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ABSTRACT:  The stability of an Unmanned Aerial Vehicle (UAV) attitude is crucial in 
aviation to mitigate the risk of accidents and ensure mission success. This study aims to 
optimize and adaptively control the flight attitude stability of a flying wing-type UAV amidst 
environmental variations. This is achieved through the utilization of Linear Quadratic 
Regulator-Neural Network (LQR-NN) control, wherein the Neural Network predicts the 
optimal K gain value by fine-tuning Q and R parameters to minimize system errors. An online 
learning neural network adjusts the K value based on real-time error feedback, enhancing 
system performance. Experimental results demonstrate improved stability metrics: for roll 
angle stability, a rise time of 0.4682 seconds, settling time of 1.3819 seconds, overshoot of 
0.298%, and Steady State Error (SSE) of 0.133 degrees; for pitch angle stability, a rise time 
of 0.2309 seconds, settling time of 0.7091 seconds, overshoot of 0.1224%, and Steady State 
Error (SSE) of 0.0239 degrees. The LQR-NN approach effectively reduces overshoot 
compared to traditional Linear Quadratic Regulator (LQR) control, thereby minimizing 
oscillations. Furthermore, LQR-NN can minimize the Steady State Error (SSE) to 0.074 
degrees for roll rotation motion and 0.035 degrees for pitch rotation motion. 

ABSTRAK: Kestabilan perubahan Pesawat Tanpa Pemandu (UAV) adalah penting dalam 
penerbangan bagi mengurangkan risiko kemalangan dan memastikan kejayaan misi. Kajian 
ini bertujuan mengoptimum dan menstabilkan perubahan kawalan adaptif penerbangan UAV 
jenis sayap terbang di tengah-tengah variasi persekitaran. Ini dicapai melalui penggunaan 
kawalan Rangkaian Linear Kuadratik Pengatur-Neural (LQR-NN), di mana Rangkaian 
Neural meramal nilai perolehan K optimum dengan meneliti parameter Q dan R bagi 
mengurangkan ralat sistem. Rangkaian neural pembelajaran dalam talian melaraskan nilai K 
berdasarkan maklum balas ralat masa nyata, ini meningkatkan prestasi sistem. Dapatan kajian 
eksperimen menunjukkan metrik kestabilan lebih baik: bagi kestabilan sudut gulungan, masa 
kenaikan sebanyak 0.4682 saat, masa kestabilan 1.3819 saat, lajakan 0.298% dan Ralat 
Keadaan Mantap (SSE) 0.133 darjah; bagi kestabilan sudut pic, masa kenaikan 0.2309 saat, 
masa penetapan 0.7091 saat, lajakan 0.1224%, dan Ralat Keadaan Mantap (SSE) 0.0239 
darjah. Pendekatan LQR-NN berkesan mengurangkan lajakan berbanding kawalan tradisi 
Pengatur Kuadratik Linear (LQR), dengan itu mengurangkan ayunan. Tambahan, LQR-NN 
dapat mengurangkan Ralat Keadaan Mantap (SSE), sebanyak 0.074 darjah bagi gerakan 
putaran guling dan 0.035 darjah bagi gerakan putaran anggul. 

KEYWORDS:  Unmanned Aerial Vehicle, Optimal Control, Adaptive, Linear Quadratic 
Regulator, Neural Network 
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1. INTRODUCTION 
Unmanned Aerial Vehicles (UAVs), more commonly known as drones, have become a 

very important and transformational technology in various aspects of human life and the 
industrial sector [1]. The current use of UAVs has various positive implications that reflect 
significant impacts in various fields, such as monitoring and surveillance, photography, 
delivery of goods, precision agriculture, infrastructure monitoring, security, and so on [2].  

One type of UAV that is the focus of development in carrying out this task is the flying 
wing [3]. A flying wing is an aircraft design that does not have a conventional fuselage or tail 
and consists almost entirely of wings [4]. This type of UAV has superior aerodynamic 
efficiency, which provides the ability to fly longer distances compared to other designs [5]. In 
addition, they have good maneuverability, resistance to different environmental conditions, and 
the ability to carry various types of sensor payloads and cargo [6].  

Of course, in carrying out these sector missions, the flying wing UAV is supported by an 
autonomous system that requires good stability control [7]. Stability control is the main factor 
in the success of an aircraft flight. Without good stability, an aircraft cannot maintain the 
correct height, direction, attitude, and position, making it difficult to operate or even risk an 
accident [8].  

One of the effective control systems for maintaining UAV flight stability is the Linear 
Quadratic Regulator (LQR). Recent research indicates that employing LQR control in 
managing UAV attitude enables swift error correction, ensuring the maintenance of desired 
steady-state values [9,10]. Utilizing LQR control allows the UAV to minimize system errors 
with stability responses across all three orientation angles (roll, pitch, and yaw) in less than 1 
second [11]. Fundamentally, LQR is a control method grounded in optimal control theory [12], 
utilized to design optimal controllers for linear systems, particularly within the context of 
dynamic systems represented by linear differential equations. LQR aims to generate control 
signals that minimize specified performance criteria [13]. Nonetheless, LQR encounters 
challenges in adapting to dynamic environmental changes, necessitating the development or 
incorporation of methods to optimize aircraft stability in constantly evolving scenarios [14]. 

Hence, there is a demand for a control system that exhibits robust characteristics and adapts 
to handle the intricacies of tasks and prevailing environmental conditions. The adaptability of 
LQR can be enhanced by integrating a Neural Network, enabling the adjustment of LQR 
feedback gain values to suit prevailing conditions, thereby optimizing its performance in that 
environment [15]. Implementing the LQR control system with a Neural Network on a 
quadcopter-type UAV has yielded fairly satisfactory outcomes. Neural networks have 
significantly enhanced the aircraft's response to rotational and translational motion, nearing the 
desired specifications [16]. Building upon this, this research focuses on LQR with Neural 
Network integration, referred to as LQR-NN. LQR-NN will be applied to a flying wing-type 
UAV model. Given the heightened susceptibility to dynamic changes in flying wing-type UAV 
flights, precise accommodation, and high performance are anticipated to mitigate errors. 

2. UAV FLYING WING MODELING 
Designing a control system requires kinematics and dynamic modeling of the aircraft. 

Modeling begins by examining the forces acting on the UAV flying wing aircraft [17]. The 
forces are visualized in aircraft body motion, as in Figure 1 [18]. 
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Figure 1. Flying wing UAV motion axis 

During flight, an airplane can rotate along three axes (x, y, and z) concerning its center 
of mass. The aircraft's position control system typically manages its angular orientation by 
adjusting angles. Various aerodynamic forces come into play when an object is airborne, 
including lift, thrust, weight, and drag. These forces are crucial in determining the aircraft's 
behavior and maneuverability in the air. 

Aircraft do not consistently maintain a strictly horizontal path while advancing [19]. 
This phenomenon arises from either air deflection from the front along the x-axis or from 
the side along the y-axis. Air deflection from the front results in the angle of attack (𝛼𝛼 −
𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎), whereas deflection from the side leads to the aircraft's sideslip angle (𝛽𝛽 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎). 
The equations for these two angles deflection are as follows: 

𝛼𝛼 = 𝑏𝑏𝑎𝑎𝑡𝑡−1 𝑤𝑤
𝑢𝑢

 (1) 

𝛽𝛽 = 𝑏𝑏𝑎𝑎𝑡𝑡−1 � 𝑣𝑣
√𝑢𝑢2+𝑤𝑤2� (2) 

 
The system uses the North East Down (NED) frame for the Earth and aircraft body frame. 

