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ABSTRACT: Flooding is a widespread and costly natural disaster around the world. 

Accurately assessing the extent of flooding in near real-time is crucial for governments and 

humanitarian organizations. This information strengthens early warning systems, evaluates 

risks, and guides effective relief efforts. Therefore, precise flood mapping is essential for 

saving lives through improved early warning systems and targeted emergency responses. In 

this study, radar imagery available on the Planetary Computer Data was utilized to train a U-

Net model specifically designed to label flood-affected pixels in an image from a flood event. 

Different blocks of the U-Net encoder architecture were fine-tuned to identify the most 

efficient fine-tuned model, and their results were compared. As a result, the model with blocks 

1 and 2 being fine-tuned demonstrated the highest Intersection over Union (IoU) score of 

78.904%, an increase of 8.663% over the baseline methods. 

ABSTRAK: Banjir merupakan bencana alam yang meluas dan mahal di seluruh dunia. 

Penilaian yang tepat terhadap skala banjir secara hampir masa nyata adalah penting bagi 

kerajaan dan organisasi kemanusiaan. Maklumat ini memperkukuhkan sistem amaran awal, 

menilai risiko, dan membimbing usaha bantuan yang lebih berkesan. Oleh itu, pemetaan 

banjir yang tepat adalah penting untuk menyelamatkan nyawa melalui sistem amaran awal 

yang lebih baik dan respons kecemasan yang disasarkan. Dalam kajian ini, imej radar yang 

tersedia pada Planetary Computer Data digunakan untuk melatih model U-Net yang direka 

khas untuk melabelkan piksel yang terjejas oleh banjir dalam imej daripada kejadian banjir. 

Bagi mengenal pasti model ditala-halus yang paling cekap, blok-blok berlainan dalam 

arkitektur pengekod U-Net telah ditala-halus, dan hasilnya dibandingkan. Hasilnya, model 

dengan blok 1 dan 2 yang ditala-halus menunjukkan skor Intersection over Union (IoU) 

tertinggi sebanyak 78.904%, iaitu peningkatan sebanyak 8.663% berbanding kaedah asas. 
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1. INTRODUCTION

Floods are natural disasters when large amounts of water temporarily submerge land.

According to [1], strategies to mitigate the effects of floods can be broadly categorized into 

two types: prevention measures and complementary solutions. Prevention measures focus on 

infrastructure and physical interventions to control water flow and reduce water accumulation 

[2]. Complementary solutions, which work in tandem with prevention efforts, aim to enhance 

flood management [3]. These include flood monitoring, early warning systems, emergency 

response protocols, and public awareness campaigns. Among these, early warning systems are 

particularly effective, as they provide timely and accurate information about the extent of the 
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affected area in advance. This enables better damage assessment and mapping, aiding crisis 

management and recovery. 

Various methods have been explored for mapping floods and assessing flood risks. 

Traditional approaches, such as those mentioned in [4], have been commonly used to address 

these challenges. While high-resolution hydrologic models are effective at smaller scales, their 

application to community-level urban flooding is limited by high computational and data input 

requirements [5]. This underscores the need for innovative techniques to predict flooding 

accurately without demanding extensive computational resources. 

Remote sensing, particularly Synthetic Aperture Radar (SAR), provides an efficient and 

cost-effective solution for large-scale flood mapping without the need for highly accurate or 

resource-intensive processes. Unlike traditional methods that often face challenges in 

addressing the complexities of urban flooding, SAR offers a more robust alternative. A detailed 

examination of remote sensing techniques, including SAR and multi-frequency Polarimetric 

SAR for terrain classification, is presented in [6]. As an active sensor, SAR excels at capturing 

detailed images of the Earth’s surface, regardless of time of day or cloud cover. Its capabilities 

have greatly improved flood detection and monitoring. 

For instance, in [7], innovative multi-temporal COSMO-SkyMed data from Northern Italy 

were utilized to develop a classification algorithm for mapping flood progression. The authors 

in [3] demonstrated the successful use of RADARSAT-2 SAR images and flood stage data to 

monitor the 2011 Richelieu River flood. Additionally, the study in [8] combined TerraSAR-X 

with high-resolution aerial imagery to capture the complex flooding dynamics along the River 

Severn in England. 

