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ABSTRACT:  This paper presents a comparative study between two advanced versions of 
the classical Proportional-Integral-Derivative (PID) controller including the Proportional 
Integral minus Proportional Derivative (PI-PD) controller and the Nonlinear Proportional 
Derivative (NPD) to manipulate the angular position of the two-link robot arm system and 
eliminate the effects of the load disturbances. The dynamic equations of the two-link robot 
arm system were obtained based on the Lagrange approach. To determine the best value of 
the adjustable coefficients of each controller, the tuning process was converted to an 
optimization problem. Then, the Bee Algorithm (BA) optimization technique was employed 
to find the best value of the adjustable coefficients of each controller. The computer 
simulation results based on MATLAB show the NPD-BA controller outperformed the PI-
PD-BA controller in normal conditions. Furthermore, the NPD-BA demonstrated a 
substantial enhancement when a load disturbance was applied. 

ABSTRAK: Kajian ini membentangkan perbandingan antara dua versi terkini pengawal 
klasik Keseimbangan-Pengkamiran-Terbitan (PID) termasuk pengawal Keseimbangan 
Pengkamiran tolak Keseimbangan Terbitan (PI-PD) dan Keseimbangan Terbitan Tak Linear 
(NPD) bagi memanipulasi kedudukan sudut sistem lengan robot dua pautan dan 
menghapuskan kesan gangguan beban. Persamaan dinamik sistem lengan robot dua pautan 
ini diperoleh berdasarkan pendekatan Lagrange. Bagi menentukan nilai terbaik pekali boleh 
laras setiap pengawal, proses penalaan ditukar kepada masalah pengoptimuman. Kemudian, 
teknik pengoptimuman Algoritma Lebah (BA) digunakan bagi mencari nilai terbaik bagi 
pekali boleh laras setiap pengawal. Dapatan simulasi komputer berdasarkan MATLAB 
menunjukkan pengawal NPD-BA mengatasi prestasi pengawal PI-PD-BA dalam keadaan 
normal. Tambahan, NPD-BA menunjukkan peningkatan yang ketara apabila gangguan 
beban digunakan. 

KEYWORDS:  Control Design, Two-link Robot Arm System, Proportional Integral minus 
Proportional Derivative Controller, Nonlinear Proportional Derivative 
Controller, Bee Algorithm 

1. INTRODUCTION 

The two-link robot arm system is a major component in the modern manufacturing 
industry [1]. Additionally, robotic arms can be used as medical solutions for persons that face 
difficulty in performing physical activities [2]. It is a nonlinear, high coupled, multi-input 
multi-output (MIMO) and time varying dynamics system. One of the major challenges in 
controlling the two-link robot arm system is the uncertainties due to the unknown loads that 
must be handled by the robot arm (i.e. pick and place tasks) [3]. In the context of control 
design, the two-link robot arm system can be modeled as a double pendulum system with two 
degrees of freedom where the equation of motion may be established by Lagrange equation 
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[4]. Due to its complex dynamic structure, the two-link robot arm system can be considered 
as a benchmark system for testing and evaluation of different control approaches [5]. For 
example, Guechi et al. [6] presented a comparative study between Model Predictive Control 
(MPC) and the Linear Quadratic (LQ) control based on the feedback linearization of the two-
link robot arm system. It was observed that the performance of the MPC control outperforms 
the performance of the LQ control approach. In the same way, Mohammed and Eltayeb [5] 
compared the performance of the Proportional-Integral-Derivative (PID) controller and 
Sliding Mode Control (SMC).  The outcomes of this study revealed that the performance of 
the SMC has a faster and more robust response compared to the performance of the PID 
controller. However, better control signal was observed by SMC. As an alternative control 
strategy, the Fuzzy Logic Controller (FLC) was implemented by [2]. Baccouch and Dodds 
[1] proposed a robust PID controller. Recently, Bendimrad [7] introduced a SMC approach 
for controlling the two-link robot arm system. Taking advantage of the simple structure of the 
PID and the robustness of the SMC, Long et al. [8] proposed a variable structure PID control 
method for the two-link robot arm system. The outcomes show that the proposed approach 
enhanced the speed of the convergence by more than 80% compared with the classical PID 
control method, while maintaining the same steady-state accuracy. In terms of intelligence 
controller, Shen [9] proposed a Fuzzy Neural Network (FNN) controller. The design 
parameters of the proposed control are optimized by combining the Particle 
Swarm Optimization (PSO) and backpropagation (BP) algorithm. The findings of the study 
indicate that the system has good tracking performance, good adaptability, and stability by 
applying the control scheme.  

