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ABSTRACT: Mathematical models are developed to understand ischaemic stroke formation 

further and achieve treatment effectiveness. The existing poroelastic model of the brain 

assumed the brain as a homogenized structure with uniform capillary distribution. This paper 

describes using a multiscale modeling technique known as asymptotic expansion 

homogenization (AEH) to derive a new poroelastic model of brain tissue. The model consists 

of a homogenized governing macroscale model with the effective parameters determined from 

the microscale cell equations. The microscale cell equations are solved on a representative 

volume element (RVE) comprising brain tissue embedded with a capillary. Here, the effect 

of capillary tortuosity and radius on the effective parameters, which are the hydraulic 

conductivity of the capillary and interstitial space (𝑲 and 𝑮), homogenous Biot's coefficient 

of the blood and interstitial space (𝛼𝑐 and 𝛼𝑡), Young's modulus (𝐸̅) and Poisson's ratio (𝑣̅),

are investigated. From the results, it is found that the percentage difference of 𝑲 is 97.98% 

with increasing tortuosity, which suggests that 𝑲 is significantly influenced by the shape of 

the capillary. Whereas the percentage difference of 𝑮 is only 0.25%, which shows that it is 

unaffected by the shape of the capillary. Meanwhile, 𝛼𝑐 and 𝛼𝑡 decreases and increases with

increasing tortuosity, respectively. Both 𝐸̅ and 𝑣̅ are not significantly affected by tortuosity, 

as the percentage difference for each is just 0.14% and 0.03%, respectively. In terms of 

capillary radius, it is found that 𝑲 increases and 𝑮 decreases with the increase of radius. 

Meanwhile, 𝛼𝑐 increases with increasing radius while 𝛼𝑡 instead shows the opposite trend.

The percentage differences of 18.26% and 14.55% are observed for 𝐸̅ and 𝑣̅, respectively, 

implying that both parameters are significantly affected by the capillary radius. In conclusion, 

including capillary in the brain model significantly affects the effective parameters. Hence, 

important properties of the capillary, including shape and size, should be carefully 

emphasized so that accurate findings can be obtained when solving the poroelastic model of 

the brain. 

ABSTRAK: Model matematik dibangunkan untuk mendapatkan pemahaman lanjut tentang 

pembentukan strok iskemia supaya keberkesanan rawatan dapat dicapai. Model poroelastik 

otak yang sedia ada menganggap otak sebagai struktur homogen dengan taburan kapilari yang 

seragam. Makalah ini menerangkan penggunaan teknik pemodelan multiskala yang dikenali 

sebagai penghomogenan pengembangan asimtotik (PPA) untuk memperoleh model 

poroelastik baharu untuk tisu otak. Model ini terdiri daripada satu set model skala makro 

pentadbir homogen dengan parameter berkesan ditentukan daripada persamaan sel skala 

mikro. Persamaan sel skala mikro diselesaikan pada satu unsur isipadu perwakilan (RVE) 
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yang terdiri daripada tisu otak dengan kapilari yang tertanam. Di sini, kesan kelikuan dan 

jejari kapilari pada parameter berkesan, iaitu kekonduksian hidraulik ruang kapilari dan 

celahan (𝑲 dan 𝑮), pekali Biot homogen bagi darah dan ruang celahan (𝛼𝑐 dan 𝛼𝑡), modulus 

Young (𝐸̅) dan nisbah Poisson (𝑣̅), akan diselidiki. Daripada keputusan yang diperoleh, 

didapati perbezaan peratusan 𝑲 ialah 97.98% dengan peningkatan kelikuan, yang 

menunjukkan bahawa 𝑲 dipengaruhi oleh bentuk kapilari secara signifikan. Manakala 

peratusan perbezaan 𝑮 hanyalah 0.25% menunjukkan bahawa ia tidak dipengaruhi oleh 

kelikuan. Sementara itu, 𝛼𝑐 dan 𝛼𝑡 masing-masing menurun dan meningkat dengan 

peningkatan kelikuan. Kedua-dua 𝐸̅ dan 𝑣̅ tidak terjejas dengan ketara oleh kelikuan kerana 

perbezaan peratusan bagi setiap satu ialah masing-masing hanya 0.14% dan 0.03%. Dari segi 

jejari kapilari pula, didapati 𝑲 bertambah dan 𝑮 berkurangan dengan pertambahan jejari. 

