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ABSTRACT:  Microservice, a widely adopted architectural paradigm to overcome monolithic 

limitations, faces difficulties in efficient load balancing, scalability, and cost-effective 

deployment. To address these issues, we introduce a Container Microservice Load Balanced 

(CMLB) framework, which integrates the novel OEPTA algorithm. This framework aims to 

optimize microservice-based applications deployed on Docker within cloud environments. 

Common microservices scheduling strategies often grapple with load distribution challenges, 

resulting in suboptimal resource utilization. Concurrently, traditional containerization 

methods face difficulties reconciling trade-offs between scalability, deployment cost, and 

execution time. Our primary goal is to present a comprehensive solution that enhances the 

scalability, cost efficiency, and execution time of microservices deployment. This paper 

introduces a novel deployment framework for microservices, leveraging Docker for 

decentralized resource allocation across Microservice Controllers (MSCs). Additionally, a 

specialized algorithm is introduced to evaluate the cost, execution time, and availability 

aspects of microservice applications, enabling optimized resource allocation in a distributed 

manner. The evaluation results demonstrate that the CMLB framework, driven by the OEPTA 

algorithm, surpasses existing algorithms in achieving optimal scalability, cost efficiency, and 

execution times. This research provides a robust solution to enhance microservices 

deployment in cloud environments, effectively addressing key challenges in the field. 

ABSTRAK: Mikroservis, sebuah paradigma seni bina yang diadaptasi secara meluas untuk 

mengatasi keterbatasan monolitik, menghadapi kesulitan dalam penyeimbangan beban yang 

cekap, skalabiliti, dan penyebaran kos efektif. Untuk mengatasi masalah ini, kami 

memperkenalkan rangka kerja Container Microservice Load Balanced (CMLB), yang 

mengintegrasikan algoritma OEPTA yang baru. Rangka kerja ini bertujuan untuk 

mengoptimumkan aplikasi berasaskan perkhidmatan mikroservis yang digunakan pada 

Docker dalam persekitaran awan. Strategi penjadualan mikroservis umumnya bergelut 

dengan cabaran pengagihan beban, yang menghasilkan penggunaan sumber daya yang kurang 

optimal. Pada masa yang sama, kaedah pengkontenaan tradisional menghadapi kesulitan 

dalam menyeimbangkan pertukaran antara skalabiliti, kos penggunaan, dan masa 

pelaksanaan. Matlamat utama kami adalah untuk membentangkan penyelesaian 

komprehensif yang meningkatkan skalabiliti, kos kecekapan, dan masa pelaksanaan dalam 

penggunaan mikroservis. Dalam makalah ini, kami memperkenalkan rangka kerja 

penggunaan yang baru untuk perkhidmatan mikroservis, dengan memanfaatkan Docker untuk 

peruntukan sumber terdesentralisasi merentas Pengawalan Perkhidmatan Mikroservis 

(MSCs). Selain itu, algoritma khusus diperkenalkan untuk menilai kos, masa pelaksanaan, 

dan ketersediaan aplikasi mikroservis, membolehkan peruntukan sumber dioptimumkan 

dalam cara yang diedarkan. Keputusan penilaian menunjukkan bahawa rangka kerja CMLB, 

didorong oleh algoritma OEPTA, mengatasi algoritma sedia ada dalam mencapai skalibiliti 
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optimum, kecekapan kos, dan masa pelaksanaan. Penyelidikan ini memberikan penyelesaian 

yang teguh untuk meningkatkan penggunaan mikroservis dalam persekitaran awan, 

menangani cabaran utama dalam lapangan dengan berkesan. 

KEYWORDS:  Algorithm, Cloud-based, Container, Docker, Load balancing, Microservice. 

1. INTRODUCTION  

Monolithic architecture refers to an application with a unified code base housing multiple 

services that interact with external systems or consumers through diverse interfaces like Web 

services, HTML pages, or REST API [1]. In this architectural model, all functionalities are 

consolidated within a single application, resulting in modules that cannot function inde-

pendently [2]. This inherent characteristic of tight coupling means that all logic for handling a 

request operates within a single process [3]. Despite the initial advantages of ease in develop-

ment, testing, and deployment for simpler applications, the drawbacks of monolithic architec-

ture become apparent as the application becomes more intricate. The monolith's structure ex-

pands in size, transforming into a cumbersome and challenging piece of software to manage 

and scale [2]. As the application size and team grow, the limitations of this architecture become 

increasingly significant [3]:  

• Complexity in understanding and modifying the application, leading to a deceleration in 

development speed. 

• Difficulty in continuous deployment, where even minor changes necessitate the complete 

rebuilding and redeployment of the entire monolith. 

• Challenges in scaling the application, restricted to horizontal scaling within the confines of 

monolithic architecture. 

To overcome the challenges associated with monolithic applications and harness the ben-

efits of Service-Oriented Architecture (SOA), the microservices architecture pattern has 

emerged as a lightweight subset of SOA, as exemplified by companies like Amazon [4]. In 

recent years, microservices have gained significant traction in the business landscape, repre-

senting an enhanced and streamlined version of SOA [5]. According to [6], microservices ar-

chitecture is a specific implementation approach within SOA that facilitates the creation of 

flexible and independently deployable software systems. This approach typically involves 

breaking down a software application into smaller components that collaborate to achieve a 

specific, complex task, thereby facilitating easier development and maintenance [7]. 