Unlike previous studies, this paper presents a comparative study between two versions of 
the classical PID controller named Proportional-Integral minus Proportional-Derivative (PI-
PD) controller and Nonlinear Proportional-Derivative (NPD) controller for controlling the 
two-link robot arm system. These two control approaches can be considered as an improved 
version of the classical PID controller. As opposed to the trial and error method to find the 
right value of the adjusted parameters of each controller, various swarm optimization 
algorithms have been proposed in the literature to achieve an optimal performance of the 
controllers. Swarm optimization algorithms have provided a substantial improvement in the 
capabilities of solving multivariate, high dimensional engineering problems, and at the same 
time, it is easy to implement [10-12]. This paper introduces the Bee Algorithm (BA) to tune 
the two controllers based on the error performance index. 

The rest of the paper is organized as follows: the mathematical model of the two-link 
robot arm system is presented in Section 2. In Section 3 and Section 4, the proposed 
controllers are introduced and the bee algorithm is given, respectively. The simulation results 
and discussions are given in Section 5. Section 6 contains the conclusion. 

2. MATHEMATICAL MODEL 

This section describes in detailed the mathematical model of the two-link robot arm 
system. For simplicity, the system can be represented as a double pendulum with two masses 
𝑀𝑀1 and 𝑀𝑀2 connected by two weightless rigid rods of lengths 𝐿𝐿1 and 𝐿𝐿2 as shown in Fig. 1 
[1]. 

The two-link robot arm system has two degrees of freedom represented by the angle that 
rotates around the origin (𝜃𝜃1) and the angle that rotates at the endpoint of the first 
pendulum (𝜃𝜃2). The two angles (𝜃𝜃1 and 𝜃𝜃2) are outputs of the system and they are 
manipulated by the two input torques (𝜏𝜏1 and 𝜏𝜏2) [1]. 
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Figure 1. Two-link robot arm system 

According to the Lagrangian approach to drive the equations of motion of the system, the 
Kinetic Energy (𝐾𝐾𝐾𝐾) and the Potential Energy (𝑃𝑃𝐾𝐾) of the system have to be obtained.  

For the first mass, the equation of the mass in 𝑥𝑥 direction and 𝑦𝑦 direction is given by: 

𝑥𝑥1 = 𝐿𝐿1𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃1)  (1) 

𝑦𝑦1 = 𝐿𝐿1𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃1) (2) 
For the second mass, the equation of the mass in x direction and y direction is given by: 

𝑥𝑥2 = 𝐿𝐿1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1) + 𝐿𝐿2𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃2) (3) 

𝑦𝑦2 = 𝐿𝐿1 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1) + 𝐿𝐿2𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃2) (4) 

The velocity of the two masses is given by: 

𝑣𝑣1 = ��̇�𝑥1² + �̇�𝑦1²  (5) 

𝑣𝑣2 = ��̇�𝑥2² + �̇�𝑦2²  (6)  

where 

�̇�𝑥1 = −𝐿𝐿1�̇�𝜃1𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃1) (7) 

�̇�𝑦1 = 𝐿𝐿1�̇�𝜃1𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃1) (8) 

�̇�𝑥2 = −𝐿𝐿1�̇�𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1) − 𝐿𝐿2�̇�𝜃2𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃2) (9) 

�̇�𝑦2 = 𝐿𝐿1�̇�𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1) + 𝐿𝐿2�̇�𝜃2𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃2) (10) 
 
The Lagrangian equation is given by: 

𝐿𝐿 = 𝐾𝐾𝐾𝐾 − 𝑃𝑃𝐾𝐾 (11  
The kinematic energy of the system can be obtained as follows: 

𝐾𝐾𝐾𝐾 = 1
2

 𝑀𝑀1 �̇�𝑣1 + 1
2

 𝑀𝑀2�̇�𝑣2 (12) 
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Substitute v̇1 and v̇2 as given in Eq. (5) and Eq. (6) respectively yields: 

𝐾𝐾𝐾𝐾 = 1
2

 𝑀𝑀1 (�̇�𝑥12 + �̇�𝑦12) + 1
2

 𝑀𝑀2 (�̇�𝑥22 + �̇�𝑦22 (13) 

Substitute ẋ1, ẏ1, ẋ2 and ẏ2 as given in Eq. (7), Eq. (8), Eq. (9) and Eq. (10), the KE can 
be rewritten as:   

𝐾𝐾𝐾𝐾 = 1
2

 𝑀𝑀1  ��−𝐿𝐿1�̇�𝜃1𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃1)�
2

+ �𝐿𝐿1�̇�𝜃1𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃1)�
2

 � + 1
2

 𝑀𝑀2  ��−𝐿𝐿1�̇�𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1) −

𝐿𝐿2�̇�𝜃2 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃2)�
2

+ �𝐿𝐿1�̇�𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1) + 𝐿𝐿2�̇�𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃2)�
2
� (14) 

Eq. (14) can be rearranged as follows:  