Recently, significant advancements have been made in supervised machine learning 

algorithms, particularly in deep learning techniques and Convolutional Neural Networks 

(CNNs) [9]Unlike traditional pixel-based learning methods, CNNs exploit the spatial structure 

of target segments, enabling more effective feature extraction. Additionally, automatic feature 

representation within CNNs partitions the feature space, reducing uncertainties in the data. Due 

to these capabilities, CNNs have emerged as powerful tools in various fields, with recent 

successes in flood mapping being a prime example. 

In 2019, the authors of [10] investigated using CNNs for flood detection from high-

resolution unmanned aerial vehicle (UAV) images. They employed a VGG-based fully 

convolutional network (FCN-16s). They demonstrated that CNNs outperformed traditional 

classification methods, such as fully convolutional networks (FCNs) and support vector 

machines (SVMs), in identifying flooded regions. In another study, the authors of [11] 

developed a CNN-based approach specifically for extracting flooded areas from Sentinel-1 

SAR data. Their method involved generating flood masks through classical semi-automatic 

techniques, followed by manual cleaning and visual inspections, while exploring different 

CNN architectures. This approach significantly reduced the time needed to produce flood 

maps. The CNN models used in the study achieved impressive F1 scores of 91% and 92% on 

the test dataset. 

Nevertheless, training a deep convolutional neural network from scratch presents 

substantial challenges, particularly in fields like medical imaging, where annotated data is often 

limited and expensive to obtain. A promising alternative is transfer learning, which involves 

fine-tuning a pre-trained network for a specific application. This approach adapts a network 

trained on a large, general dataset to a new task. When working with a small dataset, it is 

typically recommended to retain the initial layers of the pre-trained network and fine-tune only 

the final layers for the new application [12]. The authors in [13] propose a deep learning-based 
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flood detection system using semantic segmentation with a U-Net architecture to analyze aerial 

and satellite images, detecting flood-affected regions at the pixel level. Trained on a diverse 

set of annotated flood images, the model achieves an IoU score of 0.85, surpassing existing 

methods in accuracy. This system offers real-time flood mapping, enhancing disaster response 

by providing timely, accurate data, which helps emergency responders assess the extent of the 

disaster, plan rescue operations, and manage resources more effectively. 

The authors in [14] provides a reasoned overview of flood detection using SAR imaging. 

The main detection mechanisms, such as thresholding and machine learning-based algorithms, 

and the usual performance measures used to assess the reliability of demarcation maps have 

been reviewed. The presentation included publicly accessible SAR datasets with 

accompanying reference labeled data that may be utilized for both performance assessment and 

ML algorithm training. Situations where SAR-based flood detection remains difficult, such as 

in the presence of vegetation, terrain, or metropolitan areas, have been considered. They finish 

this assessment by discussing future viewpoints on the subject. 

The U-Net model [15], widely recognized for its speed and accuracy in medical image 

segmentation, has also been successfully applied to SAR image segmentation [16], [17]. In 

particular, the study by [18] demonstrated that the U-Net model outperforms the X-Net model 

in flood detection using radar imagery from both polarizations. For Vertical-Horizontal (VH) 

polarization, the U-Net model achieved an Intersection over Union (IoU) score of 64.46%, 

surpassing the X-Net model's score of 62.54%. Similarly, for Vertical-Vertical (VV) 

polarization, the U-Net model achieved an IoU score of 67.35%, outperforming the X-Net 

model’s 64.38%. These results underscore the U-Net model's effectiveness in flood detection 

using radar imagery. However, it is essential to note that the U-Net model architecture used in 

[18] has not been altered. This raises the question of whether this specific U-Net architecture 

is the most appropriate choice for segmentation applications. A more thorough analysis is 

warranted in the context of SAR image segmentation, which presents unique complexities that 

necessitate specialized handling. 