The Microservices architecture represents a paradigm shift away from traditional devel-

opment methods, placing emphasis on building the applications through small, autonomous 

services that communicate via lightweight mechanisms [6]. It's essential to note that the term 

"micro" in Microservices refers to the size of their contribution to the application, rather than 

the lines of code they encompass [2]. Therefore, the architecture can be understood as a set of 

small services with precise tasks that interact to achieve users' goals through standard commu-

nication channels [8, 9, 10]. This architectural approach offers a strategy for developing a co-

hesive application as a collection of small services. Each service operates independently in its 

dedicated process and communicates through lightweight mechanisms, such as HTTP APIs 

[10]. These Microservices are designed around specific business capabilities, enabling them to 

be independently deployable through automated deployment processes [3]. Lately, there has 

been a surge in using containers to distribute microservices across various cloud locations [11]. 
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Containers, an emerging virtualization technology, are gaining popularity over virtual ma-

chines (VMs) due to their superior performance, lightweight design, and enhanced scalability 

[12]. These containers act as comprehensive packages, bundling applications with their de-

pendencies, facilitating easy and consistent deployment across diverse environments. Depend-

encies, including binaries, libraries, and configuration files, are essential for the application's 

functionality [13]. Containers encapsulate self-contained, deployable components of applica-

tions, and may include middleware and business logic in the form of binaries and libraries [10]. 

Container engines, such as Docker, leverage containers as portable entities for packaging ap-

plications. This shift emphasizes the critical need to manage container dependencies [14]. The 

application consists of individual, self-contained services that operate in their own processes 

and communicate through a lightweight mechanism [14].  

To mitigate the risk of a single instance becoming a bottleneck or a potential point of 

failure [16], a load-balanced microservice scheduling system distributes requests for a specific 

service across multiple instances of that service. Typically, a load balancer, positioned in front 

of the service instances, achieves this distribution by directing incoming traffic to the least busy 

instance [17]. The primary objective of load balancing is to optimize resource utilization, ena-

bling the system to handle increased traffic levels with minimal downtime or performance 

slowdowns [18]. In microservices, load balancing plays a crucial role in maintaining uninter-

rupted services even if one or more components fail, utilizing failover [17]. This involves add-

ing and removing instances of applications in a balanced manner, preventing failures [19]. Nu-

merous research studies have aimed to improve Quality of Service (QoS) in Container Micro-

services through load balancing [20]. However, many of these studies have found existing 

methods ineffective in enhancing user QoS as the methods often rely on queuing systems, lead-

ing to issues like increased network traffic, longer processing times, server overloads, and high 

deployment costs [6,17,18,19,21]. This results in sudden load spikes, disrupting system balance 

and degrading performance. While load balancing traditionally considers factors like traffic 

and performance constraints, adjusting computational resources dynamically to optimize costs 

based on load changes is also crucial [17]. Hence, applying load balancing strategies becomes 

crucial for optimizing performance in such scenarios.  

To address the challenges associated with load-balanced microservice scheduling systems, 

we introduced a pioneering framework called CMLB. This framework is designed to optimize 

server overloads, manage traffic spikes, and enhance the cost efficiency of microservices. We 

developed a load balancing algorithm to determine the service deployment cost, improve reli-

ability, and ensure the availability of microservice applications. In our proposed system, the 

allocation and management of resources for applications are decentralized and orchestrated by 

the Master Load Balancer (MLB), operating through Local Load Balancers (LLB) on Micro-

service Controllers (MSCs). The MSCs play a vital role in decision-making related to resource 

allocation, requesting resources for Execution Containers (ECs), monitoring task progress on 

ECs, and overseeing the life cycle of ECs. Simultaneously, the ECs are responsible for execut-

ing assigned tasks, providing progress updates to the MSCs, and comparing their performance 

against expected outcomes. The primary contributions of this paper are outlined as follows: 

• Proposed a novel Container Microservice Load Balanced (CMLB) framework, designed 

for deploying microservice-based applications with Docker, incorporating autonomous re-

source allocation on each controller in a distributed manner.  

• Presented an OEPTA algorithm to optimize the cost, execution time, and scalability aspects 

of microservice applications. 
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• Implemented and evaluated the OEPTA algorithm's effectiveness, showcasing its capacity 

to deliver positive outcomes regarding traffic spike management and server overload min-

imization. 

The remaining sections of this paper are organized as follows: Section 2 presents a litera-

ture review on related works. Section 3 offers an overview of the methodology. Section 4 pre-

sents results and discussions. Section 5 provides a summary of the conclusion and outlines 

future work. Table 1 highlights key processes, components, and challenges within the system. 

Figure 1 summarizes the deployment of microservice applications with Docker Container, 

while Figure 2 describes the elements of the cluster and introduces the concept of a Global 

ResourceSpace. Figure 3 illustrates the workflow for application deployment and introduces 

the Optimize EC Placement and Task Assignment Algorithm (OEPTA) for resource allocation 

decisions. The presented frameworks aim to address the challenge of deploying and managing 

microservice applications efficiently within clusters. The key problems include optimal re-

source allocation, load balancing, and timely task execution. The primary objectives are to 

ensure minimal delays, maximize resource utilization, and maintain overall system perfor-

mance. The introduced OEPTA algorithm balances application demands, available resources, 

and cluster configurations to make informed decisions for microservice deployment and exe-

cution. Table 1 lists the notations used in this section to aid understanding of the algorithm. 