So, the body frame and the NED frame can be related using a rotation matrix. The formula of 
a rotation matrix is defined in Eq. (1). 

 

�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐
𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 + 𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 + 𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠
−𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠

� (3) 

 
The correlation between frames generates rotational angles utilized for aircraft orientation. 

The rotation angles employed in the system are known as Euler angles. The Euler angles use 
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roll (𝑠𝑠), pitch (𝑐𝑐), and yaw (𝑐𝑐) angles. Each orientation angle has a derivative of angular 
velocity as a form of controlled state. 

�
𝑎𝑎
𝑞𝑞
𝑟𝑟
� = �

1 0 −𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐
0 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠
0 −𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠

� �
�̇�𝑠
�̇�𝑐
�̇�𝑐
� (4) 

𝑎𝑎 is the roll rate or the angular velocity of the y-axis, 𝑞𝑞 is the pitch rate or the angular velocity 
of the x-axis, and 𝑎𝑎 is the yaw rate or the angular velocity of the z-axis. Where, 

�̇�𝑠 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (5) 

�̇�𝑐 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (6) 

�̇�𝑐 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (7) 

 
Furthermore, the aircraft's translation velocity along each axis (x, y, and z) is 

interconnected. The translation velocity along each axis is dictated by alterations in the plane 
frame's translation relative to the ground frame. 

 

�
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐
𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 + 𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 + 𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠
−𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠

� �
𝑢𝑢
𝑣𝑣
𝑤𝑤
� (8) 

 

where 𝑢𝑢 is the translational velocity of the x-axis, 𝑣𝑣 is the translational velocity of the y-axis, 
𝑤𝑤 is the translational velocity of the z-axis. 

Both kinematic and dynamic models can characterize the aircraft system. These models 
were employed to formulate equations for the forces, moments, and orientation angles present 
within the system, which are visualized in the aircraft's two motions. The aircraft's motion is 
classified into translational and rotational components [20]. 

The determination of an aircraft's translational movement is carried out using the Newton-
Euler law, which is based on Newton's second law. 

∑𝐹𝐹 = 𝑚𝑚.𝑎𝑎 (9) 

where m is mass (kg), and a is acceleration (𝑚𝑚
𝑠𝑠2

). 

∑𝐹𝐹 = 𝐹𝐹 + 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑣𝑣𝑔𝑔𝑑𝑑𝑔𝑔 (10) 

∑𝐹𝐹 = 𝑚𝑚 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑣𝑣𝑇𝑇 = 𝑚𝑚 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑣𝑣𝑇𝑇 + (𝜔𝜔𝑥𝑥𝑣𝑣𝑇𝑇) (11) 

where 𝑣𝑣𝑇𝑇 is the translational velocity (𝑚𝑚
𝑠𝑠

) and 𝜔𝜔 is angular velocity. 

The linear and total angular vector velocities can be calculated with Eq. (12) and (13), 

𝑣𝑣𝑇𝑇 = 𝑠𝑠𝑢𝑢 + 𝑗𝑗𝑣𝑣 + 𝑘𝑘𝑤𝑤 (12) 

𝜔𝜔 = 𝑠𝑠𝑎𝑎 + 𝑗𝑗𝑞𝑞 + 𝑘𝑘𝑟𝑟 (13) 

where 𝑠𝑠, 𝑗𝑗,𝑘𝑘 are vector directions. The derivate of the linear velocity can be calculated with Eq. 
(14). 
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𝑑𝑑
𝑑𝑑𝑑𝑑
𝑣𝑣𝑇𝑇 = 𝑠𝑠�̇�𝑢 + 𝑗𝑗�̇�𝑣 + 𝑘𝑘�̇�𝑤 (14) 

Thus, the states that occur on the plane can be written in the following matrix [21], 

𝜔𝜔𝑥𝑥𝑣𝑣𝑇𝑇 = �
𝑠𝑠 𝑗𝑗 𝑘𝑘
𝑎𝑎 𝑞𝑞 𝑟𝑟
𝑢𝑢 𝑣𝑣 𝑤𝑤

� = (𝑞𝑞𝑤𝑤 − 𝑣𝑣𝑟𝑟) + (𝑢𝑢𝑟𝑟 − 𝑎𝑎𝑤𝑤) + (𝑎𝑎𝑣𝑣 − 𝑢𝑢𝑞𝑞) (15) 

By involving linear and angular velocity, the total forces acting on the system can be expressed, 
∑𝐹𝐹 = {𝑠𝑠�̇�𝑢 + 𝑗𝑗�̇�𝑣 + 𝑘𝑘�̇�𝑤 + ((𝑞𝑞𝑤𝑤 − 𝑣𝑣𝑟𝑟) + (𝑢𝑢𝑟𝑟 − 𝑎𝑎𝑤𝑤) + (𝑎𝑎𝑣𝑣 − 𝑢𝑢𝑞𝑞))} (16) 
∑𝐹𝐹 = {𝑠𝑠(�̇�𝑢 + 𝑞𝑞𝑤𝑤 − 𝑣𝑣𝑟𝑟) + 𝑗𝑗(�̇�𝑣 + 𝑢𝑢𝑟𝑟 − 𝑎𝑎𝑤𝑤) + 𝑘𝑘(�̇�𝑤 + 𝑎𝑎𝑣𝑣 − 𝑢𝑢𝑞𝑞)} (17) 
∑𝐹𝐹 = {𝑠𝑠 ∑ 𝐹𝐹𝑥𝑥 + 𝑗𝑗 ∑ 𝐹𝐹𝑔𝑔 + 𝑘𝑘 ∑𝐹𝐹𝑧𝑧} (18) 

So, based on Eq. (17) and (18), the forces of each axis can be calculated with this formula, 
∑𝐹𝐹𝑥𝑥 = �̇�𝑢 + 𝑞𝑞𝑤𝑤 − 𝑣𝑣𝑟𝑟 (19) 
∑𝐹𝐹𝑔𝑔 = �̇�𝑣 + 𝑢𝑢𝑟𝑟 − 𝑎𝑎𝑤𝑤 (20) 

∑𝐹𝐹𝑧𝑧 = �̇�𝑤 + 𝑎𝑎𝑣𝑣 − 𝑢𝑢𝑞𝑞 (21) 
Every axis of the plane is affected by the force of gravity. Thus, Eq. (19) to (21) will transform 
into Eq. (22) to (24), where 𝑔𝑔 is the gravitational acceleration. 