Based on the brief review of deep learning segmentation methods discussed earlier, this 

study aims to develop a robust CNN model for mapping floodwater. Specifically, it investigates 

the effects of fine-tuning different layers within a U-Net encoder as applied to SAR image 

segmentation. This paper presents a comprehensive investigation into enhancing floodwater 

mapping using machine learning techniques. The study employs a fine-tuned U-Net model to 

label flood-affected pixels in SAR imagery accurately. The results reveal that fine-tuning the 

first two blocks of the U-Net encoder achieved a remarkable IoU score of 78.904%, 

representing an improvement of 8.663% over baseline methods. This study demonstrates the 

proposed approach's efficacy in flood mapping and contributes valuable insights into the 

potential of machine learning for disaster management and climate resilience. Therefore, the 

main contributions of this paper are as follows: 

• Exploring the impact of block-level fine-tuning in the encoder architecture of the U-

Net model. 

• Introducing an efficient SAR image segmentation approach for improved flood 

mapping. 

• Providing foundational knowledge in remote sensing for flood mapping. 

• Offering practical insights for future radar-based flood monitoring. 

• Enhancing flood detection methods for improved climate resilience and disaster 

management. 
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2. MATERIALS AND METHODS 

2.1. Synthetic-Aperture Radar Imagery  

Synthetic Aperture Radar images are produced by an active system that uses microwave 

signals transmitted to the ground and received back by a sensor platform, which can be either 

airborne (via planes) or satellite-based [17]. This process entails signal transmission, reception, 

and the application of specific filters, as illustrated in Figure 1. 

In Vertical-Horizontal (VH) polarization, the transmitted signal's electric field is vertical, 

while the received signal is measured in both vertical and horizontal orientations. Vertical-

vertical (VV) polarization, in which both the transmitted and received signals are oriented 

vertically. 

 

Figure 1. The first symbol indicates the direction of signal transmission, and the second 

indicates the direction of signal reception. 

The complex interplay between transmitted signals and the terrain influences the 

distribution and reception of VH and VV data. Visual aids, such as figures, depict these 

interactions, illustrating how VH and VV signals interact with various surface features and 

water bodies. These visuals highlight signal fluctuations resulting from different polarization 

modes and surface characteristics, such as open water, vegetation, or urban environments. The 

advantages of SAR imagery include: 

• Operation in various weather conditions, ensuring uninterrupted monitoring. 

• Penetration of obstacles like clouds and vegetation, reflecting diverse surface features 

for insightful analysis. 

• Provision of high-resolution images for precise flood area identification and land 

feature differentiation. 
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2.2. Planetary Computer Data 

The dataset for model training is accessed via the Planetary Computer, a platform hosted 

on Microsoft’s Azure cloud infrastructure that provides a wide range of geospatial and 

environmental datasets. This platform provides a suite of cloud computing services for 

deploying, managing, and scaling applications and services globally, as detailed in [19]. The 

datasets available on this platform are freely accessible through the Data Catalog and come 

with accompanying metadata and code examples to facilitate their effective use. 

Raw data from upstream data providers is initially transmitted to Azure Blob Storage, from 

which users can easily retrieve the data via HTTP requests. The Planetary Computer enhances 

accessibility by creating cloud-optimized data variants, including converting data into Cloud-

optimized GeoTIFF format. Data exploration is facilitated through the STAC API, while a tile 

server visualizes data on maps using the Explorer tool. For a visual representation of the 

relationship between upstream data providers and the Planetary Computer, please refer to 

Figure 2. 

 

Figure 2. Relationship between upstream data providers, Planetary Computer and users. 

2.3. Data Preprocessing 

Accurate predictions hinge on the critical step of data preprocessing. Various data 

preprocessing strategies were employed to enhance classification performance and generate 

additional training data. The quality and utility of the training dataset were optimized through 

meticulous processes such as masking, augmentation, channel combination, and scaling. 

2.3.1. Step 1 - Pixel Masking: Improving Data Quality 

In the context of satellite imagery, pixel values indicate the energy reflected to the satellite. 