Table 1. Summary of the Notations used and their descriptions. 

Notations Descriptions 

𝐴𝑑𝑟 Application Deployment Request 

𝑀𝑆 Microservice 

𝑀𝑆𝐶𝑠 Microservice Controllers 

𝐸𝐶𝑠 Execution Containers 

𝑃𝑀 Physical Machine 

𝑁𝑝 Set of physical nodes 

𝛬 Set of applications needed to be deployed 

𝐺𝑎 Set of all clusters in which the application is deployed. 

𝑀𝑎 Set of microservice 𝑀𝑎 for application 𝐺𝑎 

𝑅𝑎(𝑢) Total resources available on PM 'i' for microservice 'u' in application 'a'. 

𝐶𝑅𝑎(𝑢) Resource requirement of microservice 'u' in application 'a'. 

𝐶𝑁𝑛𝑜𝑑𝑒(𝑖, 𝑎) Cost associated with deploying application 'a' on physical machine (PM) 'i' in the cluster. 

𝐶0 Cost of using resources 

𝑥(𝑖, 𝑎, 𝑢) Resource usage of microservice 'u' in application 'a' on PM 'i'. 

𝑙𝑎(𝑘, 𝑢) Processing time of task 'k' for microservice 'u' in application 'a' 

𝑙𝑝(𝑘, 𝑖) Predefined execution time requirement for task 'k' on PM 'i'. 

𝑙(𝑘, 𝑖) Communication time between tasks on PM 'i'. 

𝑅𝑅𝑝(𝑖) Predefined resource requirement for cluster 'i'. 

𝐶𝑝. 𝑠𝑖 Processing cost of the PM 'i'. 

𝐶𝑙(𝑘) Cost of accessing the PM, which may depend on the microservice 'k'. 

2. LITERATURE REVIEW 

In recent years, an expanding body of research has focused on deploying and managing 

microservice containers [17, 19, 20, 22]. The Microservices architecture has garnered signifi-

cant attention for its adaptability, cost-effectiveness, and scalability, leading large enterprises 

to deploy microservices across diverse cloud locations [17, 20, 22]. Containers, known for their 

lightweight nature compared to virtual machines, enable easy downloads and swift deploy-

ments [11,23]. Adopting a microservices architecture presents several advantages, including 

reduced interdependence between services, faster recovery in the face of catastrophic events, 
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and heightened reliability achieved by isolating the impact of failures to a small service seg-

ment [24]. However, as applications scale, challenges arise, notably in increased API calls. 

This necessitates the implementation of effective load balancing solutions to manage API calls 

across the architecture.  

Contributing to this domain, [17] developed a microservices architecture utilizing Docker 

containers to enhance scalability and elasticity in the cloud computing environment. Their ap-

proach aims to reduce deployment and operational costs while meeting service delay require-

ments. Expanding upon their work, our research enhances their framework by incorporating 

additional parameters, including execution time, traffic spikes, and cost considerations. We 

further augment the framework by distributing requests evenly across all PMs through a master 

load balancer on the client side. This extension is designed to ensure Quality of Service (QoS) 

for developers, responding to the growing demand for new software [25]. 

A key concern in container microservices cloud-based systems revolves around the intri-

cacies of load balancing. This process entails the equal distribution of workloads across servers 

to forestall service failures, minimize response time, alleviate downtime, and safeguard against 

data loss [17, 26, 27]. Effective load balancing is paramount for averting resource overload, 

enhancing performance, handling unforeseen traffic spikes, curtailing response time, and opti-

mizing resource utilization [27]. In a correlated investigation, an inventive Load Balancing Ant 

Colony Optimization (LBACO) algorithm was devised to distribute workloads throughout the 

entire system, thereby reducing the makespan [21]. Meanwhile, [28] introduces a groundbreak-

ing approach to enhance performance and diminish latency by leveraging SmartNICs on edge 

servers for middlebox processing. Their SmartLB methodology deploys a load balancer and an 

auto scaler entirely on the SmartNIC, resulting in judicious decisions and decreased CPU load. 

Despite numerous existing methodologies for optimizing load balancing, container placement, 

application deployment costs, operational costs, service failure, and traffic issues, many treat 

these challenges as knapsack problems, often neglecting essential load balancing features. 

Therefore, integrating these crucial features into our system will significantly enhance its over-

all performance. 

3. METHODOLOGY 

This section outlines the systematic scalability and cost optimization approach in the pro-

posed Load-Balanced Microservice Scheduling System. It details the overarching strategy for 

developing and implementing the microservices framework with Docker containers and eval-

uates its performance. The methodology involves creating a simulation model, implementing 

a novel scheduling algorithm, and thoroughly evaluating results based on predefined criteria. 