Sementara itu, 𝛼𝑐 meningkat dengan peningkatan jejari, manakala 𝛼𝑡 sebaliknya. Peratusan 

perbezaan 18.26% dan 14.55% diperhatikan untuk 𝐸̅ dan 𝑣̅ menunjukan bahawa kedua-dua 

parameter dipengaruhi dengan ketara oleh jejari kapilari. Kesimpulannya, kemasukan kapilari 

dalam model otak mempunyai kesan yang ketara terhadap parameter berkesan. Oleh itu, sifat 

penting kapilari termasuk bentuk dan saiz harus ditekankan dengan teliti supaya penemuan 

yang tepat boleh diperolehi apabila menyelesaikan model poroelastik otak. 

KEYWORDS: Brain Tissue, Poroelastic Properties, Asymptotic Expansion 

Homogenization, Multiscale Modelling 

1. INTRODUCTION  

The brain is a highly vascularized organ, making any computational modeling approach 

to include all the microvessels difficult [1]. The main problem is the computational cost, which 

can drastically increase with the number of microvessels in the model. According to Linninger 

et al., recent computational work can perform computation for 25,000 microvessels within a 

30 mm3 cube, and this, however, still does not represent a complete human brain [2]. Computer 

simulation of a brain with capillary networks is also time-consuming, so the model must be 

simplified. 

Poroelastic model is an example of a modeling technique that models the interaction 

between these different phases in the brain tissue, such as the interstitial fluid, blood, and brain 

cells, and it has been used to study various brain diseases, such as hydrocephalus [3], head 

injury [4], and brain edema [5, 6]. The brain cell is modeled as a homogeneous linear elastic 

material. Meanwhile, the interstitial fluid and blood are modeled using Darcy's law, which 

usually has homogeneous permeabilities. However, this model assumed a homogeneous 

distribution of pores. This can be revised by considering the complex capillary network in the 

brain that has various sizes and shapes distributed unevenly in the brain [7]. This 

inhomogeneity may affect the poroelastic properties of the brain tissue. 

To overcome this limitation, the multiscale modeling technique can include the 

inhomogeneity. Asymptotic expansion homogenization (AEH) is one of the multiscale 

modeling techniques that has been applied for homogenizing mechanical models of biological 

tissues and tumors [8-12]. Generally, the technique separates the governing model into 

homogenized macroscale equations of the brain. The effective parameters of the governing 

model can be obtained by solving a set of microscale cell equations on a representative volume 

element (RVE), in which, in the case of the brain, the RVE consists of solid cells and 

capillaries. The arrangement and dimension of the content of RVE may then affect the effective 

parameters of the homogenized macroscale equations. 
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This article investigates the effect of capillary tortuosity and radius using the AEH 

technique. Applying the AEH technique will produce a new set of homogenized macroscale 

equations with the respective effective parameters to be determined by solving the microscale 

cell equations [13] on an RVE. The RVE used in this article will have a capillary with various 

radius and tortuosity levels, so its effect on the effective parameters can be investigated.  

2. METHODOLOGY 

This section discusses the process for obtaining the homogenized macroscale and 

respective microscale cell equations using the AEH technique. Then, the RVE used will be 

described. 

2.1. Homogenized Governing Macroscale Equation 

Assumed that the volume of brain tissue, Ω = Ω𝑡 ∪ Ω𝑐, is made up of the poroelastic brain 

tissue, Ω𝑡 and blood compartment, Ω𝑐, respectively. The interface between these phases is 

represented by 𝛤. Figure 1 illustrates a portion of the brain that is made up of poroelastic tissue 

and capillary phases. The brain tissue and blood are originally governed by the poroelastic 

model and Navier-Stokes equations, respectively. 

 

Figure 1. 2D representation of poroelastic brain tissue with capillary. 

Assumed that the relationship of the distance between adjacent capillaries 𝑑 and the 

normal tissue length, 𝐿 follows the ratio 𝜖 as given by Equation (1): 

 𝜖 =
𝑑

𝐿
 (1) 

which implies that 𝑑 is much smaller than 𝐿. Thus, the length separation between these is very 

large, allowing for the AEH technique to be applied. Then, two spatial variables 𝑦 and 𝑥 for 

microscale and macroscale, respectively, are defined as: 

 𝑥 = 𝜖𝑦 (2) 

Figure 2 illustrates a small portion of the brain consisting of repeating units of brain tissue. 