In some regions outside the satellite’s coverage, missing data points may exist within the 

dataset's images. Each image in this dataset is associated with a GeoTIFF label, essentially 

serving as a binary mask. In these masks, a pixel value of 1 clearly indicates the presence of 

water, while a value of 0 signifies its absence. Notably, any missing or erroneous data is marked 

with a pixel value of 255. During the image loading phase for training, this issue is intelligently 

handled by converting any pixels labeled as missing data to represent the absence of water. 

2.3.2. Step 2 - Data Normalization 

Normalization involves scaling pixel values to achieve a standard scale and distribution. 

This technique enables the model to converge more quickly during training, often resulting in 

improved predictive performance. Pixel z-score normalization is carried out using Eq. (1): 
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 𝑧 =
𝑋−𝜇

𝜎
 (1) 

where 𝑋 represents the original pixel value while 𝜇 and 𝜎 denote the mean and standard 

deviation values of the pixel values across the entire image. 

2.4. Data Augmentation 

Utilizing data augmentation is a crucial machine-learning strategy aimed at mitigating 

overfitting during model training, as highlighted by [20]. In the field of computer vision, image 

augmentation methods have become a prominent implicit regularization technique for reducing 

overfitting in deep convolutional networks. These approaches are widely used to enhance 

performance, as emphasized in previous studies [20], [21], [22]. The necessity of data 

augmentation becomes clear in our efforts to develop a robust machine-learning model for 

radar-based flood mapping. This technique introduces variability into the training dataset, 

reflecting real-world complexities. This study applies various image data augmentation 

techniques, including random resized crops, horizontal and vertical flipping, rotations, and 

blurring, to the dataset. Augmentor, an image augmentation library for machine learning [23], 

is utilized to enhance radar imagery and its corresponding masks, thereby improving the 

accuracy of flood mapping. Figure 3 presents a visual representation of the data augmentation 

process. 

 

Figure 3. Visual representation of data augmentation results. 

Random Resized Crop: The Random Resized Crop technique was incorporated to 

diversify the size and scale of radar images. This method randomly crops and resizes images 

to dimensions of 512x512 pixels, with scaling factors ranging from 0.75 to 1.0. By doing so, 

variations in the field of view of radar sensors are simulated, enhancing the model’s 

adaptability to different spatial contexts. 
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Vertical and Horizontal Flips: Vertical and horizontal flips were implemented to expose 

the model to variations in orientation. These augmentations create mirror images of the radar 

data, effectively doubling the dataset. They simulate different perspectives and orientations 

that radar sensors may encounter in real-world flood mapping scenarios. 

Random 90-Degree Rotations: Random 90-degree rotations add rotational diversity to 

the training data. Flood events can manifest at varIoUs angles relative to the radar sensor. By 

incorporating these rotations, our model learns to recognize flood patterns from different 

orientations, bolstering its ability to map floods accurately under varied conditions. 

Blurring: The blurring augmentation adds complexity to the dataset by mimicking radar 

imagery affected by adverse weather conditions or natural interference. Training on these 

blurred images makes the model more robust, improving its ability to identify flood-affected 

regions in radar images with lower clarity. 

2.5. U-Net Architecture 

In this study, the influential U-Net architecture [15] was utilized to facilitate the task of 

flood mapping. While the core architecture closely follows the original U-Net framework 

proposed in the seminal paper [18], specific adaptations were implemented to optimize its 

performance for radar-based flood mapping. The U-Net architecture comprises blocks, each 

containing two 3x3 convolutional layers with ReLU activation. These convolutional layers are 

essential for feature extraction and mapping. The network is organized into a series of blocks, 

each connected to the next through either a max-pooling or an upsampling operation (Figure 

4). Transitioning from one block to the next involves scaling and compression operations. The 

final layer of our U-Net architecture consists of a 1x1 convolutional layer with a sigmoid 

activation function. This layer is crucial in mapping the feature vector to a continuous range 

between 0 and 1. During the evaluation phase, a threshold value of 0.5 was applied, allowing 

us to categorize pixels as follows: 

• Pixels with values above 0.5 were designated as 1, indicating flood-affected regions. 