3.1. System Model 

To achieve a balanced distribution of requests across microservice instances, we defined 

this process in a structured manner using our equations. These equations serve as a foundation 

for the OEPTA algorithm, enabling it to make well-informed choices on resource distribution, 

task delegation, and load equilibrium. The algorithm aims to minimize costs, ensure scalability, 

and fulfill execution time criteria for deploying applications. 

Our system model analyzes a physical network comprising a collection of Physical Ma-

chines (PMs). Each PM possesses finite physical resources, with our focus being on computa-

tional resources as a representative illustration of the resource allocation challenge. We assume 

uniformity in capacity and pricing among the PMs. However, the PMs may install different 

libraries in advance to support different microservices for applications. 
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In the OEPTA algorithm, there are three equations used to guide the decision-making pro-

cess: 

a. Cost 

 𝐶𝑁𝑛𝑜𝑑𝑒(𝑖, 𝑎) = 𝐶𝑝. 𝑠(𝑖) + ∑ 𝐶𝑙(𝑘) + ∑ 𝐶0.
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)𝑢∈𝑀𝑎𝑘  (1) 

Eq. (1) calculates the cost of deploying an application on a specific physical machine (𝑃𝑀) 

in a cluster. It considers various factors such as the processing cost of the 𝑃𝑀 (𝐶𝑝. 𝑠(𝑖)), the 

cost of accessing the 𝑃𝑀 (𝐶𝑙(𝑘)), and the cost of using resources on the 𝑃𝑀 (𝐶0.
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)
). 

By evaluating the cost for each 𝑃𝑀 in the cluster, the algorithm can select the 𝑃𝑀 with the 

lowest cost for the given application. 

b. Scalability 

 ∑ ∑
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)𝑢∈𝑀𝑎𝐺𝑎∈𝛬 < 𝑅𝑅𝑝(𝑖), ∀𝑖 ∈ 𝑁𝑝 (2) 

Eq. (2) is the scalability equation, which assesses the overall resource utilization across all 

clusters for a specific application. It calculates the ratio of resource usage 
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)
 for each 

microservice) 𝑢 in the application across all clusters (𝐺𝑎) and compares it to a predefined re-

source requirement (𝑅𝑅𝑝(𝑖)). The algorithm proceeds to the next step if the total resource uti-

lization meets the scalability requirement. Otherwise, it revisits the allocation and assignment 

process for better resource utilization. 

c. Execution Time 

 ∑
𝑙𝑎(𝑘,𝑢).𝑥(𝑖,𝑎,𝑢)

𝑅𝑎(𝑢)𝐺𝑎∈𝛬 − 𝑙(𝑘, 𝑖) ≤ 𝑙𝑝(𝑘, 𝑖), ∀𝑖 ∈ 𝑁𝑝, 𝑢 ∈ 𝑀𝑎 (3) 

Eq. (3) evaluates the expected execution time for each task (𝑢) of an application on a spe-

cific 𝑃𝑀𝑖,. It considers the processing time for the task on the 𝑃𝑀 (𝑙𝑎(𝑘, 𝑢) and the communi-

cation time between tasks (𝑙(𝑘, 𝑖)). The equation sets a constraint (≤ 𝑙𝑝(𝑘, 𝑖)) on the execution 

time, ensuring that the execution time for each task meets the predefined requirement. If the 

execution time constraint is satisfied for all tasks, the deployment is considered successful. 

Otherwise, the algorithm revisits the allocation and assignment process to optimize task exe-

cution time. 

These equations help the OEPTA algorithm make informed decisions regarding resource 

allocation, task assignment, and load balancing, aiming to minimize costs, ensure scalability, 

and meet application deployment execution time requirements. 

3.2. A Framework for Deploying Cloud-Based Microservice Container Applications with 

Docker 

This section introduces an adapted Container Microservice Load Balanced (CMLB) 

framework that integrates the innovative OEPTA algorithm. This framework aims to improve 

the performance of microservice-based applications deployed on Docker in cloud environ-

ments. The system uses microservices on ECs to process application requests within a frame-

work. Resource allocation and application management are decentralized, with Registry and 

Service Discovery coordinating the process through a Load balancer on MSCs. The MSCs are 
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responsible for making decisions on resource allocation, requesting resources for ECs, moni-

toring task progress on ECs, and managing the life cycle of ECs. Once a task is complete, the 

EC reports back to the MSC on the progress compared to what was expected. 

Fig. 1 shows the deployment of microservice applications with Docker containers. The 

process begins with the user sending an application deployment request (𝐴𝑑𝑟1) to the gateway. 

The gateway then sends the request to the registry and Service Discovery (RSD) system, which 

registers and assigns the request to the first cluster in the resource table (since the cluster place-

ment is done automatically, with a priority given to the least busy). Once the cluster receives 

the registration request, the load balancer is notified and will register and update the status of 

the microservices controllers and execution containers to execute the job. If more resources are 

needed, the load balancer will select the best candidate for the available cluster resource status 

in the global resourcespace to avoid delays or traffic. When a resource is picked from the global 

resourcespace, it disappears, and the following available resource is released for use. While the 

load balancer manages jobs, the other jobs in the queue will be assigned to subsequent clusters 

that are available concurrently, following the same process. 

