 

2. RMSProp (Root Mean Square Propagation) was introduced by Geoff Hinton. It is an 

adaptive learning rate method that adjusts weight updates based on a moving average of 

squared gradients. It converges to a stationary point for realizable problems and a bounded 

region for non-realizable problems. 

3. SGD (Stochastic Gradient Descent) is a fundamental set of rules that combines classical 

gradient descent with random subsampling to optimize the objective function. It's 

commonly used for neural network optimization. 

4. A stochastic optimization technique called Adagrad (Adaptive Gradient Algorithm) 

modifies the learning rate in response to parameters. It makes smaller updates for features 

that occur frequently, while for features that occur infrequently, it makes more significant 

updates. 

The optimizers were employed to train each model, ensuring consistent hyperparameters 

throughout trials to maintain fairness. By weighing their impact on the evaluation metrics, the 

study identifies the optimal model-optimizer combinations for the challenges of video anomaly 

detection. 

3.5. Evaluation Metrics 

We evaluated each of the models with each of the four optimizers using three performance 

evaluation metrics. 

1. Accuracy: This evaluation metric measures the proportion of correctly classified samples: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

where 𝑇𝑃 is the True Positive, 𝑇𝑁 is the True Negative, 𝐹𝑃 is the False Positive, and 𝐹𝑁 

is the False Negative. 

Accuracy, also referred to as top-1 accuracy, is a statistical measure that is used to 

demonstrate how accurately a binary classification test recognizes or rules out a condition. 

In other words, accuracy is described as the percentage of true positives and true negatives 

across every instance investigated that was predicted correctly. Although it gives a broad 

picture of the model's effectiveness, imbalanced datasets might not be a good fit for it. 

When there is a large imbalance in class in the dataset, accuracy alone may be deceiving 

because if the model consistently predicts the majority class, it could achieve a prominent 

level of accuracy. 

2. F1 Score: This is simply the harmonic mean of precision and recall. It is the combination 

of recall and precision, delivering a single score, in which precision is the division of the 

number of true positive values by all sample numbers predicted as positive, comprising 
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those not correctly identified. The recall is calculated through the division of the total 

number of true positive outcomes by the total number of samples that ought to have been 

recognized as positive.  

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (2) 

3. AUC Score: Assesses the area under the receiver operating characteristic (ROC) curve, 

which represents the model’s ability to differentiate between classes. 

 AUC = ∫ TPRd(FPR)
1

0
 (3) 

A receiver operating characteristic (ROC) plot is a two-dimensional representation of the 

classifier's performance. Multiclass AUCs are calculated by generating each class’s ROC 

curve, determining the AUC, and then tallying the AUCs weighted by the reference class’s 

prevalence in the video footage. The AUC performance metric is closely related to the Gini 

coefficient, which is occasionally employed as an alternative. The most common definition of 

this is double the area between the diagonal and the ROC curve. In simple geometry, 𝐺𝑖𝑛𝑖 +
1 = 2 × 𝐴𝑈𝐶. It is a plot of the true-positive rate (𝑇𝑃𝑅) compared to the false-positive rate 

(𝐹𝑃𝑅). A good deep-learning model will have an AUC value of nearly 1, but a random model 

could have a 0.5 AUC value.These metrics ensure a robust evaluation of models, especially in 

imbalanced datasets (such as the one used in this study) where accuracy alone is inadequate. 

4. EXPERIMENTAL RESULTS 

This section provides an experimental illustration of the capabilities of the chosen models 

and how they vary based on the optimizer. We presented the evaluation metrics used to evaluate 

the models' performance in tabular form.  

4.1. Tabular Representation of Evaluation Metrics 

Models and their performances with different optimizers are presented in tabular form. 

Table 1. DenseNet121 Model 

Optimizer Accuracy F1 Score AUC 

SGD 0.8079 0.8079 0.9307 

Adam 0.8079 0.8079 0.9499 

RMSprop 0.8079 0.8079 0.9537 

Adagrad 0.8079 0.8079 0.9345 

Table 2. ResNet50 Model 

Optimizer Accuracy F1 Score AUC 

SGD 0.8079 0.8079 0.9307 

Adam 0.8147 0.8147 0.9683 

RMSprop 0.8079 0.8079 0.9701 

Adagrad 0.8079 0.8079 0.9301 

Table 3. VGG19 Model 

Optimizer Accuracy F1 Score AUC 

SGD 0.8079 0.8079 0.9405 

Adam 0.7583 0.7583 0.9905 

RMSprop 0.7838 0.7838 0.9872 

Adagrad 0.8079 0.8079 0.9391 
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Table 4. InceptionV3 Model 

Optimizer Accuracy F1 Score AUC 

SGD 0.8079 0.8079 0.9393 

Adam 0.7641 0.7641 0.9918 

RMSprop 0.7889 0.7889 0.9886 

Adagrad 0.8079 0.8079 0.9401 

4.2. Comparative Model and Optimizer Analysis 

The DenseNet121 model's performance was consistent and robust across our selected 

optimizers in the anomaly detection analysis. The optimizers impact the performance metrics, 

maintaining accuracy and F1 Score. SGD demonstrated an AUC value of 0.9307. Adam and 

RMSprop optimizers perform competitively, with Adam slightly outperforming RMSprop with 

an AUC of 0.9499. 

The ResNet50 model provides consistent and competitive performance, with SGD 

achieving an AUC of 0.9307. Adam and RMSprop, on the other hand, outperform SGD with 

higher AUCs of 0.9683 and 0.9701. These optimizers improve accuracy and F1 scores, 

implying enhanced model correctness. Adagrad slightly lags with an AUC of 0.9301. 