𝐾𝐾𝐾𝐾 = 1
2

 (𝑀𝑀1 + 𝑀𝑀2)𝐿𝐿12�̇�𝜃1
2 + 1

2
 𝑀𝑀2𝐿𝐿22�̇�𝜃2

2 + 𝑀𝑀2𝐿𝐿1𝐿𝐿2�̇�𝜃1�̇�𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐( 𝜃𝜃1 − 𝜃𝜃2)  (15) 

The potential energy of the system can be obtained as follows: 

𝑃𝑃𝐾𝐾 = 𝑀𝑀1 𝑔𝑔 𝑦𝑦1 + 𝑀𝑀2 𝑔𝑔 𝑦𝑦2 (16) 

Substitute y1 and y1 as given in Eq. (2) and Eq. (4) respectively obtains: 

𝑃𝑃𝐾𝐾 = 𝑀𝑀1 𝑔𝑔 (𝐿𝐿1𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃1) ) + 𝑀𝑀2 𝑔𝑔 (𝐿𝐿1 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1) + 𝐿𝐿2𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃2))  (17) 
Eq. (17) can be simplified as: 

𝑃𝑃𝐾𝐾 = (𝑀𝑀1 +  𝑀𝑀2) 𝑔𝑔𝐿𝐿1 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1) + 𝑀𝑀2𝑔𝑔𝐿𝐿2 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃2) (18) 
Substitute Eq. (15) and Eq. (18) into Eq. (11) 

𝐿𝐿 = �1
2

 𝑀𝑀1  ��−𝐿𝐿1�̇�𝜃1𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃1)�
2

+ �𝐿𝐿1�̇�𝜃1𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃1)�
2

 � + 1
2

 𝑀𝑀2  ��−𝐿𝐿1�̇�𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1) −

𝐿𝐿2�̇�𝜃2 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃2)�
2

+ �𝐿𝐿1�̇�𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1) + 𝐿𝐿2�̇�𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃2)�
2
�� − ((𝑀𝑀1 +  𝑀𝑀2) 𝑔𝑔𝐿𝐿1 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1) +

𝑀𝑀2𝑔𝑔𝐿𝐿2 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃2)) (19) 
The Euler-Lagrange equation is determined as: 
𝑑𝑑
𝑑𝑑𝑑𝑑

 �𝜕𝜕𝐿𝐿/𝜕𝜕�̇�𝜃𝑖𝑖� −  𝜕𝜕𝐿𝐿/𝜕𝜕𝜃𝜃𝑖𝑖 = 𝜏𝜏𝑖𝑖                     𝑠𝑠 = 1,2 (20) 

The partial derivatives of Eq. (20) 𝑤𝑤. 𝑟𝑟. 𝑡𝑡  𝑡𝑡𝑐𝑐 𝑠𝑠 = 1 obtains: 
𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝜃1

=  (𝑀𝑀1 +  𝑀𝑀2) 𝐿𝐿12�̇�𝜃1 + 𝑀𝑀2 𝐿𝐿1𝐿𝐿2 �̇�𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1 − 𝜃𝜃2 (21) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃1

= − 𝑀𝑀2 𝐿𝐿1𝐿𝐿2�̇�𝜃1 �̇�𝜃2 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1 − 𝜃𝜃2) − (𝑀𝑀1 + 𝑀𝑀2) 𝑔𝑔𝐿𝐿1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1) (22) 

Then: 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕𝐿𝐿/𝜕𝜕�̇�𝜃1� = (𝑀𝑀1 +  𝑀𝑀2) 𝐿𝐿12�̈�𝜃1 + 𝑀𝑀2 𝐿𝐿1𝐿𝐿2 �̈�𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃2)  −  𝑀𝑀2 𝐿𝐿1𝐿𝐿2�̇�𝜃2��̇�𝜃1 −

 �̇�𝜃2� 𝑐𝑐𝑠𝑠𝑠𝑠( 𝜃𝜃1 − 𝜃𝜃2) (23) 

Substitute Eq. (22) and Eq. (23) into Eq. (20) 𝑤𝑤. 𝑟𝑟. 𝑡𝑡 𝑠𝑠 = 1 obtains: 

�(𝑀𝑀1 +  𝑀𝑀2) 𝐿𝐿12�̈�𝜃1 + 𝑀𝑀2 𝐿𝐿1𝐿𝐿2 �̈�𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃2)  −  𝑀𝑀2 𝐿𝐿1𝐿𝐿2�̇�𝜃2��̇�𝜃1 −  �̇�𝜃2� 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1 − 𝜃𝜃2)� −
�(𝑀𝑀1 +  𝑀𝑀2) 𝐿𝐿12�̇�𝜃1 + 𝑀𝑀2 𝐿𝐿1𝐿𝐿2 �̇�𝜃2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1 − 𝜃𝜃2)� = 𝜏𝜏1 (24) 

In the same way, the partial derivatives of Eq. (20) 𝑤𝑤. 𝑟𝑟. 𝑡𝑡 𝑡𝑡𝑐𝑐  𝑠𝑠 = 2 obtains: 
𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝜃2