 

Figure 1. Framework for deploying microservice applications with Docker containers 

Fig. 2 illustrates the main components of PM in a Cluster. Each PM within the cluster has 

a host operating system that runs Docker. This Docker engine is responsible for maintaining 

the container's operating environment, embedding containers, and isolating containers operat-

ing on the same PM. The Registry and Service Discovery system that registers and directs 

requests to the PM is also introduced. Each PM includes a load balancer that registers and 

updates the status of the MSCs and ECs operating on that PM. Furthermore, a Global Re-

sourceSpace is introduced, allowing for the scaling up or down of the resources if needed. 

The workflow of deploying the application deployment requests is illustrated in Figure 3. 

When an application request is sent to the registry and service discovery system, the registry 

and Service Discovery (RSD) system will register and assign the request to the load balancer 

to manage the microservice controllers and execution containers in the physical machine within 

the clusters. If more resources are needed, the load balancer will select the best candidate from 

the available global resourcespace to avoid delays or traffic. When a resource is selected from 

69



IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al. 
https://doi.org/10.31436/iiumej.v26i2.3089 

 

 

the global resourcespace, it disappears, and the following available resource is released from 

the cluster. While the load balancer manages cluster one, the other jobs in the queue will be 

assigned to subsequent clusters that are available concurrently, following the same process. 

Based on the application's requirements and available resources on PMs in the clusters, the 

load balancer makes resource allocation decisions using the proposed Optimize EC Placement 

and Task Assignment Algorithm (OEPTA). 

 

Figure 2. Components of physical machines (𝑃𝑀1, … , 𝑃𝑀𝑖) in the clusters embed 

microservice controllers and execution containers. 

 

Figure 3. Workflow for deploying the application deployment requests. 

3.3. Develop a Simulation Model and Implement the Proposed Algorithm. 

This section outlines the overall design of the cloud-based container microservices frame-

work and the specific implementation of the microservices function. The simulation model is 

established following the previously mentioned methodology. To assess the efficiency of the 

suggested algorithm, Netflix, Spring Boot, and Spring Cloud are employed as microservice 
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implementations and communication simulation tools. To address the scalable distributed-sys-

tems problems, the registry and service discovery system, load balancer, and global resource 

space have all been utilized, resulting in practical solutions for scheduling requests. The design 

framework is anticipated to boost the performance of the CBCM system. 

3.3.1. Algorithm Implementation 

A comparison of the algorithms under consideration reveals some of their strengths and 

weaknesses. All of the algorithms are effective at resolving microservice scheduling issues [24, 

26, 27]Although they are time-consuming and have a slow convergence speed for solving com-

plex scheduling problems, the algorithms have been modified to address more specific issues 

such as cost, server overload, traffic spikes, and performance issues. 

The OEPTA (Optimized Executive Containers Placement Task Assignment) algorithm 

optimizes the placement and assignment of executive containers in a distributed computing 

environment. It initializes variables and data structures, sets up clusters and physical machines, 

and receives application deployment requests. The algorithm registers and assigns requests, 

calculates costs for each physical machine, and selects the best candidate based on cost and 

other factors. Tasks are assigned to the selected machine, and load balancing is performed. A 

scalability check ensures resource utilization meets requirements, and execution time is calcu-

lated for each task. The system is updated by releasing resources, marking them as unavailable, 

and updating load balancing. The process is repeated for the remaining deployment requests. 

Overall, OEPTA aims to achieve efficient task execution through optimized placement and 

assignment of executive containers.  

 

Algorithm: (Optimized Executive Containers Placement Task Assignment) 

Input: User Application deployment requests [𝐴𝑑𝑟|1, 𝐴𝑑𝑟2,………………𝐴𝑑𝑟𝑛,] 

Output: 𝑚𝑖𝑛{𝑁𝑇, 𝐶𝑜𝑠𝑡, 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑖𝑛𝑔} 

1: Initialization: 

2:    Initialize necessary variables, data structures, and parameters. 

3:    Set up the clusters and their associated physical machines 𝑃𝑀𝑠. 

4:    Set up the global resourcespace. 

5: For each application deployment request 𝐴𝑑𝑟𝑖, in [𝐴𝑑𝑟|1, 𝐴𝑑𝑟2,………………𝐴𝑑𝑟𝑛,]: 

6:    Application Deployment Request: 

7:        Receive 𝐴𝑑𝑟𝑖, and its associated parameters. 

8:    Register and Assign Request: 

9:        Send 𝐴𝑑𝑟𝑖,to the registry and service discovery system (RSD). 

10:      RSD registers and assigns 𝐴𝑑𝑟𝑖, to the load balancer (LB). 

11:  Resource Allocation and Task Assignment: 

12:       Calculate the cost for each PM in the cluster for 𝐴𝑑𝑟𝑖, using Eq. 1: 

13:           𝐶𝑁𝑛𝑜𝑑𝑒(𝑖, 𝑎) = 𝐶𝑝. 𝑠(𝑖) + ∑ 𝐶𝑙(𝑘) + ∑ 𝐶0.
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)𝑢∈𝑀𝑎𝑘   
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14:       Select the best candidate from the available resources in the global resourcespace, 

          considering cost and other factors. 

15:       Assign 𝐴𝑑𝑟𝑖,'s tasks to the selected 𝑃𝑀, updating the resource allocation. 