• Pixels with values below 0.5 were classified as 0, signifying non-flood areas. 

Notably, traditional transposed convolutional layers were replaced with a hybrid approach 

that combines bilinear upsampling followed by 2x2 convolutions. This method of upsampling 

with bilinear interpolation allows for improved capture of fine features [24]. Additionally, in 

the blocks designated for fine-tuning, 64 filters were incorporated, with their count doubled 

after each max-pooling operation to better capture complex patterns [25]. Conversely, after 

each upsampling operation, the number of filters was halved, leading to a more efficient 

computational process. This technique enhances the model’s ability to capture intricate features 

while minimizing computational overhead. 
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Figure 4. Schematic of the U-Net [18] and the fine-tuning strategies. Red blocks are the 

blocks included in fine-tuning, and yellow ones are frozen. 

2.6. Stratified K-Fold Cross Validation 

To ensure a robust evaluation of the models, Stratified K-Fold Cross-Validation (SKCV) 

was employed, an advanced technique that provides a fair and unbiased assessment of model 

performance [26]. SKCV meticulously divides our floodwater radar imagery dataset into K 

subsets, ensuring that each fold maintains a proportional representation of the various classes 

present in the data. This stratification is essential, particularly when dealing with imbalanced 

datasets where certain classes may be underrepresented. By preserving the class distribution in 

each fold, SKCV helps mitigate biases arising from uneven class proportions. The SKCV 

process involves the following steps: 

Step 1 - Dataset Division: The floodwater radar imagery dataset, denoted as 𝑋, is divided 

into 𝐾 subsets: 𝑋1, 𝑋2, … 𝑋𝐾. 

Step 2 - Iterative Evaluation: For each iteration 𝑖 from 1 to 𝐾: 

• Validation and Training Sets: One subset, 𝑋𝑖, is used as the validation set, while the 

remaining subsets are merged to form the training set. 

• Model Training: Our machine learning models are trained on the training set, 

allowing them to learn patterns and relationships within the data. 

• Model Evaluation: The trained models are evaluated on the validation set, providing 

specific performance metrics for each fold. 

Overall model performance is assessed by averaging evaluation metrics across iterations. 

This is done by calculating the average performance metric Pavg, derived by summing 
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performance metrics 𝑃𝑖 from each fold and dividing by the number of folds 𝐾, as shown in Eq. 

(2): 

 𝑃𝑎𝑣𝑔 =
1

𝐾
∑ 𝑃𝑖

𝐾
𝑖=1   (2) 

This approach ensures that each class is evenly distributed across the K-folds, maintaining 

the sample distribution ratio among the classes within SKCV. It provides an unbiased 

evaluation of model performance by accurately representing the target class distribution in each 

fold. 

2.7. Evaluation Metric: Intersection over Union 

For precise model assessment, the Jaccard Index, also known as the Generalized 

Intersection over Union (IoU), was utilized. This metric is crucial for comparing ground truth 

and predicted segmentations in supervised segmentation models [27]. It measures label 

similarity, indicating the overlap between segmentations. Higher values indicate better 

alignment, while lower values signify less accurate segmentations. The mathematical 

formulation of the Jaccard Index is presented in Eq. (3): 

 𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
=

|𝐴∩𝐵|

|𝐴|+|𝐵|−|𝐴∩𝐵|
 (3) 

where, 𝐴 represents the set of flood pixels in the label, while 𝐵 corresponds to the set of 

predicted flood pixels. 

3. EXPERIMENTS 

3.1. Dataset 

In our study, the dataset used for both training and testing was sourced from the project 

described in [28]. This project provides a global catalog of flood maps for major historical 

events, accessible via Microsoft’s Planetary Computer platform. The dataset used for flood 

detection in this study consists of high-resolution radar images captured by the Sentinel-1 

satellite, which employs SAR technology. SAR is particularly effective for flood monitoring 

as it can capture images through clouds day and night, making it ideal for use in adverse 

weather conditions. The dataset contains images processed in dual polarization (VV and VH), 

which helps capture the flood extent more accurately. The thirteen most severe floods, 

determined by their peak water levels, were specifically selected, as shown in Table 1. 