=  𝑀𝑀2𝐿𝐿22�̇�𝜃2 + 𝑀𝑀2 𝐿𝐿1𝐿𝐿2 �̇�𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1 − 𝜃𝜃2) (25) 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃2

=  𝑀𝑀2 𝐿𝐿1𝐿𝐿2�̇�𝜃1 �̇�𝜃2 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1 − 𝜃𝜃2) −  𝑀𝑀2𝑔𝑔𝐿𝐿2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃2) (26) 

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕𝜕𝜕
𝜕𝜕�̇�𝜃2
� = 𝑀𝑀2𝐿𝐿22�̈�𝜃2 + 𝑀𝑀2 𝐿𝐿1𝐿𝐿2 �̈�𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃2) −𝑀𝑀2 𝐿𝐿1𝐿𝐿2�̇�𝜃1��̇�𝜃1 − �̇�𝜃2� 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1 − 𝜃𝜃2)   

 (27) 

Substitute Eq. (26) and Eq. (26) into Eq. (20) 𝑤𝑤. 𝑟𝑟. 𝑡𝑡 𝑠𝑠 = 2 obtains: 

�𝑀𝑀2𝐿𝐿22 �̈�𝜃2 + 𝑀𝑀2 𝐿𝐿1𝐿𝐿2 �̈�𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1−𝜃𝜃2)  −  𝑀𝑀2 𝐿𝐿1𝐿𝐿2�̇�𝜃1��̇�𝜃1 −  �̇�𝜃2� 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1 − 𝜃𝜃2)� −
�𝑀𝑀2 𝐿𝐿1𝐿𝐿2�̇�𝜃1 �̇�𝜃2 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃1 − 𝜃𝜃2) −  𝑀𝑀2𝑔𝑔𝐿𝐿2 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃2)� = 𝜏𝜏2  (28) 

Solving Eq. (24) and Eq. (28) for �̈�𝜃1and �̈�𝜃2 respectively yields: 

�̈�𝜃1 = 𝑔𝑔1�𝑡𝑡, 𝜃𝜃1,𝜃𝜃2, �̇�𝜃1, �̇�𝜃2, 𝜏𝜏1, 𝜏𝜏2�  (29) 

�̈�𝜃2 = 𝑔𝑔2�𝑡𝑡,𝜃𝜃1,𝜃𝜃2, �̇�𝜃1, �̇�𝜃2, 𝜏𝜏1, 𝜏𝜏2�  (30) 

where 

𝑔𝑔1 =
 𝑀𝑀  𝜏𝜏1 
𝑀𝑀2 𝐿𝐿1

− 𝑀𝑀 𝜕𝜕2�̇�𝜃2² 𝑠𝑠𝑖𝑖𝑠𝑠(𝜃𝜃1− 𝜃𝜃2)−𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠(𝜃𝜃1)−𝑀𝑀 𝑔𝑔𝑔𝑔𝑠𝑠(𝜃𝜃1− 𝜃𝜃2)�   𝜏𝜏2 
𝑀𝑀2 𝐿𝐿2

+  𝜕𝜕1�̇�𝜃1² 𝑠𝑠𝑖𝑖𝑠𝑠(𝜃𝜃1− 𝜃𝜃2)−𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠(𝜃𝜃2)�

𝜕𝜕1(1−𝑀𝑀 𝑔𝑔𝑔𝑔𝑠𝑠2(𝜃𝜃1− 𝜃𝜃2))
   (31) 

𝑔𝑔2 =
  𝜏𝜏2 
𝑀𝑀2 𝐿𝐿2

+  𝜕𝜕1�̇�𝜃1² 𝑠𝑠𝑖𝑖𝑠𝑠(𝜃𝜃1− 𝜃𝜃2)−𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠(𝜃𝜃1)−𝑔𝑔𝑔𝑔𝑠𝑠(𝜃𝜃1− 𝜃𝜃2)�  𝑀𝑀 𝜏𝜏1 
𝑀𝑀2 𝐿𝐿1

+  𝑀𝑀𝜕𝜕2�̇�𝜃2² 𝑠𝑠𝑖𝑖𝑠𝑠(𝜃𝜃1− 𝜃𝜃2)−𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠(𝜃𝜃1)�

𝜕𝜕2(1−𝑀𝑀 𝑔𝑔𝑔𝑔𝑠𝑠2(𝜃𝜃1− 𝜃𝜃2))
      (32) 

𝑀𝑀 = 𝑀𝑀2
𝑀𝑀1+𝑀𝑀2

  (33) 

Let 𝑥𝑥1 represents 𝜃𝜃1, 𝑥𝑥2 represents 𝜃𝜃2, 𝑥𝑥3 represents �̇�𝜃1 and 𝑥𝑥4 represents �̇�𝜃2. The 
dynamics of the two-link robot arm system are given by following differential equations:  