Applying the AEH can determine the effective parameters by solving the microscale cell 

equations on a single RVE without solving the overall brain model. This technique can 

significantly reduce the computational cost and time.  
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Figure 2. Illustration of repeating units of brain tissue. 

2.2. Homogenized Macroscale Equations 

The homogenized macroscale stress balance equation is given as: 

 ∇x ∙ 𝜎𝐻 = 0 (3) 

Here, the effective stress, 𝜎𝐻 is defined as: 

 𝜎𝐻 = 𝐶̅: ∇x𝒖 − 𝛼𝑐𝑃𝑐 − 𝛼𝑡𝑃𝑡 (4) 

Here, 𝒖 is the tissue displacement, 𝑃𝑐 is the blood pressure within capillary and 𝑃𝑡 is 

interstitial fluid pressure. Moreover, 𝛼𝑐, and 𝛼𝑡 are the Biot's coefficient for blood and 

interstitial fluid, respectively, and 𝐶̅ = 𝐶̅(𝐸̅, 𝑣̅) is the effective elasticity tensor defined using 

the effective Young's modulus, 𝐸̅ and Poisson's ratio, 𝑣̅. These are effective parameters, which 

can be determined as follows: 

 𝐶̅ = 〈(𝐶𝑳𝐶 + 𝐶)〉t (5) 

 𝛼𝑐 = (𝜙𝑐𝐈 − 〈𝐶: 𝑸〉t) (6) 

 𝛼𝑡 = (〈𝐶: 𝑸〉t + 𝜙𝑡𝐈) (7) 

where 𝜙𝑐 and 𝜙𝑡 represent the volume ratio for the blood and interstitial fluid, respectively and 

𝐈 is the identity tensor. Meanwhile, the tensors 𝑳 and 𝑸 can be obtained from the microscale 

cell equations. 

On the other hand, the two fluid pressures are governed by the pressure balance equations 

as follows: 

 0 = −∇x ∙ 〈𝒘c〉c0 +
|𝛤|

|𝛺|
𝐿̅𝑝𝛷𝑐→𝑡 (8) 

 0 = −∇x ∙ 〈𝒘t〉t0 −
|𝛤|

|𝛺|
𝐿̅𝑝𝛷𝑐→𝑡 (9) 

where |𝛤|, |𝛺|, and 𝐿̅𝑝 are the surface area of Γ, the volume of RVE, and the hydraulic 

conductivity through capillary walls, respectively. Meanwhile, the term 𝛷𝑐→𝑡 is defined as 

follows: 

 𝛷𝑐→𝑡 = 𝑃𝑐 − 𝑃𝑡 (10) 

The average fluid velocities 〈𝒘𝑐〉𝑐 and 〈𝒘𝑡〉𝑡 are defined using the respective Darcy's law: 

 〈𝒘𝑐〉c = −𝑲∇x𝑃𝑐 (11) 
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 〈𝒘𝑡〉t = −𝑘̅𝑮∇x𝑃𝑡 (12) 

Here, the terms 𝑲 and 𝑮 the effective parameters can also be obtained from the microscale 

cell equations. These are the effective hydraulic conductivity for the blood and interstitial fluid. 

Meanwhile, 𝑘̅ is the original brain interstitial fluid hydraulic conductivity. 

2.3. Microscale Cell Equations 

There are four microscale cell equations to be solved on an RVE. 

2.3.1 Laplace Cell Equations 

The tensor 𝑮 can be calculated using Eq. (13): 

 𝑮 = 𝜙𝑡𝐈 − 〈(∇y𝑃𝑡)
T

〉t (13) 

where 𝑃𝑡 can be determined as follows: 

 ∇y
2𝑃𝑡 = 0 in 𝛺t (14) 

 (∇𝑦𝑷𝑡)𝒏 = 𝒏 on Γ (15) 

 〈𝑷𝑡〉𝑡 = 0 in Ωt (16) 

2.3.2 Stoke's Cell Equations  

The tensor 𝑲 can be calculated using Eq. (17): 