𝐹𝐹𝑥𝑥−𝑚𝑚𝑔𝑔.𝑠𝑠𝑔𝑔𝑠𝑠𝑑𝑑
𝑚𝑚

= �̇�𝑢 + 𝑞𝑞𝑤𝑤 − 𝑣𝑣𝑟𝑟 (22) 

𝐹𝐹𝑦𝑦+𝑚𝑚𝑔𝑔.𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑𝑠𝑠𝑔𝑔𝑠𝑠𝑑𝑑
𝑚𝑚

= �̇�𝑣 + 𝑢𝑢𝑟𝑟 − 𝑎𝑎𝑤𝑤 (23) 
𝐹𝐹𝑧𝑧+𝑚𝑚𝑔𝑔.𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑

𝑚𝑚
= �̇�𝑤 + 𝑎𝑎𝑣𝑣 − 𝑢𝑢𝑞𝑞 (24) 

Because 𝐹𝐹𝑥𝑥 = 𝑋𝑋, 𝐹𝐹𝑔𝑔 = 𝑌𝑌, and 𝐹𝐹𝑧𝑧 = 𝑍𝑍, the forces equation on each plane axis can be written as, 
𝑋𝑋
𝑚𝑚
− 𝑔𝑔. 𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐 = �̇�𝑢 + 𝑞𝑞𝑤𝑤 − 𝑣𝑣𝑟𝑟 (25) 

𝑌𝑌
𝑚𝑚

+ 𝑔𝑔. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑠𝑠 = �̇�𝑣 + 𝑢𝑢𝑟𝑟 − 𝑎𝑎𝑤𝑤 (26) 
𝑍𝑍
𝑚𝑚

+ 𝑔𝑔. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 = �̇�𝑤 + 𝑎𝑎𝑣𝑣 − 𝑢𝑢𝑞𝑞 (27) 

Furthermore, the rotational motion of an aircraft is defined through the angular momentum 
acting on the system. The momentum has the following equation, 

𝐻𝐻 = 𝐼𝐼𝜔𝜔 (28) 

where 𝐻𝐻 is angle momentum (kg.m2.rad
s

) and 𝐼𝐼 is inertia moment (kg. m2). Eq (29) can 
describe the inertia moment, 

𝐼𝐼 = �
𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑔𝑔 −𝐼𝐼𝑥𝑥𝑧𝑧
−𝐼𝐼𝑥𝑥𝑔𝑔 𝐼𝐼𝑔𝑔𝑔𝑔 −𝐼𝐼𝑔𝑔𝑧𝑧
−𝐼𝐼𝑥𝑥𝑧𝑧 −𝐼𝐼𝑔𝑔𝑧𝑧 𝐼𝐼𝑧𝑧𝑧𝑧

� (29) 

The torque that occurs in the system is 

𝑀𝑀 = 𝐼𝐼 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜔𝜔 + 𝜔𝜔𝑥𝑥𝜔𝜔) + 𝜔𝜔𝑥𝑥𝐻𝐻 (30) 

when 𝜔𝜔𝑥𝑥𝜔𝜔 = 0, then Eq. (30) can be rewritten as in Eq. (31) and (32) [22]. 
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𝑑𝑑
𝑑𝑑𝑑𝑑
𝜔𝜔 = 𝑠𝑠𝑎𝑎 + 𝑗𝑗𝑞𝑞 + 𝑘𝑘𝑟𝑟 (31) 

𝜔𝜔𝑥𝑥𝐻𝐻 = �
𝑠𝑠 𝑗𝑗 𝑘𝑘
𝑎𝑎 𝑞𝑞 𝑟𝑟
ℎ𝑥𝑥 ℎ𝑔𝑔 ℎ𝑧𝑧

� (32) 

The evaluation of the determinant with unit vectors i, j, and k, along with angular momentum 
projections, can be expressed as a cross-product calculation in Eq. (33). 

𝜔𝜔𝑥𝑥𝐻𝐻 = �𝑞𝑞ℎ𝑧𝑧 − 𝑟𝑟ℎ𝑔𝑔�𝑠𝑠 + (𝑟𝑟ℎ𝑥𝑥 − 𝑎𝑎ℎ𝑧𝑧)𝑗𝑗 + �𝑎𝑎ℎ𝑔𝑔 − 𝑞𝑞ℎ𝑥𝑥�𝑘𝑘 (33) 

The moment of inertia that occurs on the three axes of the aircraft is described in Eq. (32), 
with hx, hy, and hz are defined in Eq. (35). 

𝐻𝐻 = 𝐼𝐼𝜔𝜔 = �
𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑔𝑔 −𝐼𝐼𝑥𝑥𝑧𝑧
−𝐼𝐼𝑥𝑥𝑔𝑔 𝐼𝐼𝑔𝑔𝑔𝑔 −𝐼𝐼𝑔𝑔𝑧𝑧
−𝐼𝐼𝑥𝑥𝑧𝑧 −𝐼𝐼𝑔𝑔𝑧𝑧 𝐼𝐼𝑧𝑧𝑧𝑧

� �
𝑎𝑎
𝑞𝑞
𝑟𝑟
� (34) 

�
ℎ𝑥𝑥
ℎ𝑔𝑔
ℎ𝑧𝑧
� = �

𝐼𝐼𝑥𝑥𝑥𝑥𝑎𝑎−𝐼𝐼𝑥𝑥𝑔𝑔𝑞𝑞 − 𝐼𝐼𝑥𝑥𝑧𝑧𝑟𝑟
−𝐼𝐼𝑥𝑥𝑔𝑔𝑎𝑎 + 𝐼𝐼𝑔𝑔𝑔𝑔𝑞𝑞 − 𝐼𝐼𝑔𝑔𝑧𝑧𝑟𝑟
−𝐼𝐼𝑥𝑥𝑧𝑧𝑎𝑎−𝐼𝐼𝑔𝑔𝑧𝑧𝑞𝑞 + 𝐼𝐼𝑧𝑧𝑧𝑧𝑟𝑟

� (35) 

The aircraft has a symmetrical shape about the XZ axis, so Ixy = Iyz = 0. So, Eq. (34) 
transform to Eq. (36). 

�
ℎ𝑥𝑥
ℎ𝑔𝑔
ℎ𝑧𝑧
� = �

𝐼𝐼𝑥𝑥𝑥𝑥𝑎𝑎−𝐼𝐼𝑥𝑥𝑧𝑧𝑟𝑟
𝐼𝐼𝑔𝑔𝑔𝑔𝑞𝑞

−𝐼𝐼𝑥𝑥𝑧𝑧𝑎𝑎 + 𝐼𝐼𝑧𝑧𝑧𝑧𝑟𝑟
� (36) 

Substituting Eq. (36) into Eq. (33) yields: 