�̇�𝑥1 = 𝑥𝑥3 (34) 

�̇�𝑥2 = 𝑥𝑥3 (35) 

�̇�𝑥3 = 𝑔𝑔1(𝑡𝑡, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝜏𝜏1, 𝜏𝜏2) (36) 

�̇�𝑥4 = 𝑔𝑔2(𝑡𝑡, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝜏𝜏1, 𝜏𝜏2) (37) 

 

3. CONTROLLER DESIGN  

In this paper, two modified versions of the classical PID controller including the 
Proportional Integral minus Proportional Derivative (PI-PD) controller and Nonlinear 
Proportional Derivative (NPD) are used to manipulate the two angular positions of the robot 
arm and eliminate the effects of the load disturbances to fulfill the application of pick and 
place tasks of the robot arm. The determination of the design variables of both controllers is 
essential and it required a suitable cost function to enable the system to reach a stable mode 
[13] [14]. For this purpose, in Section 4, BA is utilized to find the optimum setting of the 
adjustable parameters of the controllers. 

3.1. PI-PD Controller 
The classical Proportional-Integral-Derivative (PID) controller is the most common 

control strategy that is used in control system design due to its robustness and simplicity [15] 
[16]. Much research and practice represent a considerable effort to propose a different 
structure of the classical PID controller. In this direction, this paper utilizes a modified 
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version of the classical PID controller named a Proportional-Integral minus Proportional-
Derivative (PI-PD) controller. The general block diagram of the PI-PD controller structure is 
illustrated in Fig. 2 [17]. The control law (𝑢𝑢) of the PI-PD controller is given by [18]: 

𝑢𝑢 = 𝐾𝐾𝑝𝑝1𝑒𝑒 + 𝐾𝐾𝑖𝑖 ∫ 𝑒𝑒 − 𝐾𝐾𝑝𝑝2𝑦𝑦 − 𝐾𝐾𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (38) 

where 𝑒𝑒 and 𝑦𝑦 are the error and the output of the process respectively, 𝐾𝐾𝑝𝑝1 and 𝐾𝐾𝑝𝑝2 are the 
proportional gains, 𝐾𝐾𝑖𝑖  is the integrals gain, and  𝐾𝐾𝑑𝑑  is the derivative gain. 

 
Figure 2. Block diagram of PI-PD controller. 

In spite of the simplicity of the PI-PD controller's structure, the tuning process plays a 
key role in the performance of the PI-PD controller. In order to achieve the optimal 
performance of the PI-PD controller, BA is employed to find the best value of the design 
variables of the PI-PD controller.  

 3.2. Nonlinear PD Controller  
To overcome the deficiencies of the classical PID controller for nonlinear systems, a 

Nonlinear Proportional Derivative (NPD) is introduced. NPD control has been implemented 
successfully on various process control problems. The control law (𝑢𝑢) of the NPD controller 
is given by [19]: 

𝑢𝑢 = 𝐾𝐾𝑝𝑝𝑓𝑓𝑝𝑝(𝑒𝑒,𝛼𝛼𝑒𝑒 , 𝛿𝛿𝑒𝑒) + 𝐾𝐾𝑑𝑑𝑓𝑓𝑑𝑑(�̇�𝑒,𝛼𝛼�̇�𝑒 , 𝛿𝛿�̇�𝑒) (39) 

where 𝑓𝑓𝑝𝑝 and 𝑓𝑓𝑑𝑑   are nonlinear function given by [20]: 

𝑓𝑓𝑝𝑝 = �
|𝑒𝑒|𝛼𝛼𝑒𝑒  𝑐𝑐𝑠𝑠𝑔𝑔𝑠𝑠(𝑒𝑒),       𝑓𝑓𝑐𝑐𝑟𝑟 |𝑒𝑒| > 𝛿𝛿𝑒𝑒

𝑒𝑒
𝛿𝛿𝑒𝑒

1−𝛼𝛼𝑒𝑒 ,                    𝑓𝑓𝑐𝑐𝑟𝑟 |𝑒𝑒| ≤ 𝛿𝛿𝑒𝑒
 (40) 