 𝑲 = 〈𝑾〉c (17) 

where 𝑾 and 𝑃𝑐 are obtained as follows: 

 ∇y
2𝑾T − ∇y𝑃𝑐 + 𝐈 = 0 in 𝛺c     (18) 

 ∇y ⋅ 𝑾T = 0 in 𝛺c (19) 

 𝑾T = 0 on 𝛤 (20) 

 〈𝑃𝑐〉c = 0 in 𝛺𝑐 (21) 

2.3.3 One-elastic Cell Equations 

The tensor 𝑸 can be calculated using Eq. (22): 

 𝑸 = 〈∇y𝒂〉  (22) 

where 𝒂 can be determined as follows: 

 ∇y ⋅ (𝐶∇y𝒂) = 0  in  𝛺𝑡 (23) 

 (𝐶∇y𝒂)𝒏 = −𝒏  on  𝛤 (24) 

 〈𝒂〉t = 0 (25) 

where 𝒏 is the normal vector to the surface 𝛤, and 𝐶 = 𝐶(𝐸, 𝑣), where 𝐸 and 𝑣 are the original 

brain tissue Young's modulus and Poisson's ratio, respectively. 

 

2.3.4 Six-elastic Cell Equations 

The tensor 𝑳, is defined using Equation (26): 
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 𝑳 = 〈∇𝐲𝐴〉 (26) 

where 𝐴 can be calculated as follows: 

 
∂

∂𝑦𝑗
⋅ (ℂ

𝜕𝐴𝑘𝑚𝑛

𝜕𝑦𝑙
) = 0  in  𝛺𝑡 (27) 

 ℂ
𝜕𝐴𝑘𝑚𝑛

𝜕𝑦𝑙
𝑛𝑗 = −𝛿𝑖𝑚𝛿𝑗𝑛𝑛𝑗  on  𝛤 (28) 

 〈𝐴〉t = 0 (29) 

2.4. Capillary RVE 

In this study, the RVE used is shown in Figure 3, which is made of a cube and an 

intersection of cylinders, representing the brain tissue and capillary, respectively. The 

tortuosity level is determined using the function, 𝑓(𝑠) = 𝐴𝑠𝑖𝑛(2𝜋𝜔𝑠/𝑙), where 𝜔 and 𝐴 are 

the capillary tortuosity frequency and amplitude, respectively. Furthermore, Figure 4 shows 

examples of microstructure with different radius variations. All the analyses performed in this 

study are dimensionless and solved using the finite element software COMSOL Multiphysics 

5.6a. 

 

 

Figure 3. 4 different capillary shapes where (a) consists of straight capillary without 

tortuosity and (d) represents the most tortuous capillary. 

 

Figure 4. Example of 3 different capillary sizes used for the simulation. 

3. RESULTS  

The results section will discuss the variations of all the effective parameters with capillary 

tortuosity in the microstructure RVE. 
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3.1. Examples of Microscale Cell Equations Results 

Figures 5 and 6 show the example field variables distributions for the four cell equations 

for microstructure with 𝜔 = 0. The results are then used to determine the tensors 𝑮, 𝑲, 𝑸 and 

𝑳 based on Eqs. (13), (17), (22), and (26). 

 
 

 

(a) (b) (c) 

Figure 5. Example of field variable distribution for (a) Laplace's cell equation, 

(b) Stokes' cell equation, and (c) One-elastic cell equation. 

 

 

Figure 6. Example of field variable distribution for Six-elastic cell equation. 

Figure 7 shows the volume changes in (a) capillary and (b) interstitial space with capillary 

tortuosity. As the tortuosity increases, the capillary volume decreases. This is because when 

the capillary is bent at the curve, the space at the curve becomes narrower, as shown in Figure 

3(d). Since the volume of a cube is fixed, a smaller volume of capillary results in a larger 

volume of the interstitial space, as shown in Figure 7(b). 
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(a) (b) 

Figure 7: Capillary and interstitial volume variation for each capillary tortuosity setting.  