𝜔𝜔𝑥𝑥𝐻𝐻 = �𝑞𝑞(−𝐼𝐼𝑥𝑥𝑧𝑧𝑎𝑎 + 𝐼𝐼𝑧𝑧𝑧𝑧𝑟𝑟) − 𝑟𝑟(𝐼𝐼𝑔𝑔𝑔𝑔𝑞𝑞)�𝑠𝑠 + �𝑟𝑟(𝐼𝐼𝑥𝑥𝑥𝑥𝑎𝑎−𝐼𝐼𝑥𝑥𝑔𝑔𝑞𝑞) − 𝑎𝑎(−𝐼𝐼𝑥𝑥𝑧𝑧𝑎𝑎 + 𝐼𝐼𝑧𝑧𝑧𝑧𝑟𝑟)�𝑗𝑗 + �𝑎𝑎(𝐼𝐼𝑔𝑔𝑔𝑔𝑞𝑞) − 𝑞𝑞(𝐼𝐼𝑥𝑥𝑥𝑥𝑎𝑎−𝐼𝐼𝑥𝑥𝑔𝑔𝑞𝑞)�𝑘𝑘 (37) 
𝜔𝜔𝑥𝑥𝐻𝐻 = �−𝐼𝐼𝑥𝑥𝑧𝑧𝑎𝑎𝑞𝑞 + 𝐼𝐼𝑧𝑧𝑧𝑧𝑞𝑞𝑟𝑟) − 𝐼𝐼𝑔𝑔𝑔𝑔𝑞𝑞𝑟𝑟�𝑠𝑠 + (𝐼𝐼𝑥𝑥𝑥𝑥𝑎𝑎𝑟𝑟−𝐼𝐼𝑥𝑥𝑧𝑧𝑟𝑟2 + 𝐼𝐼𝑥𝑥𝑧𝑧𝑎𝑎2 − 𝐼𝐼𝑧𝑧𝑧𝑧𝑎𝑎𝑟𝑟)𝑗𝑗 + �𝐼𝐼𝑔𝑔𝑔𝑔𝑎𝑎𝑞𝑞 − 𝐼𝐼𝑥𝑥𝑥𝑥𝑎𝑎𝑞𝑞+𝐼𝐼𝑥𝑥𝑧𝑧𝑞𝑞𝑟𝑟�𝑘𝑘 (38) 

The derivate of angle momentum can be calculated, 

𝐼𝐼 𝑑𝑑
𝑑𝑑𝑑𝑑
𝜔𝜔 = �

𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝑎−𝐼𝐼𝑥𝑥𝑧𝑧�̇�𝑟
𝐼𝐼𝑔𝑔𝑔𝑔�̇�𝑞

−𝐼𝐼𝑥𝑥𝑧𝑧�̇�𝑎 + 𝐼𝐼𝑧𝑧𝑧𝑧�̇�𝑟
� (39) 

According to Eq. (30), the torque in each axis rotation can be expressed by adding Eq.(38) 
and (39)[23], 

𝑀𝑀𝑥𝑥 = 𝐿𝐿 = 𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝑎 − 𝐼𝐼𝑥𝑥𝑧𝑧(�̇�𝑟 + 𝑎𝑎𝑞𝑞) + (𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑔𝑔𝑔𝑔)𝑞𝑞𝑟𝑟 (40) 

𝑀𝑀𝑔𝑔 = 𝑀𝑀 = 𝐼𝐼𝑔𝑔𝑔𝑔�̇�𝑞 − 𝐼𝐼𝑥𝑥𝑧𝑧(𝑎𝑎2 + 𝑞𝑞2) + (𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑧𝑧𝑧𝑧)𝑎𝑎𝑟𝑟 (41) 

𝑀𝑀𝑧𝑧 = 𝑁𝑁 = 𝐼𝐼𝑧𝑧𝑧𝑧�̇�𝑟 − 𝐼𝐼𝑥𝑥𝑧𝑧�̇�𝑎 + �𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑔𝑔𝑔𝑔�𝑎𝑎𝑞𝑞 + 𝐼𝐼𝑥𝑥𝑧𝑧𝑞𝑞𝑟𝑟 (42) 

This study's stability observations were conducted solely on rotational motions around the 
x and y axes. Consequently, the force affecting motion along the z-axis can be disregarded. 
Therefore, the torque equations in Eq. (40) to (42) can be simplified to: 

𝑀𝑀𝑥𝑥 = 𝐿𝐿 = 𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝑎 + (𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑔𝑔𝑔𝑔)𝑞𝑞𝑟𝑟 (43) 

𝑀𝑀𝑔𝑔 = 𝑀𝑀 = 𝐼𝐼𝑔𝑔𝑔𝑔�̇�𝑞 + (𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑧𝑧𝑧𝑧)𝑎𝑎𝑟𝑟 (44) 
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Eq. (43) represents the rotational movement of the aircraft about the x-axis, incorporating 
x-axis inertia (Ixx), roll angular acceleration (ṗ), pitch rate (q), and yaw rate (r). This can be 
expressed as a transfer function in Eq. (45). 

�̇�𝑎 = 𝐿𝐿
𝐼𝐼𝑥𝑥𝑥𝑥
− (𝐼𝐼𝑧𝑧𝑧𝑧−𝐼𝐼𝑦𝑦𝑦𝑦)𝑞𝑞𝑔𝑔

𝐼𝐼𝑥𝑥𝑥𝑥
 (45) 

Similarly, in Eq. (44), which depicts the rotational motion of the aircraft around the y-axis, 
incorporating y-axis inertia (Iyy), pitch angular acceleration (q̇), roll rate (p), and yaw rate (r). 
This can be formulated into a transfer function in Eq. (46). 

�̇�𝑞 = 𝑀𝑀
𝐼𝐼𝑦𝑦𝑦𝑦

− (𝐼𝐼𝑥𝑥𝑥𝑥−𝐼𝐼𝑧𝑧𝑧𝑧)𝑝𝑝𝑔𝑔
𝐼𝐼𝑦𝑦𝑦𝑦

 (46) 

3. LQR-NN Control Design 
A linear quadratic regulator is a control method that is called linear because the controller's 

model and shape are linear. It is also called quadratic because the cost function is quadratic. 
Meanwhile, it is called a Regulator because the reference is not a function of time. Figure 2 
depicts the block diagram of the LQR control system. 

 
Figure 2. Full state feedback LQR 

The LQR control system works on a linear system with calculations shown in Eq. (47) to 
(50). 

�̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑩𝑩𝑩𝑩 (47) 

𝒚𝒚 = 𝑪𝑪𝒙𝒙 + 𝑫𝑫𝑩𝑩 (48) 

𝑩𝑩 = −𝑲𝑲𝒙𝒙 (49) 

�̇�𝒙 = (𝑨𝑨 − 𝑩𝑩𝑲𝑲)𝑩𝑩 (50) 
In designing the control system to be optimal, energy minimization (cost function/quadratic 

function) is carried out, which is defined through the performance index in the interval [t0, ∞] 
in Eq. (51)[24]. This function involves Q and R matrices to make the system matrix non-
negative. 

𝑱𝑱 = ∫ (𝒙𝒙𝑇𝑇𝑸𝑸𝒙𝒙 + 𝑩𝑩𝑇𝑇𝑹𝑹𝑩𝑩)𝑑𝑑𝑏𝑏∞
𝑑𝑑0

 (51) 

K determines the index performance to reach the minimum value. Finding the optimal value 
of K requires solving a quadratic regulator using the Riccati equation. The Riccati equation is 
a first-order form of a differential equation, which is an unknown quadratic function. This 
solution adds a differential equation with a constant P matrix [25]. This equation is shown in 
Eq. (52). 
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𝑱𝑱 = ∫ 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝒙𝒙𝑇𝑇𝑷𝑷𝒙𝒙)∞
𝑑𝑑0

𝑑𝑑𝑏𝑏 = 𝒙𝒙𝑇𝑇(0)𝑷𝑷𝒙𝒙(0) (52) 

From the reduction carried out by the Riccati equation, the determination of the K value is 
finalized using the Hamilton – Jacobian – Bellman procedure, which is calculated via Eq. (53) 
and produces Eq. (54) as the final solution. 