𝑓𝑓𝑑𝑑 = �
|�̇�𝑒|𝛼𝛼�̇�𝑒  𝑐𝑐𝑠𝑠𝑔𝑔𝑠𝑠(�̇�𝑒),      𝑓𝑓𝑐𝑐𝑟𝑟 |�̇�𝑒| > 𝛿𝛿�̇�𝑒

�̇�𝑒
𝛿𝛿�̇�𝑒

1−𝛼𝛼�̇�𝑒 ,                    𝑓𝑓𝑐𝑐𝑟𝑟 |�̇�𝑒| ≤ 𝛿𝛿�̇�𝑒
  (41) 

where 𝛼𝛼𝑒𝑒 , 𝛿𝛿𝑒𝑒 ,𝛼𝛼�̇�𝑒 , and 𝛿𝛿�̇�𝑒 are additional parameters that describe the behavior of the nonlinear 
function of the controller. The parameters 𝛼𝛼𝑒𝑒 and 𝛼𝛼�̇�𝑒 determine the nonlinearity of the 
nonlinear function. The parameters 𝛿𝛿𝑒𝑒 and 𝛿𝛿�̇�𝑒 act as a threshold [19]. The Block diagram of 
the NPD controller is shown in Fig. 3. The selection of the parameter design of the nonlinear 
PD controller is the major concerns to ensure the stability and to achieve the best 
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performance. To address this issue, BA is introduced to find the optimal value for the 
adjusted design variables in the NPD controller. 

 
Figure 3. Block diagram of NPD controller. 

4. BEE ALGORITHM 

Swarm optimization algorithms, in general, are algorithms motivated by the natural 
behavior of animals, plants, insects… etc. [21].  The Bee Algorithm (BA) is one of the swarm 
optimization algorithms. The algorithm is introduced by [22]. The algorithm simulates 
foraging behavior for food of the honey bees. The algorithm starts by initializing the 
population of bees randomly within the lower and upper boundaries of the search space of the 
problem as given: 

𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑚𝑚𝑖𝑖𝑠𝑠 + 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅 ∗ (𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑝𝑝𝑚𝑚𝑖𝑖𝑠𝑠),    𝑠𝑠 = 1,2,3, … ,𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝 (42) 

where 𝑠𝑠,𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝,𝑅𝑅𝑠𝑠𝑅𝑅 𝑝𝑝𝑖𝑖 refer to the index of population, total number of the population, and 
individual solution respectively, 𝑝𝑝𝑚𝑚𝑖𝑖𝑠𝑠 and 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  are the lower bound and upper bound of the 
search space, and 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅 is a random value between 0 and 1. The BA uses two mechanisms 
named exploration (i.e. random search) and exploitation (i.e. neighborhood search) to search 
for the best solution of the optimization problem. In the exploration phase, the algorithm 
discovers new territory within the search space. On other words, it attempts to find new 
solutions that haven't been explored previously. In the exploitation phase, the algorithm 
searches around promising solutions that have showed favorable objective values. In other 
words, this search converges to the solutions that have already exhibited strong performance. 
To balance between the exploration search and exploitation search, the BA generates a group 
of the population with the size of 𝑁𝑁𝑚𝑚 (𝑠𝑠. 𝑒𝑒.𝑁𝑁𝑚𝑚 < 𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝) and updates the position of each bee 
in this group based on the location of the elite bee (𝑝𝑝𝑖𝑖𝑖𝑖𝑑𝑑) as given in Eq. (43). The elite bee is 
the bee that has the best solution that is found by the algorithm.   

𝑝𝑝𝑖𝑖(𝑘𝑘 + 1) = 𝑝𝑝𝑖𝑖(𝑘𝑘) + 𝜎𝜎(𝑝𝑝𝑖𝑖(𝑘𝑘) − 𝑝𝑝𝑖𝑖𝑖𝑖𝑑𝑑) (43) 

where 𝑘𝑘 is the index of iteration, 𝑝𝑝𝑖𝑖(𝑘𝑘 + 1) and 𝑝𝑝𝑖𝑖(𝑘𝑘) are the new and current solutions 
respectively, and 𝜎𝜎 is the step size. The remaining bees (𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝 − 𝑚𝑚) are assigned to search 
randomly around the search space as given in Eq. (42). The new population is evaluated and 
the elite bee is updated. The pseudo code of the BA is given in Algorithm 1. 
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Algorithm 1 Pseudo code of BA 
1. Input 

 Objective function, Population size (Npop), Number of iterations 
(Tmax), Number of sites (Ns), Step size (σ) 

2. Initialization 
 Initialize population Npop 
 Evaluate objective function  
 Assign pilt 

3. Loop: 
 while (itr < Tmax) 

• For each bee in the sites (Ns) 
 Update the location of bees using Eq. (3.2)  

• End for 
• For the remaining bees (𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝 − 𝑚𝑚)  

 Update the location Gorilla using Eq. (4.1)  
• End for  
• Update pilt 
• itr = itr + 1 

 End while  
4. Print the Optimal Solution 

5. SIMULATION RESULTS AND DISCUSSION 

To evaluate the performance of the PI-PD controller and NPD controller to control the 
two-link robot system, the simulation results using MATLAB software are presented in this 
section. The objective of the controller is to make the two-link in the system follow a desired 
angular position. The dynamics of the two-link robot arm system, as described by Eq. (34), 
Eq. (35), Eq. (36) and Eq. (37), are used to conduct the computer simulation. The system's 
parameters used in the system are listed in Table 1 [1,5]. 