16:       Release the next available resource from the cluster's resource pool. 

17:   Cluster Management and Load Balancing: 

18:       Manage the microservice controllers and execution containers on the assigned 𝑃𝑀. 

19:    If there are other jobs in the queue, assign them to subsequent clusters that are 

           available concurrently, following the same process. 

20:   Scalability Check: 

21:       Calculate the total resource utilization across all clusters for Adr(i) using Eq. 2: 

22:           ∑ ∑
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)𝑢∈𝑀𝑎𝐺𝑎∈𝛬 < 𝑅𝑅𝑝(𝑖), ∀𝑖 ∈ 𝑁𝑝 

23:       If the condition in Eq. 2 is satisfied, proceed to the next step. Otherwise, revisit the 

         allocation and assignment process. 

24:   Execution Time Calculation: 

25:       Calculate the execution time for each task on the assigned PM using Eq. 3: 

26:           ∑
𝑙𝑎(𝑘,𝑢).𝑥(𝑖,𝑎,𝑢)

𝑅𝑎(𝑢)𝐺𝑎∈𝛬 − 𝑙(𝑘, 𝑖) ≤ 𝑙𝑝(𝑘, 𝑖), ∀𝑖 ∈ 𝑁𝑝, 𝑢 ∈ 𝑀𝑎 

27:       If the condition in Eq. 3 is satisfied for all tasks, the deployment is successful. 

           Otherwise, revisit the allocation and assignment process. 

28:   Update the System: 

29:       Release the assigned resources from the cluster and update the global resourcespace 

        accordingly. 

30:      Mark the assigned resources as unavailable in the cluster. 

31:      Update the load balancer and cluster management for the released resources. 

32: Repeat the process for the remaining application deployment requests in the queue. 

 

3.3.2. Algorithm Description 

As shown in the algorithm, Steps 1 to 5 involve initializing necessary variables, data struc-

tures, and parameters required for the algorithm. Includes setting up the clusters and their as-

sociated physical machines (𝑃𝑀) and establishing the global resource space. Step 6 is the Ap-

plication Deployment Request. The algorithm receives an application deployment request and 

associated parameters in these steps. The request contains information about the application 

that needs to be deployed. Steps 8-10 are the Register and Assign Request. The algorithm sends 

the deployment request to the registry and service discovery system (RSD) for registration and 

assignment in these steps. The RSD registers the request and assigns it to the load balancer, 

which handles the distribution of tasks. Steps 11-16, Resource Allocation and Task Assign-

ment; These steps involve calculating the cost for each 𝑃𝑀 in the cluster for the given applica-

tion using the cost equation (Eq. 1). The algorithm selects the best candidate 𝑃𝑀 from the 

72



IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al. 
https://doi.org/10.31436/iiumej.v26i2.3089 

 

 

available resources in the global resource space based on factors like cost and other consider-

ations. And the application's tasks are then assigned to the selected 𝑃𝑀, and the resource allo-

cation is updated. The following available resource is also released from the cluster's resource 

pool. Steps 17-19, Cluster Management and Load Balancing; In these steps, the algorithm man-

ages the microservice controllers and execution containers on the assigned 𝑃𝑀. If there are 

other jobs in the queue, the algorithm assigns them to subsequent clusters that are available 

concurrently, following the same process. Steps 20-23, Scalability Check; The algorithm cal-

culates the total resource utilization across all clusters for the assigned application using the 

scalability equation (Eq. 2). It checks if the resource utilization meets the predefined scalability 

requirement 𝑅𝑅𝑝(𝑖) for all clusters. If the condition is satisfied, the algorithm proceeds to the 

next step. Otherwise, it revisits the allocation and assignment process to optimize resource 

utilization. Steps 24-27, Execution Time Calculation; These steps involve calculating the exe-

cution time for each task on the assigned 𝑃𝑀 using the execution time equation (Eq. 3). The 

algorithm considers the processing time for the task and the communication time between 

tasks. It checks if the execution time constraint is satisfied for all functions. If yes, the deploy-

ment is considered successful. Otherwise, the algorithm revisits the allocation and assignment 

process to optimize task execution time. Steps 28-31, Update the System; Once the deployment 

is successful, this step involves releasing the assigned resources from the cluster and updating 

the global resource space accordingly. The assigned resources are marked as unavailable in the 

cluster, and the load balancer and cluster management are updated for the released resources. 

Step 32, Repeat for Remaining Deployment Requests: The algorithm repeats the process for 

the remaining application deployment requests in the queue. It continues deploying applica-

tions and optimizing resource allocation until all requests have been processed. 

Overall, the OEPTA algorithm performs a systematic and optimized placement and as-

signment of application tasks on available physical machines in clusters, considering cost, 

scalability, and execution time requirements. It aims to efficiently utilize resources and ensure 

the successful and optimized deployment of applications. 