𝑲𝑲 = 𝑹𝑹−1𝑩𝑩𝑇𝑇𝑷𝑷 (53) 

𝑨𝑨𝑇𝑇𝑷𝑷 + 𝑷𝑷𝑨𝑨 + 𝑸𝑸− 𝑷𝑷𝑩𝑩𝑹𝑹−1𝑩𝑩𝑇𝑇𝑷𝑷 (54) 
Based on the explanation of the equations and characteristics of the LQR control system, it 

requires a system model in the form of a linear approach. Therefore, referring to the model 
equation in the previous subsection, the linearization equation of the aircraft model can be 
written as follows [26], 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑈𝑈
�̇�𝑈
𝑉𝑉
�̇�𝑉
𝑊𝑊
�̇�𝑊
𝑃𝑃
�̇�𝑃
𝑄𝑄
�̇�𝑄 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −𝑊𝑊
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 𝑊𝑊 0 0
0 0 0 𝑄𝑄 0 0 0 0 0 0
0 0 0 0 0 0 0 −𝑉𝑉 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 �𝐼𝐼𝑦𝑦𝑦𝑦−𝐼𝐼𝑧𝑧𝑧𝑧�

𝐼𝐼𝑥𝑥𝑥𝑥
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 (𝐼𝐼𝑧𝑧𝑧𝑧−𝐼𝐼𝑥𝑥𝑥𝑥)

𝐼𝐼𝑦𝑦𝑦𝑦
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑋𝑋𝐸𝐸
𝑈𝑈
𝑌𝑌𝐸𝐸
𝑉𝑉
𝑍𝑍𝐸𝐸
𝑊𝑊
𝑠𝑠
𝑃𝑃
𝑐𝑐
𝑄𝑄 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 + 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0
1
𝑚𝑚

0 0 0 0
0 0 0 0 0
0 1

𝑚𝑚
0 0 0

0 0 0 0 0
0 0 0 1

𝑚𝑚
0

0 0 0 0 0
0 0 0 1

𝐼𝐼𝑥𝑥𝑥𝑥
0

0 0 0 0 0
0 0 0 0 1

𝐼𝐼𝑦𝑦𝑦𝑦⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎡
𝐹𝐹𝑥𝑥
𝐹𝐹𝑔𝑔
𝐹𝐹𝑧𝑧
𝐿𝐿
𝑀𝑀⎦
⎥
⎥
⎥
⎤
 (55) 

�̇�𝒙 = 𝑨𝑨 𝒙𝒙 + 𝑩𝑩 𝑩𝑩 

⎣
⎢
⎢
⎢
⎡
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
𝑦𝑦4
𝑦𝑦5⎦
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑋𝑋𝐸𝐸
𝑈𝑈
𝑌𝑌𝐸𝐸
𝑉𝑉
𝑍𝑍𝐸𝐸
𝑊𝑊
𝑠𝑠
𝑃𝑃
𝑐𝑐
𝑄𝑄 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0

0
0

0
0

0
0

0
0⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝐹𝐹𝑥𝑥
𝐹𝐹𝑔𝑔
𝐹𝐹𝑧𝑧
𝐿𝐿
𝑀𝑀⎦
⎥
⎥
⎥
⎤
 (56) 

𝒚𝒚 = 𝑪𝑪 𝒙𝒙 + 𝑫𝑫 𝑩𝑩 

 
In this research, the control focus is on the aircraft's attitude motion, which includes 

controlling roll and pitch rotation motion. Therefore, Eq. (55) and (56) are reduced to a new 
state space from Eq. (57) to (58). 

 

�

𝑃𝑃
�̇�𝑃
𝑄𝑄
�̇�𝑄

� = 

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0
0 0 0 �𝐼𝐼𝑦𝑦𝑦𝑦−𝐼𝐼𝑧𝑧𝑧𝑧�

𝐼𝐼𝑥𝑥𝑥𝑥
0 0 0 1
0 (𝐼𝐼𝑧𝑧𝑧𝑧−𝐼𝐼𝑥𝑥𝑥𝑥)

𝐼𝐼𝑦𝑦𝑦𝑦
0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 �

𝑠𝑠
𝑃𝑃
𝑐𝑐
𝑄𝑄
� + 

⎣
⎢
⎢
⎢
⎡

0 0
1
𝐼𝐼𝑥𝑥𝑥𝑥

0
0 0
0 1

𝐼𝐼𝑦𝑦𝑦𝑦⎦
⎥
⎥
⎥
⎤

 � 𝐿𝐿𝑀𝑀� (57) 

�̇�𝒙 = 𝑨𝑨 𝒙𝒙 + 𝑩𝑩 𝑩𝑩 

253



IIUM Engineering Journal, Vol. 25, No.2, 2024 Dhewa et al. 
https://doi.org/10.31436/iiumej.v25i2.3119 

 
 

�
𝑦𝑦4
𝑦𝑦5� =  �1 0 0 0

0 0 1 0� �

𝑠𝑠
𝑃𝑃
𝑐𝑐
𝑄𝑄
� + �0 0

0 0� �
𝐿𝐿
𝑀𝑀� (58) 

𝒚𝒚 = 𝑪𝑪 𝒙𝒙 + 𝑫𝑫 𝑩𝑩 

Then, to handle changes in system behavior toward the LQR, the control system will be 
assisted by a neural network. The neural network can adjust the K LQR gain value to changes 
in system dynamics both internally and externally so that the aircraft can provide high-stability 
flights. Therefore, the design of the anatomical structure of the aircraft control system is shown 
in the block diagram in Figure 3. 

 
Figure 3. Control system design of flying wing UAV 

In this system, there are system input values, which can be predetermined or variable values, 
which can be changed through control with a remote controller. The reference input value will 
be compared with the sensor reading value. The difference between the sensor reading and the 
set point value is called the error value. This error value is used as a reference for the controller 
to control the system so that it matches the desired reference value or set point. The output 
from the final control element usually also contains interference from outside the system. The 
output of the final control element, which is different from the input disturbance, will be 
considered a running system process. The system will analyze the output of the process by 
reading through the sensor used. The analysis is done to improve system control if the control 
is not as desired [27].  

The control system on the UAV flying wing for attitude control uses full-state feedback 
control with four states from the sensor input. The input results are then entered into the full-
state feedback system by multiplying the input results by the constant K in a matrix (4x1). The 
K constant value in this system was previously processed using an artificial neural network 
system. This artificial neural network system will change the K value tuned using the LQR 
system with constant Q and R values on each axis and then operate with Riccati calculations. 
Entering this artificial neural network is the same as entering the system on a flying wing UAV. 
The u value is the process input calculated by multiplying the feedback gain with the system's 
state to be controlled. This control input signal will then be used to control the speed of each 
rotor. Each rotor is a final control element in the UAV flying wing system. 

The neural network architecture that works on the LQR control system is shown in Figure 4 
[28], 
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Figure 4. Neural network architecture 

3.1 Input Layer 
The input layer is input to the neural network system. Enter this system using four entries. 

Entering the neural network using input as in Figure 4 is intended so that the input to the neural 
network is the same as the input in the UAV flying wing control system itself. 