3.2. Effective Blood Conductivity Tensor, 𝑲 

Figure 8(a) shows that 𝑲 decreases as the tortuosity increases for ω = 1 to ω = 3. The 

percentage difference in 𝑲 between ω = 1 and ω = 3 is 97.98%, and this shows that 𝑲 is 

significantly affected by capillary tortuosity. Meanwhile, Figure 8(b) shows that 𝑲 changes 

exponentially with increasing microstructure capillary radius. This means that bigger 

capillaries allow for smoother blood flow due to lower flow resistance [14].  

  

(a) (b) 

Figure 8. Graph of 𝑲 against (a) tortuosity and (b) radius. 

3.3. Effective Interstitial Fluid Conductivity Tensor, 𝑮 

Figure 9(a) shows that 𝑮 increases when tortuosity increases. The percentage difference 

of 𝑮 is only about 0.25% between ω = 1 and ω = 3. This shows that 𝑮 is not affected by 

capillary tortuosity. Whereas Figure 9(b) shows 𝑮 decreases with increasing capillary radius. 

This is because bigger capillary minimizes the interstitial fluid volume and hinders the 

interstitial fluid flow. 
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(a) (b) 

Figure 9. Effective parameter 𝑮 against (a) tortuosity and (b) radius. 

3.4. Effective Biot's Coefficients, 𝜶𝒄 and 𝜶𝒕 

In Figure 10(a), the effective blood Biot's coefficient, 𝛼𝑐 decreases as the tortuosity 

increases from 𝜔1 to 𝜔3. Modification of capillary tortuosity, which involves changes in 

capillary volume, will affect 𝛼𝑐 because this parameter is dependent on volume changes [11]. 

Meanwhile, Figure 10(b) shows the effective interstitial fluid Biot's coefficient, 𝛼𝑡, which 

increases with increasing capillary tortuosity. This implies that more interstitial fluid can be 

removed from the tissue interstitial by increasing the capillary tortuosity [11]. 

  

(a) (b) 

Figure 10. Graphs of (a) 𝛼𝑐  and (b) 𝛼𝑡 against tortuosity. 

Figure 11 shows the changes of 𝛼𝑐 and 𝛼𝑡 against radius. As the radius increases, 𝛼𝑐 also 

increases because a bigger capillary volume allows for more blood to be removed from the 

blood compartment. Meanwhile, 𝛼𝑡 decreases as the radius increases. This is because there is 

a lesser volume of interstitial fluid in the microstructure with a large capillary radius. 
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(a) (b) 

Figure 11. Graphs of (a) 𝛼𝑐 and (b) 𝛼𝑡 against radius. 

3.5. Effective Moduli 

Figure 12 shows the changes in effective moduli with tortuosity. The percentage difference 

for both 𝐸̅ and 𝑣̅ are only 0.14% and 0.03%, respectively. The small percentage difference 

indicates that the tortuosity does not affect the effective elastic moduli. Figure 13 shows the 

changes in effective moduli with radius. The values of 𝐸̅ and 𝑣̅ reduce for up to the radius of 

about 0.4. Then, the values increase as the radius increases up to 0.8. The percentage changes 

of 𝐸̅ and 𝑣̅ from the maximum to the minimum values are 18.26% and 14.55%, respectively.  

  

(a) (b) 

Figure 12. Graphs of (a) 𝑣̅ and (b)  𝐸̅ against tortuosity. 

As shown in Figure 13, both 𝐸̅ and 𝑣̅ increase when the capillary tortuosity increases. As 

mentioned earlier, geometry with high capillary tortuosity has low vascular volume with bigger 

interstitial tissue volume. Thus, it becomes stiffer (high 𝐸) as compared to the geometry with 

low capillary tortuosity. However, the percentage difference of both 𝐸̅ and 𝑣̅ from the results 

are very small, which implies that the tortuosity is insignificantly affecting 𝐸̅ and 𝑣̅. When 

varying the radius, it is expected that both 𝐸̅ and 𝑣̅ decrease as the radius increases since the 

geometry becomes more porous. However, the simulation outcome only meets our expectations 

for a radius smaller than 0.4. After 0.4, 𝐸̅ and 𝑣̅ increase with the capillary radius. For capillary 

radius bigger than 0.4, both 𝐸̅ and 𝑣̅ are only influenced by the volume of the capillary. 

Therefore, as the capillary volume is made larger, 𝐸̅ and 𝑣̅ obtained are also larger.  
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(a) (b) 

Figure 13. Graphs of (a) 𝑣̅ and (b) 𝐸̅ against radius. 