Table 1. List of the ten most severe flood events selected from a total of 156 simulated 

historic surge events documented in [28]. 

Name Country Date Lat Lon Peak Water Level 

Rosita AU 21/04/2000 -18.2 122.26 8.42 

Ingrid AU 17/03/2005 -12.78 135.29 8.42 

Chris AU 07/02/2002 -19.85 120.41 8.19 

Annette AU 19/12/1994 -19.7 120.81 7.82 

Orson AU 24/04/1989 -20.66 116.7 6.45 

Glenda AU 31/03/2006 -20.76 116.62 6.38 

Ian AU 03/03/1992 -20.71 115.46 6.34 

Vance AU 24/03/1999 -21.8 114.74 6.2 

Katrina US 29/08/2005 27.7 -85.21 6.09 

Connie AU 20/01/1987 -20.31 118.58 5.99 

Bobby AU 27/02/1995 -20.78 116.67 5.91 

Rachel AU 08/01/1997 -20.31 118.57 5.85 

John AU 16/12/1999 -20.31 118.58 5.75 
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The training dataset comprises 542 chips, totaling 1,084 images (each image paired with 

a corresponding label), facilitating supervised learning techniques. For a visual example of a 

chip and its corresponding water labels, refer to Figure 5. The radar images in the dataset are 

stored as GeoTIFF files, each containing 512x512 pixels. These images are measured in 

decibels (dB) and are acquired using the Sentinel-1 system, which employs a dual-polarization 

SAR technique. The SAR data is collected in both VV and VH polarizations, as shown in 

Figure 6. Depending on the specific flood detection requirements, one or both polarization 

bands are selectively used for analysis. 

 

Figure 5. Visual representation of a random chip with its water labels. 

 

Figure 6. Visual comparison of VV and VH bands for polarization distinctions. 

3.2. Experimental Design 

It is important to note that including skip connections in the U-Net architecture complicates 

the conventional distinction between shallow and deep layers, necessitating a thorough 

investigation to determine the most effective fine-tuning strategy. 

The U-Net encoder was divided into several subdivisions to tackle this challenge, each 

encompassing layers of varying depths. This division strategy is crucial for determining which 

network segments are most relevant for fine-tuning. The subdivisions are illustrated in Figure 

4 and outlined as follows: 

106



IIUM Engineering Journal, Vol. 26, No. 1, 2025 Doan and Le-Thi 
https://doi.org/10.31436/iiumej.v26i1.3157 

 

 

• Fine-Tuning the First Block (1): This experiment involved fine-tuning only the U-Net 

encoder's initial block. 

• Fine-Tuning the First Two Blocks (1, 2): This experiment explored the impact of fine-

tuning the encoder's first and second blocks. 

• Fine-Tuning the Second Half of the Encoder (3, 4): This experiment focused on fine-

tuning the latter part of the encoder, specifically blocks 3 and 4. 

3.3. Experimental Setup 

The experimental setup is the cornerstone of our research, detailing key elements such as 

the operating system, hardware, and software. The experiments were conducted on Ubuntu 

20.04.1 LTS, utilizing an Intel Core i7 processor and an NVIDIA GeForce RTX 2080 Ti for 

high-performance computation. The exact package versions used are outlined in Table 2, 

ensuring accuracy and reproducibility. This carefully curated setup ensures seamless 

interactions, boosting reliability. Strategic environment configurations were applied to 

optimize efficiency and effectiveness, providing a solid foundation for comprehensive flood 

detection model evaluations. 