3.2 Hidden Layer  
In the hidden layer of the artificial neural network, six nodes are used. The input from the 

hidden layer in the artificial neural network is the sum of the multiplication of the 𝑊𝑊𝑠𝑠𝑗𝑗 weights 
with the activation value of the node. Where i is the sequence of input nodes, and j is the 
sequence of hidden nodes.  

3.3 Output Layer  
In the output layer, there is one node that obtains a value from the sum of the multiplication 

of weights 𝑊𝑊ℎ1 and the output from the hidden node 𝑥𝑥 2. Activation at each node in the three 
layers uses the sigmoid activation function. The activation function aims to keep the values of 
each node in each layer from being excessive and still correlated with each other at each layer. 
This neural network system uses initial weight initialization 𝑊𝑊𝑠𝑠𝑗𝑗 with Eq. (59). 

𝑊𝑊𝑔𝑔𝑖𝑖 =  �

1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

     …

0 0 0 0
0 0 0 0
1 1 0 0
0 0 1 1

� (59) 

 
Meanwhile, the neural network weight values from the hidden layer to the output layer use 

the initial value of the constant K resulting from tuning using the LQR method. Form the weight 
𝑊𝑊ℎ𝑠𝑠 using Eq. (60). 

Whi = [K11 K21 K12 K22 K13 K23 K14 K24] (60) 

The weight value 𝑊𝑊ℎ𝑠𝑠 in this system is a representation of the feedback constant value used 
in the flying wing UAV control system. The relationship between artificial neural networks 
and full-state feedback control here is in tuning the previous K value, which has been 
determined by the LQR method. The K value is entered as the initial weight value in the weight 
𝑊𝑊ℎ𝑠𝑠. 
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3.4 Back-propagation Algorithm 
The artificial neural network system in this control design uses system error values 

originating from system output in real-time. The system response is analyzed by calculating 
the system output error value in the form of four states, which are represented by certain values. 
The error value in this system is in the form of a sensor reading value in the system, which is 
then compared with the system reference state value. The main objective of the artificial neural 
network in this system is to minimize the mean value of the system error squared (J). This 
system uses the error function Eq. (41). The value is the system output in the form of sensor 
readings. The value 𝑥𝑥𝑟𝑟𝑏𝑏𝑥𝑥 is a system reference value in the form of a system input or desire 
value. In the research 𝑥𝑥𝑟𝑟𝑏𝑏𝑥𝑥 the signal input of controllability state roll and pitch rotation is set 
at zero value. The value 𝑦𝑦(𝑡𝑡) is the value of the system output at each system state. The 
difference between these two values is a system error value. The n value is the number of states 
observed in this system, namely, four system states. 

𝑗𝑗 = 𝐸𝐸𝑝𝑝 =  ∑ 1
2𝑠𝑠

 �𝑦𝑦(𝑠𝑠) − 𝑋𝑋𝑔𝑔𝑟𝑟𝑟𝑟(𝑠𝑠)�
2
 (61) 

The learning rate function with a weight change function of 0.01 is used. The weight value 𝑊𝑊ℎ𝑠𝑠 
will always change depending on the input to the artificial neural network system [29]. These 
weight values are then used to determine the output in the full-state feedback control system. 

Determines the weight value from the hidden layer to the output layer.  

To find the weight value from the node 𝑊𝑊ℎ𝑠𝑠 hidden layer to the output layer, use Eq. (62) to 
(67). 

𝑤𝑤ℎ1(𝑘𝑘 + 1) = 𝑤𝑤ℎ1(𝑘𝑘) − 𝜂𝜂 𝜕𝜕𝑖𝑖
𝜕𝜕𝑤𝑤ℎ1

 (62) 

where n is the learning rate with a value of 0.01. The delta J value is obtained by Eq. (62). 
𝜕𝜕𝑖𝑖

𝜕𝜕𝑤𝑤ℎ1
= 𝜕𝜕𝑖𝑖

𝜕𝜕𝑔𝑔
. 𝜕𝜕𝑔𝑔
𝜕𝜕𝑢𝑢

. 𝜕𝜕𝑢𝑢
𝜕𝜕𝑤𝑤ℎ1

 (63) 

Where y is the response output from the UAV flying wing control system. The uk Value is 
the output of the results of the artificial neural network calculation. The value 𝑊𝑊ℎ𝑠𝑠 is the weight 
value from the hidden layer to the output layer of the artificial neural network. From Eq. (63), 
Eq. (64) is translated to Eq. (66) [30]. 

𝜕𝜕𝑖𝑖
𝜕𝜕𝑔𝑔

= 𝑥𝑥ℎ2(𝑘𝑘) (64) 

𝜕𝜕𝑔𝑔
𝜕𝜕𝑢𝑢

= 𝜕𝜕𝑔𝑔
𝜕𝜕𝑑𝑑

/ 𝜕𝜕𝑢𝑢
𝜕𝜕𝑑𝑑

= ẏ
�̇�𝑢
≈ 𝛥𝛥𝑔𝑔

𝛥𝛥𝑢𝑢
= 𝑔𝑔(𝑘𝑘)−𝑔𝑔(𝑘𝑘−1)

𝑢𝑢(𝑘𝑘)−𝑢𝑢(𝑘𝑘−1)
 (65) 

𝜕𝜕𝑢𝑢
𝜕𝜕ℎ1

= ∑ 1
2𝑠𝑠
�𝑦𝑦(𝑠𝑠) − 𝑋𝑋𝑔𝑔𝑟𝑟𝑟𝑟(𝑠𝑠)�

2
 (66) 

The value 𝑥𝑥ℎ1 is the activation value of the hidden layer, and the y value is the output of the 
full-state feedback control system. Translating Eq. (62) to Eq. (66) yields Eq. (67), which can 
be used to obtain the new weight value 𝑥𝑥ℎ1. 

𝜕𝜕𝑖𝑖
𝜕𝜕𝑤𝑤ℎ1

= 𝑥𝑥ℎ2(𝑘𝑘). 𝑔𝑔(𝑘𝑘)−𝑔𝑔(𝑘𝑘−1)
𝑢𝑢(𝑘𝑘)−𝑢𝑢(𝑘𝑘−1)

.∑ 1
2𝑠𝑠

(𝑦𝑦(𝑠𝑠) − 𝑋𝑋𝑔𝑔𝑟𝑟𝑟𝑟(𝑠𝑠))2 (67) 

Determine the weight value from the insert layer to the hidden layer. To find the weight 
value from node  i of the insert layer to node j of the hidden layer using Eq. (68). 

𝑤𝑤𝑔𝑔𝑖𝑖(𝑘𝑘 + 1) = 𝑤𝑤𝑔𝑔𝑖𝑖(𝑘𝑘) − 𝜂𝜂 𝜕𝜕𝑖𝑖
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

 (68) 
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where n is the learning rate with a value of 0.01. The value of delta J is obtained by Eq. (69). 
𝜕𝜕𝑖𝑖
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= 𝜕𝜕𝑖𝑖
𝜕𝜕𝑔𝑔

. 𝜕𝜕𝑔𝑔
𝜕𝜕𝑢𝑢

. 𝜕𝜕𝑢𝑢
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

 (69) 

The value 𝑊𝑊𝑠𝑠𝑗𝑗 is the weight value from the hidden layer to the output layer of the artificial 
neural network. From Eq. (49), it is explained from Eq. (63) to Eq. (65). The x value is the 
value resulting from the activation of the hidden layer, so we can obtain Eq. (70) to get the new 
weight value 𝑊𝑊𝑠𝑠𝑗𝑗. 