Table 1. Parameters of two-link robot arm system 
Parameters Values 

Mass of first link (𝑀𝑀1) 1 kg 
Mass of second link (𝑀𝑀2) 1 kg 
Length of first link (𝐿𝐿1) 1 m 
Length of second link (𝐿𝐿2) 1 m 
Acceleration of gravity (𝑔𝑔) 9.81 m/s2 

The BA is used for tweaking each controller's design settings in order to guarantee 
optimal performance. The PI-PD controller is optimized by regulating the adjusted design 
variables (𝐾𝐾𝑝𝑝1,𝐾𝐾𝑖𝑖,𝐾𝐾𝑝𝑝2 and 𝐾𝐾𝑑𝑑) of the control action that is introduced in Eq. (38). Similarly, 
the NPD controller is optimized by regulating the adjusted design variables 
(𝐾𝐾𝑝𝑝,𝛼𝛼𝑒𝑒 , 𝛿𝛿𝑒𝑒 ,𝐾𝐾𝑑𝑑 ,𝛼𝛼�̇�𝑒 and 𝛿𝛿�̇�𝑒) of the control action that is introduced in Eq. (39). The Integral 
Time of Absolute Errors (ITAE) index as provided in Eq. (44) [23] is employed as a cost 
function in the optimization process.  

𝐼𝐼𝐼𝐼𝐼𝐼𝐾𝐾 = ∫ 𝑡𝑡𝑡𝑡|𝑒𝑒(𝑡𝑡)|𝑅𝑅𝑡𝑡𝑑𝑑𝑑𝑑=𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑=0  (44) 

where 𝑡𝑡𝑡𝑡 is the time and  𝑡𝑡𝑠𝑠𝑖𝑖𝑚𝑚 is the total simulation time. Table 2 lists the parameters of the 
BA. Fig. 4 shows the convergence of BA for tuning the two controllers. Table 3 provides the 
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best values of the designed coefficients of the PI-PD and NPD controllers. Fig. 5 illustrates 
the time response of the angular angles 𝜃𝜃1 and  𝜃𝜃2 when the system is subjected to a unit step 
input. The evaluation of the response is performed by measuring the settling time (𝑡𝑡𝑠𝑠), the 
steady state error (𝑒𝑒𝑠𝑠𝑠𝑠), the maximum overshoot, and the ITAE index. These specifications of 
the two controlled systems are reported in Table 4.  

Table 2. Algorithm parameters of BA 

Parameters Value 

Population Size �𝑁𝑁𝑝𝑝𝑔𝑔𝑝𝑝� 25 
Number of Iterations (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚) 50 
Number of sites (𝑁𝑁𝑠𝑠) 15 
Step size (𝜎𝜎) 2 

 
Figure 4. Convergence of BA for proposed controllers 

It is evident from Fig. 5 that the two controllers are capable of successfully stabilizing 
and controlling the system with zero 𝑒𝑒𝑠𝑠𝑠𝑠, and zero overshoot response. Regarding 𝑡𝑡𝑠𝑠 and the 
ITAE index, the dynamics of the NPD controller performs better than the dynamics of the PI-
PD controller. For instance, as shown in Table 4, it can be noticed that the value of the 𝑡𝑡𝑠𝑠 is 
reduced from 2.4 sec and 2 sec for 𝜃𝜃1 and 𝜃𝜃2 response respectively in the case of the PI-PD 
controller to 1.3 sec and 0.8 sec for 𝜃𝜃1 and 𝜃𝜃2 response respectively in the case of the NPD. 
This means that the value of 𝑡𝑡𝑠𝑠 is improved by 45.834% and 60% for 𝜃𝜃1 and 𝜃𝜃2 respectively. 
Furthermore, the value of the ITAE index is reduced from 61.9 and 34.36 for 𝜃𝜃1 and 
𝜃𝜃2 response respectively in the case of PI-PD controller to 15.96 and 15.69 for θ1 and 
𝜃𝜃2 response respectively in the case of NPD. This means that the value of the ITAE index  is 
improved by 74.22% and 54.37% for 𝜃𝜃1 and 𝜃𝜃2 respectively. Fig. 6 shows the control 
signals 𝜏𝜏1 and 𝜏𝜏2. 
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Table 3. Optimal value of design parameters based on BA 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐏𝐏𝐏𝐏𝐂𝐂𝐏𝐏𝐏𝐏𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐕𝐕𝐏𝐏𝐂𝐂𝐕𝐕𝐂𝐂 

PI-PD 

𝐾𝐾𝑝𝑝1 30 
𝐾𝐾𝑖𝑖 20 
𝐾𝐾𝑝𝑝1 5 
𝐾𝐾𝑑𝑑 10 

NPD 

𝐾𝐾𝑝𝑝 60 
𝛼𝛼𝑒𝑒 0.2 
𝛿𝛿𝑒𝑒 0.05 
𝐾𝐾𝑑𝑑 10 
𝛼𝛼�̇�𝑒 0.6 
𝛿𝛿�̇�𝑒 0.05 

 