4. DISCUSSION 

In this study, the AEH technique was used to derive the microscale cell equations to 

determine effective parameters for the homogenized macroscale governing equations of the 

brain.  The effective blood hydraulic conductivity, 𝑲 describes the ability of blood to move 

through the capillaries [15], in which it depends on several factors, such as the particle size, 

surface roughness, dimension, structure, and the interconnection between capillaries [16]. The 

value 𝑲 obtained here shows a decreasing trend against the capillary tortuosity. The blood flow 

within a highly tortuous capillary becomes more difficult due to higher flow resistance 

compared to a less tortuous capillary, resulting in a lower 𝑲. A similar argument applies to the 

capillary radius, as can be seen from the results that a bigger capillary has a higher 𝑲 due to 

lower flow resistance. Furthermore, the flow resistance is inversely proportional to the radius, 

following Poiseuille's law [17]. Both tortuous and capillary with small radii have significantly 

low 𝑲. These conditions can be used to model blood flow disruption at the macroscale level, 

representing an ischaemic condition.  

Meanwhile, the effective interstitial fluid hydraulic conductivity, 𝑮 explains the ability of 

the interstitial fluid to move through interstitial space. This parameter is also highly dependent 

on the interstitial volume. As the capillary tortuosity increases, the changes in 𝑮 are very small. 

This shows that the tortuosity does not affect the interstitial fluid flow. However, 𝑮 decreases 

with increasing capillary radius, implying that 𝑮 is affected by the capillary lumen size. This 

situation can be explained by the fixed volume of our geometry used in the simulation. As the 

size of the capillary increases, it occupies more space in the microstructure RVE and reduces 

the volume of the interstitial fluid. This causes the interstitial fluid flow to become more 

difficult, hence lowering the hydraulic conductivity [11]. 

The tensors 𝑸 and 𝑳 have no physical meaning, but it is required in determining the 

parameters 𝛼𝑐 and 𝛼𝑡 as well as the effective elastic moduli. Biot's coefficient is a parameter 

that measures the ratio of the fluid volume squeezed out to the volume change in the poroelastic 

medium under compression while allowing the fluid to escape [18]. This means that the 

coefficient depends on the microstructure RVE and capillary volumes. High tortuosity creates 

a smaller volume of capillary compared to a straight one [8]. This validates our findings 

whereby 𝛼𝑐 decreases and 𝛼𝑡 increases with increasing capillary tortuosity. Similarly, for 

varying radii, a capillary with a bigger radius has greater vascular volume, and hence, 𝛼𝑐 and 

𝛼𝑡 increases and decreases, respectively. 
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Meanwhile, the effective elastic moduli calculated here are the effective Young's modulus, 

𝐸̅ and Poisson's ratio, 𝑣̅. Young's modulus is defined as the ratio of the applied axial stress to 

the induced local axial strain in a solid material [19], whereas Poisson's ratio provides a 

measure of tissue compressibility [20]. Our findings show that the effective elastic moduli 

changes with the capillary tortuosity and radius. Changes in 𝐸̅ and 𝑣̅ in biological tissues may 

be used to indicate the initiation of brain pathological conditions [20]. Hence, sufficient 

information on these parameters could be used to diagnose a particular brain disease better. 

5. CONCLUSION 

Application of AEH technique has produced the homogenized macroscale equations with 

respective microscale cell problems, which are then solved a brain geometry with embedded 

capillary inside to obtain parameter 𝑲, 𝑮, 𝛼𝑐, 𝛼𝑡, 𝐸̅ and 𝑣̅. The relationship between each 

parameter and the shapes and sizes of capillaries has been investigated and analyzed. It is found 

that the value of 𝑲 is affected by the shape (tortuosity), meanwhile 𝑮, 𝐸̅, and 𝑣̅ are affected by 

the size of the capillary. Only 𝛼𝑐 and 𝛼𝑡 are influenced by both shape and size. In short, the 

addition of capillaries greatly impacts the outcome of the simulation of the human brain. Since 

stroke formation involves the reduction of blood flow in the capillary, all important properties 

of the capillary should be precisely emphasized so that the simulation outcomes can be 

improved and used to solve the macroscale equations in a bigger brain geometry. 
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