𝜕𝜕𝑖𝑖
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= 𝑊𝑊ℎ1𝑋𝑋𝑔𝑔1(𝑘𝑘). 𝑔𝑔(𝑘𝑘)−𝑔𝑔(𝑘𝑘−1)
𝑢𝑢(𝑘𝑘)−𝑢𝑢(𝑘𝑘−1)

∑ 1
2𝑠𝑠
�𝑦𝑦(𝑠𝑠) − 𝑋𝑋𝑔𝑔𝑟𝑟𝑟𝑟(𝑠𝑠)�

2
 (70) 

 

4. STRUCTURE AND PARAMETERS OF UAV FLYING WING 
The aircraft used in this study have the dimensions shown in Table 1, while Figure 5 

illustrates the size and position of the actuator. 

Table 1. UAV flying wing dimension 

Items Dimension 
Wingspan 1100 mm 
Fuselage 500 mm  
Winglet 200 mm 

Motor Diameter 35 mm 
Weight 1300 gram 

 

 
Figure 5. UAV flying wing structure 
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The aircraft has dimensions of around 110 cm for the wing length, and the aircraft's flying 
weight is around 1.3 kg. The body of the aircraft is made from carbon fiber using a molding 
method to produce a body that is precise, strong, and light. The wings of the aircraft are made 
from high-density hard foam and coated with fiberglass. The airfoil design on the wing is 
chosen for the flat bottom type because wings with a flat bottom tend to provide better 
longitudinal stability. The center of pressure on a flat profile is closer to the balance point. This 
profile tends to have higher pitch stability, that is, the ability to keep the angle of attack 
relatively stable. So it can produce low flight speeds. 

In proving the control system design, the important thing that is needed is the calculation 
parameters of the system on the aircraft. One important parameter is the inertia calculation for 
each axis. The inertia calculations used in this research are the x, y, and z-axis inertia, where 
each inertia is calculated according to the data in Table 2. 

Table 2. Inertia parameters 

Items Length (m) Width (m) Height (m) Mass (kg) Shape 
Center box (𝐼𝐼𝐾𝐾𝑇𝑇) 9.18 0.44 0.08 1.182 briquette 

Right-wing Part 1 (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆1) 0.115 0.27 0.03 0.0725 briquette 
Right-wing part 2 (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆2) 0.115 0.2365 0.03 0.0675 briquette 
Right-wing Part 3 (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆3) 0.115 0.2018 0.03 0.0625 briquette 
Right-wing Part 4 (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆4) 0.115 0.1685 0.03 0.0675 briquette 
Left-wing Part 1 (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆1) 0.115 0.27 0.03 0.0725 briquette 
Left-wing part 2 (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆2) 0.115 0.2365 0.03 0.0675 briquette 
Left-wing part 3 (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆3) 0.115 0.2018 0.03 0.0625 briquette 
Left-wing part 4 (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆4) 0.115 0.1685 0.03 0.0675 briquette 

x-axes inertia calculation (𝑰𝑰𝒙𝒙𝒙𝒙) 
𝑰𝑰𝒙𝒙𝒙𝒙 = (𝐼𝐼𝐾𝐾𝑇𝑇𝑥𝑥) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆1𝑥𝑥) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆2𝑥𝑥) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆3𝑥𝑥) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆4𝑥𝑥) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆1𝑋𝑋) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆2𝑋𝑋) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆3𝑋𝑋) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆4𝑋𝑋)  

𝑰𝑰𝒙𝒙𝒙𝒙 = 1,97 𝑥𝑥 10−2 + 4,46 𝑥𝑥 10−4 + 3,19 𝑥𝑥 10−4 + 2,17 𝑥𝑥 10−4 + 1,40 𝑥𝑥 10−4 + +4,46 𝑥𝑥 10−4 + 3,19 𝑥𝑥 10−4 +

2,17 𝑥𝑥 10−4 + 1,40 𝑥𝑥 10−4   

𝑰𝑰𝒙𝒙𝒙𝒙 =  𝟐𝟐,𝟏𝟏𝟏𝟏𝟏𝟏 𝒙𝒙 𝟏𝟏𝟏𝟏−𝟐𝟐 Kg.𝒎𝒎𝟐𝟐 

y-axes inertia calculation (𝑰𝑰𝒚𝒚𝒚𝒚) 
𝑰𝑰𝒚𝒚𝒚𝒚 = �𝐼𝐼𝐾𝐾𝑇𝑇𝑔𝑔� + �𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆1𝑔𝑔� + �𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆2𝑔𝑔�  + �𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆3𝑔𝑔� + �𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆4𝑔𝑔� + �𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆1𝑔𝑔� + �𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆2𝑔𝑔� + �𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆3𝑔𝑔� + �𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆4𝑔𝑔�  

𝑰𝑰𝒚𝒚𝒚𝒚 = 3,82 𝑥𝑥 10−3 + 8,53 𝑥𝑥 10−5 + 7,94 𝑥𝑥 10−5 + 7,36 𝑥𝑥 10−5 + 6,77 𝑥𝑥 10−5 + 8,53 𝑥𝑥 10−5 + 7,94 𝑥𝑥 10−5 +

7,36 𝑥𝑥 10−5 + 6,77 𝑥𝑥 10−5  

𝑰𝑰𝒚𝒚𝒚𝒚 = 𝟏𝟏,𝟏𝟏𝟒𝟒𝟏𝟏 𝒙𝒙 𝟏𝟏𝟏𝟏−𝟒𝟒 Kg.𝒎𝒎𝟐𝟐 

z-axes inertia calculation (𝑰𝑰𝒛𝒛𝒛𝒛) 
𝐼𝐼𝑧𝑧𝑧𝑧 = (𝐼𝐼𝐾𝐾𝑇𝑇𝑧𝑧) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆1𝑧𝑧) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆2𝑧𝑧)  + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆3𝑧𝑧) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆4𝑧𝑧) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆1𝑧𝑧) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆2𝑧𝑧) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆3𝑧𝑧) + (𝐼𝐼𝑆𝑆𝐾𝐾𝑆𝑆4𝑧𝑧)  

𝐼𝐼𝑧𝑧𝑧𝑧 = 2,23  𝑥𝑥 10−2 + 5,20 𝑥𝑥 10−4 + 3,89 𝑥𝑥 10−4 + 2,81 𝑥𝑥 10−4 + 1,99 𝑥𝑥 10−4 + 5,20 𝑥𝑥 10−4 + 3,89 𝑥𝑥 10−4 +

2,81 𝑥𝑥 10−4 + 1,99 𝑥𝑥 10−4   

𝑰𝑰𝒛𝒛𝒛𝒛 = 𝟐𝟐,𝟓𝟓𝟏𝟏 𝒙𝒙 𝟏𝟏𝟏𝟏−𝟐𝟐 Kg.𝒎𝒎𝟐𝟐 
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5. RESULT AND DISCUSSIONS 
In this research, the implementation of the LQR-NN control system was carried out through 

simulation using MATLAB. The application is preceded by searching for the K LQR gain 
value from the best response obtained. The calculation of the feedback gain K value for each 
state involved is sought by tuning the value of the Q element. From the experiments that have 
been carried out, the best Q value from the results of roll and pitch anti-rotation motion control 
is shown in Table 3, where the data shows the best conversion of Q and R values to obtain the 
most optimal K gain value [31]. 