With regard to VGG19, SGD accomplished quite a good AUC of 0.9405. However, both 

Adam and RMSprop perform better than SGD, with remarkable respective AUCs of 0.9905 

and 0.9872. These optimizers particularly improved the accuracy and F1 score of the model, 

underlining the strength of VGG19 in recognizing anomalies. While maintaining a competitive 

AUC value of 0.9391, Adagrad falls marginally behind Adam and RMSprop. 

For the InceptionV3 model, Adam and RMSprop optimizers demonstrate considerable 

anomaly detection capabilities. SGD yielded an AUC of 0.9393, with constant accuracy and 

F1 score performances. However, Adam and RMSprop perform beyond SGD, with AUCs of 

0.9918 and 0.9886, respectively. These optimizers also improve the accuracy and F1 Score of 

the InceptionV3 model, highlighting their ability to fine-tune the model for improved anomaly 

detection. Adagrad retains an AUC value of 0.9401, trailing behind the Adam and RMSprop 

optimizers. 

  
(a) InceptionV3 with Adam Optimizer (b) InceptionV3 with RMSprop Optimizer 

Figure 3. Visualization of the InceptionV3 Model of ROC-AUC 

5. DISCUSSION 

This study demonstrates that the InceptionV3 model, when optimized with Adam, 

surpasses other model-optimizer combinations in video anomaly detection. This conclusion is 

backed by its superior AUC scores of 0.9918 (Adam) and consistently high accuracy and F1 

scores. InceptionV3’s architecture incorporates advanced techniques like factorized 

convolutions and auxiliary classifiers, enabling it to capture complex spatiotemporal patterns 
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effectively. This capability addresses the variability and imbalance inherent in video anomaly 

datasets. In comparison, the other models, however robust in their own right, had lower 

performance due to their less optimized handling of spatial and temporal dependencies in video 

data. Likewise, VGG19’s modest architecture and dependence on smaller filters caused slower 

convergence and reduced precision, further highlighting InceptionV3’s advantage. 

The performance observed with InceptionV3 is further enhanced by its combination with 

the Adam optimizer. Adam’s momentum and adaptive learning rates allow for efficient 

parameter updates, which ensure faster convergence and improved generalization. RMSprop 

complements InceptionV3 by stabilizing training through adaptive learning rates tailored to 

sparse or noisy gradients. In comparison, Adagrad and SGD were less effective, with Adagrad 

exhibiting diminishing learning rates over extended training and SGD struggling to adapt to 

the dynamic nature of video data. This comparative study emphasizes the importance of 

selecting both high-performing models and appropriate optimizers to address the challenges of 

video anomaly detection. In this study, InceptionV3, combined with Adam, is a balanced 

solution that achieves high results, especially in terms of AUC, and thus emerges as the most 

efficient model-optimizer combination. 

6. CONCLUSION 

6.1. Key Insights and Observations 

The distinct responses presented by each model underscore the importance of tailoring 

optimization methods to accommodate the distinct attributes of each CNN model. This 

highlights the complex relationships between models and optimizers and emphasizes the need 

for adaptability in optimization methods. Likewise, optimizers are important in deciding how 

well an anomaly detection algorithm performs. The choice of an optimizer enhances models' 

capabilities to detect anomalies in video footage. 

As mentioned earlier, DenseNet121 demonstrated exciting strength and consistency when 

run in conjunction with different optimizers, suggesting that it may have flexibility in 

independent optimization strategies. Due to its steady performance, DenseNet121 is a reliable 

option for anomaly detection tasks, providing consistency even in different optimization 

approaches. In addition, optimizers and model architecture have a complex interaction that 

requires careful direction finding, as demonstrated by fine-tuning models for anomaly 

detection. This highlights the importance of utilizing hyperparameters to achieve the best 

performance results possible. 

Furthermore, the synergistic impact of model-optimizer combinations can be found in the 

superior detection of anomaly capabilities of pairings like InceptionV3 with Adam and 

RMSprop optimizers. Maximizing the effectiveness of the models requires leveraging these 

synergies. On the other hand, choosing optimizers enforces striking a balance among many 

performance assessment standards, leading to variations in performance results between 

models and measures. Therefore, making well-informed decisions requires a thorough 

assessment considering variations in performance metrics. 

In addition, these trends have real-world applications in anomaly detection, offering 

practitioners recommendations of approaches to adopt depending on their datasets. Examining 

these observations would greatly benefit the design and implementation of algorithms in real-

world situations. Eventually, the experiment tends to spark debates on model-optimization 

approaches and other factors affecting performance variability. Evaluating these provides more 

insights into trends that have been observed and serves as a guide for further research. 

106



IIUM Engineering Journal, Vol. 26, No. 2, 2025 Jeddah et al. 
https://doi.org/10.31436/iiumej.v26i2.3287 

 

 

6.2. Limitations and Future Directions 

The experimental assessment conducted in this study encountered some limitations worth 

mentioning and needs insights into future studies. The most challenging constraint faced is the 

insufficient computing capacity, which necessitated experimenting on the Kaggle notebook, 

restricting the model training to a single epoch. 

In the future, computing capacity can be addressed using stronger hardware or cloud-based 

platforms. This will enable extensive training sessions, allowing for many epochs and a 

thorough assessment of the dynamic range between the model and optimizer. Moreover, 

holding out the experiments with more epochs may better evaluate model convergence, 

stability, and long-term performance. This approach may yield valuable insights into the 

model’s capabilities over extended training durations. 

With regard to the proposed research directions, widening the scope of the investigation 

to involve separate deep learning models employed here would improve the overall 

understanding of the interactions between models and optimizers. Still, evaluating the tendency 

to deploy optimized models in real-world settings and their effectiveness in dynamic 

circumstances will be significant for their practical application. 
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