Table 2. Imported packages and their descriptions 

Package Version Description 

albumentations 1.3.1 Image augmentation library for machine learning tasks. 

catboost 1.2 Gradient boosting library optimized for categorical data. 

gdal 3.4.1 Geospatial Data Abstraction Library for raster data manipulation. 

matplotlib 3.6.2 Visualization library for creating static, animated, and interactive plots. 

numpy 1.24.0 Fundamental package for scientific computing with Python. 

pandas 1.5.2 Data manipulation and analysis library providing data structures and functions. 

rasterio 1.3.8 Library for reading and writing geospatial raster data. 

sklearn 1.2.0 Machine learning library with tools for classification, regression, and more. 

tqdm 4.64.1 Library for reading and writing geospatial raster data. 

3.4. Model Training 

During the training process, the early stopping technique was applied. This technique halts 

training once the minimum loss is reached on the validation set and no improvement is 

observed for 20 consecutive epochs. The model that performed best on the validation set was 

saved for further evaluation on the test set. If early stopping did not occur within 200 epochs, 

the training was deemed unsuccessful, ensuring that resources were not wasted on unproductive 

runs. 

The training was carried out using the configuration detailed in Table 3. All experiments 

employed the same folds to facilitate a meaningful comparison of different fine-tuning 

scenarios. The network's performance was consistently evaluated using the same test set, 

representing the entire held-out fold. 

Table 3. Model training configuration 

Parameters Value 

Optimization algorithm ADAM optimizer 

Loss function Binary Cross-Entropy 

Batch size 32 

Learning rate 10−4 
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4. RESULTS AND DISCUSSIONS 

The results of the study reveal an interesting phenomenon. When comparing different fine-

tuning strategies for the U-Net encoder, it was consistently observed that training the shallow 

path while freezing the deep path produced superior results (Figure 7). Notably, the shallow 

path contains significantly fewer parameters (Table 4), with approximately less than half the 

number found in the deep path (comparing the Blocks 1 and 2 scheme to Blocks 3 and 4). 

Despite this substantial difference in parameter count, training fewer parameters still improved 

performance. 

 

Figure 7. IoU scores for different fine-tuning schemes 

Table 4. Mean IoU scores and number of parameters of different fine-tuning schemes 

U-Net Model Baseline Block 1 Blocks 1,2 Blocks 3,4 

Number of Parameters 3.1e+7 3.7e+5 2.5e+6 4.3e+7 

Mean IoU (%) 70.241 76.548 78.904 74.759 

 

As demonstrated in Table 4, our findings provide important insights into the efficiency of 

fine-tuning various blocks within the U-Net architecture for floodwater mapping. The 

maximum Intersection over Union (IoU) score of 78.904% obtained by fine-tuning the first 

two blocks of the encoder architecture is especially remarkable because it represents an 8.663% 

improvement above baseline approaches. This increase demonstrates the effectiveness of 

intentional model fine-tuning in enhancing performance for specific applications like flood 

detection. Several elements contribute to the U-Net model's performance: 

Layer-Specific Fine-Tuning: By concentrating on fine-tuning only the first two blocks, 

these layers' extensive feature extraction capabilities were leveraged while preserving the 

stability of the deeper levels. This strategy lowered the danger of overfitting, which is common 

when fine-tuning deeper layers, while allowing for more efficient training with fewer 

parameters. The network's short route (with fewer parameters) produced better results, 

demonstrating that effective feature learning may occur without too complicated model 

designs. 
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Data Preprocessing and Augmentation: Preprocessing processes such as pixel masking, 

normalization, and other data augmentation approaches considerably enhanced the quality and 

variability of the training dataset. This variety enabled the model to generalize more well across 

various flood conditions, increasing its resilience in real-world applications. 

Application of SAR Imagery: SAR imagery, recognized for its ability to pierce cloud cover 

and produce high-resolution data, enabled accurate flood mapping even in difficult climatic 

circumstances. The model's dependence on SAR data highlights the value of remote sensing in 

flood control, especially in locations where traditional ground-based surveillance is restricted. 

Implications for Disaster Management: Our technique's improved mapping accuracy has 

important implications for disaster management and climate resilience. Improved flood 

mapping helps governments and humanitarian groups respond more quickly and precisely, 

allowing for improved resource allocation and focused relief operations. This expertise is 

critical for reducing the human and economic toll of flooding occurrences. 