Table 3. Conversion metrics Q values to gain K values 

Q R Gain K 

�

1.0245 0 0 0
0 0.00049 0 0
0 0 1.033 0
0 0 0 0.004

� 1 �1.0124 0.2119 0 0
0 0 1.0149 0.1140� 

 
The best K gain value can control the aircraft's attitude, both roll and pitch angles, with the 

signals shown in Figures 6 and 7. Figure 6 is for roll stability, and Figure 7 is for pitch stability. 

 
Figure 6. Roll angle stability using LQR 

 
Figure 7. Pitch angle stability using LQR 
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The two aircraft flight movements shown in Figures 6 and 7 have stability characteristics, 
which are explained through the transient response in Table 4. 

Table 4. Transient response of roll and pitch stability using LQR control 

Components Roll Pitch 
Rise time 0.4682s 0.2455s 
Overshoot 4.217% 0.6311% 

Settling time 1.149s 0.7091s 
Steady-state error (SSE) -0.007deg -0.0001deg 

 
According to Table 5, the pitch angle demonstrates superior stability compared to the roll 

angle. With a rise time of 0.2227 seconds and a settling time of 0.44 seconds, the pitch response 
is faster than that of the roll. Additionally, the pitch displays minimal overshoot, measuring at 
0.6311% or under 1%. Furthermore, its steady-state error is -0.0001 degrees, smaller than the 
roll's error of -0.0007 degrees. This discrepancy can be attributed to the aircraft's predominantly 
wing-based construction, making it susceptible to lateral disturbances such as side interference 
or slip. Moreover, larger torque occurrences slow down the control system's ability to mitigate 
disturbances effectively. 

Apart from this, the characteristics of the roll and pitch angles show good stability. Tests 
carried out on the control of both states prove that the LQR control is able to maintain the 
stability of the roll and pitch torque against the given disturbances. Apart from that, the test 
shows that the greater the weighting of the Q element, the greater the K gain value will be. The 
greater the K gain value, the greater the torque on the aircraft system, making the system more 
responsive compared to a small K gain value. Of the two controlled states, roll and pitch motion 
will not provide the same character to the system. These two states have complementary roles 
in stabilizing. It can be seen by giving the K gain value to the angular speed. The greater the K 
value given to this state, the more the response that occurs in the system will be suppressed or 
dampened. Angular velocity is the first derivative of the roll orientation angle, which will 
change if there is a change in angular position relative to the time of change, so the faster the 
change, the greater the resulting angular velocity [9]. 

From the best K gain value obtained for each control state, K is used as a reference value in 
the change value of the artificial neural network. The artificial neural network model has one 
hidden layer, where the training process is carried out via online learning based on the errors 
that occur. The error value will be fed back using the backpropagation method, where the 
weight that changes is the gain value K with a learning rate of 0.01. Setting the learning rate 
value at this value so as not to force the system to accept signal changes that are too large, 
which can cause the aircraft to experience turbulence, resulting in a flight stall.  

In this initial comparison test, the system will be subjected to a 45-degree deviation as the 
initial value in the step function. This approach is employed to assess the robust characteristics 
of the aircraft when stabilizing with relatively large deviations. The outcomes of controlling 
the stability of the aircraft's attitude using LQR-NN control are depicted in Figures 8 and 9. 
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Figure 8. The comparison of roll angle stability between using LQR and LQR-NN 

 
Figure 9. The comparison of pitch angle stability between using LQR and LQR-NN 

The results of this control were obtained by setting the net on the neurons to four nets with an 
epoch of 82. The experiments revealed that setting the epoch value above 82 causes oscillations 
in the system. In contrast, values below 82 have minimal impact on the neural network, thus 
ensuring stability across all controlled states without altering their characteristics [32]. LQR-
NN control of roll and pitch angles provides the characteristics shown in Table 5. 

Table 5. The comparison of the transient response of roll and pitch stability between 
using LQR and LQR-NN control 

Components 
LQR LQR-NN Minimum 

Requirements 
of Aircraft Roll Pitch Roll Pitch 

Rise time 0.4682s 0.2455s 0.4682s 0.2309s < 1s 
Overshoot 4.217% 0.6311% 0.298% 0.1224% < 3% 

Settling time 1.149s 0.7091s 1.3819s 0.7091s < 3s 
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Figure 10. (a) Roll angle stability control using LQR in handling random disturbances 
(b) Roll angle stability control using LQR-NN in handling random disturbances 

 
(a) 

 
(b) 

Figure 11. (a) Roll angle stability control using LQR in handling random disturbances 
(b) Roll angle stability control using LQR-NN in handling random disturbances 

Based on Table 6, roll and pitch flight attitude with LQR-NN control has better equilibrium 
characteristics than LQR. The LQR-NN control can minimize overshoot during pitch and roll 
rotational motion to less than 1%, whereas the LQR control only meets the minimum required 
pitch motion criteria. Significant changes occurred in the overshoot value, which was further 
reduced by neural network predictions. This is important in control because the greater the 
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overshoot, the greater the possibility of producing multiple overshoots, which can make the 
flight unstable and even cause the plane to crash [33]. 

Furthermore, the management of steady-state error (SSE) by the LQR-NN control system 
surpasses that of the LQR control system. LQR-NN effectively reduces SSE to a lesser degree. 
This is evidenced by the graphical simulation results depicted in Figures 10 and 11. 

In this observation, the system experienced random disturbances for 10 seconds. The 
simulation results demonstrate that LQR-NN effectively maintains SSE at 0.074 degrees for 
roll rotation motion and 0.035 degrees for pitch rotation motion. In contrast, LQR control 
maintains SSE at 0.113 degrees for roll rotation motion and 0.150 degrees for pitch rotation 
motion during flight. LQR-NN exhibits greater adaptability to the occurring disturbances. 
LQR-NN has been deemed to meet the criteria for a highly proficient control system because 
it satisfies all the minimum specification requirements for system response stability, 
particularly in the flight attitude of the UAV flying wing aircraft. 

6. CONCLUSION 
LQR-NN control has been successfully modeled and applied to control the stability of the 

roll and pitch flight attitude of UAV flying-wing aircraft. The net settings given to the hidden 
layer neural network are four nets with an epoch of 82. The test results show that roll angle 
stability has characteristics of a rise time of 0.4682 seconds, settling time of 1.3819 seconds, 
overshoot of 0.298%, and SSE of 0.133 degrees, while pitch angle stability has a rise time of 
0.2309 seconds, settling time of 0.7091 seconds, overshoot of 0.1224% and SSE of 0.0239 
degrees. LQR-NN can reduce overshoot that occurs in the LQR controller so that it can 
minimize oscillations that will occur. Additionally, LQR-NN effectively mitigates the steady-
state error (SSE), reducing it to 0.074 degrees for roll rotation motion and 0.035 degrees for 
pitch rotation motion.  
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