 
Figure 5. Response of 𝜃𝜃1 and 𝜃𝜃2 for unit step input 

 

Table 4. Specification performances of system without disturbance 

Controller 𝜽𝜽 Settling 
Time (s) 

Error Steady 
State (rad) 

Maximum 
Overshoot (%) ITAE 

PI-PD  𝜃𝜃1 2.4 0 0 61.9 
𝜃𝜃2 2 0 0 34.36 

NPD  𝜃𝜃1 1.3 0 0 15.97 
𝜃𝜃2 0.8 0 0 15.97 
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Figure 6. Control signals for unit step input 

An external load disturbance has been added to the system based on each controller 
structure after 4 seconds of simulation time to guarantee the proposed controllers' resilience 
to load uncertainty. The same designed variables of the controllers that are obtained in Table 
3 are used in the simulation. The time response for unit step input is shown in Fig. 7. The 
system's recovery time and undershoots have been used to evaluate the performance of the 
system as given in Table 5.   

 
Figure 7. Response of 𝜃𝜃1 and 𝜃𝜃2 for unit step input with disturbance 
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It is evident from Fig. 7 that in the load disturbance scenario, the NPD controller 
performs better for recovery form the disturbance than the PI-PD controller. For example, 
Table 5 shows that the settling time is reduced from 3.3 sec and 2.7 sec for 𝜃𝜃1 and 
𝜃𝜃2 response respectively in the case of the PI-PD controller to 0.5 sec and 0.7 sec for 𝜃𝜃1 and 
𝜃𝜃2 response respectively in the case of the NPD controller. This means that the value of 𝑡𝑡𝑠𝑠 is 
improved by 84.5% and 74.1% for 𝜃𝜃1 and 𝜃𝜃2 respectively. Additionally, the maximum 
undershoot index is reduced from 20% and 9% for 𝜃𝜃1 and 𝜃𝜃2 response respectively in the case 
of the PI-PD controller to 0.25% and 0.29% for 𝜃𝜃1 and 𝜃𝜃2 response respectively in the case of 
the NPD. This means that the maximum undershoot is improved by 98.75 and 96.78 for 𝜃𝜃1 
and 𝜃𝜃2 respectively. Furthermore, the value of the ITAE index is reduced from 217.96 and 
106.87 for 𝜃𝜃1 and 𝜃𝜃2 response respectively in the case of PI-PD controller to 21.188 and 
21.188 for θ1 and 𝜃𝜃2 response respectively in the case of NPD. This means that the value 
of ITAE index  is improved by 89.96% and 80.17% for 𝜃𝜃1 and 𝜃𝜃2 respectively. Fig. 8 shows 
the control signals 𝜏𝜏1 and 𝜏𝜏2. 

Table 5. Specification performances of the system with disturbance 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝜽𝜽 Recovery 
Time (s) 

Maximum 
Undershoot (%) ITAE 

PI-PD 𝜃𝜃1 3.3 20% 217.96 
𝜃𝜃2 2.7 9% 106.87 

NPD  𝜃𝜃1 0.5 0.25% 21.188 
𝜃𝜃2 0.7 0.29% 21.188 

 
Figure 8. Control signals for unit step input with disturbance 

The comprehensive overview of the performance of both controller structures indicates 
that the NPD outperforms of the PI-PD across the two considered scenarios. 
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6. CONCLUSION 

Controlling the two-link robot arm system was studied based on two control structures 
named PI-PD and NPD controllers.  The dynamics of the system were modeled using 
Lagrange mechanics. BA was used to adjust the controllers' design parameters in order to 
guarantee that each controller operated at its optimal performance. According to the 
simulation results, which were obtained using a MATLAB program, the two controllers 
optimized by the BA were able to successfully stabilize and regulate the two angular 
positions of the robot arm system with a 0% error steady state. The outcome also shows that, 
in terms of reducing the settling time and ITAE index, the NPD-BA controller outperforms 
the PI-PD-BA controller. Based on the numerical results, the settling time has been improved 
by 45.834% and 60% for 𝜃𝜃1 and 𝜃𝜃2 respectively whereas the ITAE index has been improved 
by 74.22% and 54.37% for 𝜃𝜃1 and 𝜃𝜃2 respectively. Furthermore, the NPD-BA controller 
shows a notable improvement in mitigating the impact of external load disturbances. Based 
on the numerical results, the settling time has been improved by 84.5% and 74.1% for 𝜃𝜃1 and 
𝜃𝜃2 respectively whereas the ITAE index has been improved by 89.96% and 80.17% for 𝜃𝜃1 
and 𝜃𝜃2 respectively. This work can be extended further by using another optimization 
technique to find the adjustment to the controllers' design parameters. 
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