Future Directions: While the findings are encouraging, more studies are needed to 

investigate the use of the U-Net model in various flood situations and geographic locations. 

Furthermore, additional data sources, such as meteorological and hydrological information, 

may improve the model's forecasting powers. The possibility of real-time flood monitoring and 

evaluation might be a useful path for future research, leading to a more proactive approach to 

disaster management. 

Our findings show that fine-tuning the U-Net architecture is a potent technique for 

floodwater mapping, with considerable gains in accuracy and efficiency. The findings provide 

a solid platform for future advances in remote sensing applications, underlining the importance 

of machine learning in solving global concerns such as climate change and natural catastrophes. 

Figure 8 provides a comparison of segmentation results from several fine-tuning 

procedures used on a U-Net model for flood detection. Flood maps generated using the fine-

tuning of Block 1 and Blocks 3, 4 techniques achieved IoU scores exceeding 74%, with the 

resulting flood maps showing similar patterns. However, the flood maps produced by the fine-

tuned Blocks 1, 2 approach demonstrated greater precision, capturing finer details and aligning 

more closely with the ground truth labels, leading to the highest overall score. 

The input data in the VH column comprises vertical-horizontal polarization (VH) from 

radar pictures, which were most likely collected using Synthetic Aperture Radar (SAR) 

devices. SAR data is very useful in flood mapping since it can pierce clouds and collect photos 

in all weather, making it excellent for estimating flood extents. This serves as the starting point 

for model projections. 

The Label column depicts the ground truth, the manually labeled flood extent. It shows 

flooded areas in yellow and dry sections in deep purple, serving as a baseline for assessing the 

model's accuracy. The Base column displays the results of the base U-Net model with no fine-

tuning. While the basic model covers the general flood size, the forecasts are less precise, with 

insufficient accuracy in identifying smaller features, which might be essential in flood detection 

jobs. 

The subsequent columns, Block 1 and Blocks 1 and 2 display the results of fine-tuning 

various areas of the U-Net encoder. Fine-tuning Block 1 (the shallow layers) significantly 

increases accuracy, capturing more specific flood extents than the baseline model. Further fine-

tuning using Blocks 1 and 2 further improves the findings, catching precise details of flood 

boundaries and producing the most accurate predictions. This strategy is most likely associated 
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with the greatest IoU score described before, highlighting the need for shallow layers for 

detailed flood mapping. 

Finally, the findings in Blocks 3 and 4 demonstrate the effect of fine-tuning the U-Net 

encoder's deeper layers. While this method captures wider flood patterns, it ignores the fine-

grained intricacies apparent in forecasts from fine-tuning superficial layers. These findings 

indicate that deeper layers are less successful at recording accurate flood limits than shallow 

ones. Overall, the comparison shows that focusing on fine-tuning the shallower regions of the 

network results in more accurate flood extent identification, especially when collecting finer 

details. 

 

Figure 8. Visual comparisons of flood detection results for the different fine-tuning 

schemes are shown, with yellow representing flood extents and deep purple indicating 

dry areas. 

5. CONCLUSION, LIMITATIONS AND FUTURE WORKS 

This paper has presented a comprehensive comparative analysis of fine-tuning various 

blocks within the U-Net encoder framework for flood extent detection. Our findings 

demonstrate that fine-tuning Blocks 1 and 2 outperformed other methods, yielding a more 

robust and efficient solution for flood mapping, with the highest IoU score of 78.904%. This 

systematic approach shows significant potential for improving flood mapping accuracy. 

Despite the promising results, limitations exist, including the reliance on a relatively small 

dataset of 13 flood events and the exclusive use of Sentinel-1 radar data, which may limit the 

model's generalization and real-time applicability in regions with less frequent data availability. 

Future research should concentrate on increasing the dataset, including other data sources like 

optical or LiDAR imaging, and investigating more complex structures like transformers or 

hybrid models. Furthermore, real-time implementation on cloud platforms and cooperation 

with disaster management organizations might increase the model's practical influence in real-

world disaster response situations, boosting worldwide flood preparedness and mitigation. 
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