3.4. Evaluation 

Through trace-driven simulation studies, we evaluate the performance of our OEPTA al-

gorithm in various contexts. All evaluations are based on actual Google Cluster Traces. In var-

ious aspects, we compare the OEPTA algorithm to four strategies implemented in our paper, 

including EPTA, Spread, Binpack, and Random. The allocation and management of resources 

for applications are decentralized and performed by the load balancer on MSCs via the registry 

and service discovery system. An MSC decides on resource allocation, requests resources for 

ECs, monitors task status on ECs, and manages the life cycle of ECs. ECs complete the as-

signed tasks and report to the MSC on the status of their task execution in comparison to the 

expected progress. We evaluate and compare the performance of our microservice by creating 

job requests at random using non-load balancing and load balancing methods to display the 

execution time that results from the system's random distribution. 

3.4.1. Load Balanced Vs Non-Load Balanced 

Load-balanced microservice scheduling systems improve scalability, availability, and re-

silience, but add complexity and infrastructure. Non-load-balanced systems are less compli-

cated, but they can introduce a single point of failure and do not provide the same level of 

scalability and resilience [30]. The choice between the two approaches will be determined by 

the system's specific needs and the acceptable trade-offs between complexity and availability. 
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We first evaluate our algorithms randomly using non-load-balancing methods, then with a load-

balancing system, to examine the algorithm's behavior in both cases. 

 

Figure 4. Microservice Non-load Balanced execution time with varied number of jobs. 

 

Figure 5. Microservice Load-balanced execution time with a varied number of jobs. 

Fig. 4 shows the non-load-balanced algorithm used to test the number of microservices 

jobs against the execution time to see how the system behaved and changed compared to the 

load-balanced algorithm in Fig. 5. 

Fig. 6 depicts the difference between non-load-balanced and load-balanced microservice 

job execution. We compared the number of microservices against the execution time of each 

microservice to see how the CBCM system behaved when load-balanced or not. Based on the 

figures above, load and non-load balancing are two distinct approaches to scheduling micro-

services in a distributed system. It also shows that we require a load balancing system to reduce 

application deployment costs and execution time. 
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Figure 6. Microservice Load Balanced Vs Non-Load Balanced execution time with 

varied microservice 

3.4.2. On the Number of Scaled Microservices 

We assumed we had 200 microservices and used only 150 microservices (Active). The 

inactive will be pushed to cache load balancing as shown in Fig. 3. In case the computing 

resource requests overload the active microservices and have high traffic, then the system will 

up-scale from the cache memory (inactive) automatically. The higher the number of micro-

services available, the higher the active nodes. Our OEPTA algorithm's number of scaled mi-

croservices is being compared to four strategies. We looked at the active rate in the network 

and the total number of active microservices, while the number of available microservices 

ranges from 60 to 140. Fig. 7 demonstrates that OEPTA outperforms other algorithms regard-

ing microservice scalability, whereas Spread is the most expensive. The expenses associated 

with deploying applications using the three Docker swarm strategies are somewhere between 

those of OEPTA and EPTA. When the number of scaled microservices increases from 60 to 

140, the total number of active microservices used by OEPTA decreases slightly. With more 

microservices available, finding a better PM to handle requests becomes more difficult. How-

ever, as illustrated in the figure, the number of scaled microservices used by other strategies 

and algorithms increases since they occupy more microservices. 

 

Fig. 7. Number of scaled microservices with a varied number of active microservices 
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3.4.3. On the Number Application Deployment Cost 

Fig. 8 shows the costs of deploying applications using five strategies and algorithms. The 

data reveals that OEPTA has the lowest cost, while ETPA has a considerably higher cost. 

Binpack has the lowest deployment cost among the three Docker Swarm strategies, while 

spread has the highest. This is because Binpack places microservices from the same application 

on the same physical machine, whereas Spread and Random distribute microservices across 

the network for load balancing. As a result, Binpack reduces the communication costs between 

microservices. The data in the figure indicates that OEPTA outperforms other algorithms in 

terms of total deployment cost, whereas Optimal-VM has the highest deployment cost. The 

application deployment costs of the three Docker Swarm strategies fall between those of 

OEPTA and EPTA. As the number of microservices increases from 60 to 140, the total deploy-

ment costs of OEPTA slightly decrease. This is because a larger pool of microservices increases 

the likelihood of finding a better microservice to place. Conversely, the total deployment costs 

of other strategies and algorithms increase because they utilize more microservices. 

 

Figure 8. Average application deployment cost with a varied number of microservices. 

3.4.4. On the number of Execution time 

As depicted in Fig. 9, utilizing the linear programming (LP) solver causes a rise in the 

execution time of EPTA and Optimal-VM as the number of microservices within an application 

grows. To improve performance, we have devised a specialized solver customized to their 

problem and replacing the typical LP solver used in the EPTA algorithm. This new solver is 

controlled by a load balancer, resulting in optimized execution time. Fig. 9 compares the exe-

cution times of the five strategies and algorithms. The figure indicates that as the number of 

microservices grows, Optimal-VM and EPTA algorithms exhibit slightly better performance 

than OEPTA. Among the four, Spread has the shortest execution time. Interestingly, as the 

execution time increases from 0.2 to 2.0, the total number of microservices in OEPTA de-

creases compared to the other algorithms. This is because Optimal-VM and EPTA employ 

linear problems and the LP solver. However, OEPTA incrementally expands the search area 

instead of taking the entire physical network as input, resulting in a time complexity that does 

not exponentially increase as the network scales.  

76



IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al. 
https://doi.org/10.31436/iiumej.v26i2.3089 

 

 

 

Figure 9. Average execution time with a varied number of microservices. 

The paper employs a benchmarking approach to evaluate the proposed methodology 

against four Docker Swarm strategies and a Hypervisor-based VM embedding algorithm. It 

emphasizes state-of-the-art results in container microservice cloud-based systems, covering 

deployment costs, scaled microservices, and execution time (Wan et al. 2018). Detailed com-

parisons with a VM placement algorithm and three Docker Swarm strategies, utilizing real data 

traces, validate the proposed schemes. The paper explores strategies and algorithms, assessing 

deployment costs and overall performance. The OEPTA algorithm outperforms EPTA and 

other strategies in deployment cost, scaled microservices, and execution time, as shown in Ta-

ble 2. 

Table 2. Algorithm Comparison Results 

Algorithms Microservice Scalability Deployment Cost Execution Time 

OEPTA 

Outperforming EPTA 

slightly decreased as the to-

tal number of active micro-

services increased (see Fig-

ure 7). 

It demonstrates the lowest 

cost compared to all strate-

gies. Deployment costs de-

crease slightly with more 

microservices (refer to Fig-

ure 8). 

Demonstrates competitive ex-

ecution time performance, 

showcasing optimized execu-

tion time and successful de-

ployment with efficient task 

execution (refer to Figure 9). 

EPTA 

Demonstrates higher micro-

service scalability costs than 

OEPTA (refer to Figure 7). 

It is considered to have a 

higher deployment cost than 

OEPTA (refer to Figure 9). 

It demonstrates higher execu-

tion time, which is attributed 

to the utilization of a linear 

programming (LP) solver 

compared to OEPTA (refer to 

Figure 9). 

Optimal-VM 

Demonstrates the highest 

microservice scalability 

among the three strategies 

(Binpack, EPTA, and 

OEPTA), but is still lower 

than spread. Consequently, 

the number of active micro-

services in the OEPTA algo-

rithm surpasses all four strat-

egies (refer to Figure 7). 

Proven to have the highest 

total deployment cost; how-

ever, OEPTA surpasses 

other strategies, including 

Optimal-VM (refer to Figure 

8). 

Deploys linear problems and 

an LP solver, causing an esca-

lation in execution time with 

the growing number of micro-

services, demonstrating 

slightly inferior performance 

compared to OEPTA (see Fig-

ure 9). 

Binpack 

Compared to EPTA and 

OEPTA strategies, more 

scaled microservices with 

Demonstrates optimization 

of deployment costs by con-

solidating microservices 

It exhibits the shortest execu-

tion time compared to EPTA 

and Optimal-VM strategies 
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varying active microservices 

were demonstrated. Never-

theless, it exhibits lower 

scalability than the Optimal-

VM and Spread strategies 

(see Figure 7). 

from the same application on 

the same physical machine, 

leading to a lower deploy-

ment cost than Spread and 

Optimal-VM but higher than 

OEPTA (see Figure 8). 

while displaying higher execu-

tion time than Spread and 

OEPTA (see Figure 9). 

Spread 

It demonstrates higher mi-

croservices scalability 

among all four strategies 

(see Figure 7). It distributes 

microservices across the net-

work for load balancing, in-

creasing deployment costs 

between microservices. 

Compared to Binpack, 

higher deployment costs are 

the highest among the three 

Docker Swarm strategies 

(see Figure 8). 

Demonstrates the shortest exe-

cution time compared to 

Binpack, EPTA, and Optimal-

VM, whereas OEPTA 

emerges as the shortest among 

these compared to Spread (see 

Figure 9). 

 

Table 2 presents a comparison with Wan et al. (2018), illustrating that our newly developed 

optimized algorithm (OEPTA) surpasses the adapted (EPTA) algorithm in terms of micro-

service scalability, deployment cost, and execution time. This highlights the efficacy of the 

OEPTA algorithm, emphasizing its superior scalability, optimized execution time, and suc-

cessful deployment for efficient executional tasks, surpassing other strategies and algorithms 

in this domain. 

4. CONCLUSION AND FUTURE WORK 

We developed the OEPTA algorithm and a cutting-edge framework that minimizes the 

cost of deploying microservice applications while addressing the issue of load-balanced micro-

service scheduling systems. We use load balancing tools and libraries to describe our frame-

work thoroughly, and we described our improvement in terms of pertinent metrics like execu-

tion time, application deployment cost, and scalability. We created a load balancing algorithm 

for container microservice scheduling optimization to ascertain the service deployment cost, 

reliability, and availability of the microservice application. The distribution and control of re-

sources for applications occur in a decentralized manner. By conducting a comparative analy-

sis, we confirmed the effectiveness of the proposed strategies. We found that the OEPTA al-

gorithm delivered good results in terms of optimizing costs, traffic spikes, and server overload. 

These measures can effectively balance user requests for deploying applications and enhance 

the performance of the cloud-based container microservice system. In future work, we will 

incorporate load balancing and auto-scaling features by leveraging a multi-objective algorithm. 

This approach will consider additional optimization objectives, including latency and CPU uti-

lization. By doing so, we aim to address more refined challenges and enhance the overall per-

formance of container-based microservice cloud systems, ultimately improving users' quality 

of service (QoS). 
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