
IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

SCALABILITY AND COST OPTIMIZATION IN LOAD-

BALANCED MICROSERVICE SCHEDULING SYSTEM

SHAMSUDDEEN RABIU 1, CHAN HUAH YONG 1*,

SHARIFAH MASHITA SYED-MOHAMAD 2

1School of Computer Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia
2Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu,

21030 Kuala Nerus, Terengganu, Malaysia

*Corresponding author: hychan@usm.my

 (Received: 31 October 2023; Accepted: 22 April 2025; Published online: 15 May 2025)

ABSTRACT: Microservice, a widely adopted architectural paradigm to overcome monolithic

limitations, faces difficulties in efficient load balancing, scalability, and cost-effective

deployment. To address these issues, we introduce a Container Microservice Load Balanced

(CMLB) framework, which integrates the novel OEPTA algorithm. This framework aims to

optimize microservice-based applications deployed on Docker within cloud environments.

Common microservices scheduling strategies often grapple with load distribution challenges,

resulting in suboptimal resource utilization. Concurrently, traditional containerization

methods face difficulties reconciling trade-offs between scalability, deployment cost, and

execution time. Our primary goal is to present a comprehensive solution that enhances the

scalability, cost efficiency, and execution time of microservices deployment. This paper

introduces a novel deployment framework for microservices, leveraging Docker for

decentralized resource allocation across Microservice Controllers (MSCs). Additionally, a

specialized algorithm is introduced to evaluate the cost, execution time, and availability

aspects of microservice applications, enabling optimized resource allocation in a distributed

manner. The evaluation results demonstrate that the CMLB framework, driven by the OEPTA

algorithm, surpasses existing algorithms in achieving optimal scalability, cost efficiency, and

execution times. This research provides a robust solution to enhance microservices

deployment in cloud environments, effectively addressing key challenges in the field.

ABSTRAK: Mikroservis, sebuah paradigma seni bina yang diadaptasi secara meluas untuk

mengatasi keterbatasan monolitik, menghadapi kesulitan dalam penyeimbangan beban yang

cekap, skalabiliti, dan penyebaran kos efektif. Untuk mengatasi masalah ini, kami

memperkenalkan rangka kerja Container Microservice Load Balanced (CMLB), yang

mengintegrasikan algoritma OEPTA yang baru. Rangka kerja ini bertujuan untuk

mengoptimumkan aplikasi berasaskan perkhidmatan mikroservis yang digunakan pada

Docker dalam persekitaran awan. Strategi penjadualan mikroservis umumnya bergelut

dengan cabaran pengagihan beban, yang menghasilkan penggunaan sumber daya yang kurang

optimal. Pada masa yang sama, kaedah pengkontenaan tradisional menghadapi kesulitan

dalam menyeimbangkan pertukaran antara skalabiliti, kos penggunaan, dan masa

pelaksanaan. Matlamat utama kami adalah untuk membentangkan penyelesaian

komprehensif yang meningkatkan skalabiliti, kos kecekapan, dan masa pelaksanaan dalam

penggunaan mikroservis. Dalam makalah ini, kami memperkenalkan rangka kerja

penggunaan yang baru untuk perkhidmatan mikroservis, dengan memanfaatkan Docker untuk

peruntukan sumber terdesentralisasi merentas Pengawalan Perkhidmatan Mikroservis

(MSCs). Selain itu, algoritma khusus diperkenalkan untuk menilai kos, masa pelaksanaan,

dan ketersediaan aplikasi mikroservis, membolehkan peruntukan sumber dioptimumkan

dalam cara yang diedarkan. Keputusan penilaian menunjukkan bahawa rangka kerja CMLB,

didorong oleh algoritma OEPTA, mengatasi algoritma sedia ada dalam mencapai skalibiliti

63

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

optimum, kecekapan kos, dan masa pelaksanaan. Penyelidikan ini memberikan penyelesaian

yang teguh untuk meningkatkan penggunaan mikroservis dalam persekitaran awan,

menangani cabaran utama dalam lapangan dengan berkesan.

KEYWORDS: Algorithm, Cloud-based, Container, Docker, Load balancing, Microservice.

1. INTRODUCTION

Monolithic architecture refers to an application with a unified code base housing multiple

services that interact with external systems or consumers through diverse interfaces like Web

services, HTML pages, or REST API [1]. In this architectural model, all functionalities are

consolidated within a single application, resulting in modules that cannot function inde-

pendently [2]. This inherent characteristic of tight coupling means that all logic for handling a

request operates within a single process [3]. Despite the initial advantages of ease in develop-

ment, testing, and deployment for simpler applications, the drawbacks of monolithic architec-

ture become apparent as the application becomes more intricate. The monolith's structure ex-

pands in size, transforming into a cumbersome and challenging piece of software to manage

and scale [2]. As the application size and team grow, the limitations of this architecture become

increasingly significant [3]:

• Complexity in understanding and modifying the application, leading to a deceleration in

development speed.

• Difficulty in continuous deployment, where even minor changes necessitate the complete

rebuilding and redeployment of the entire monolith.

• Challenges in scaling the application, restricted to horizontal scaling within the confines of

monolithic architecture.

To overcome the challenges associated with monolithic applications and harness the ben-

efits of Service-Oriented Architecture (SOA), the microservices architecture pattern has

emerged as a lightweight subset of SOA, as exemplified by companies like Amazon [4]. In

recent years, microservices have gained significant traction in the business landscape, repre-

senting an enhanced and streamlined version of SOA [5]. According to [6], microservices ar-

chitecture is a specific implementation approach within SOA that facilitates the creation of

flexible and independently deployable software systems. This approach typically involves

breaking down a software application into smaller components that collaborate to achieve a

specific, complex task, thereby facilitating easier development and maintenance [7].

The Microservices architecture represents a paradigm shift away from traditional devel-

opment methods, placing emphasis on building the applications through small, autonomous

services that communicate via lightweight mechanisms [6]. It's essential to note that the term

"micro" in Microservices refers to the size of their contribution to the application, rather than

the lines of code they encompass [2]. Therefore, the architecture can be understood as a set of

small services with precise tasks that interact to achieve users' goals through standard commu-

nication channels [8, 9, 10]. This architectural approach offers a strategy for developing a co-

hesive application as a collection of small services. Each service operates independently in its

dedicated process and communicates through lightweight mechanisms, such as HTTP APIs

[10]. These Microservices are designed around specific business capabilities, enabling them to

be independently deployable through automated deployment processes [3]. Lately, there has

been a surge in using containers to distribute microservices across various cloud locations [11].

64

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

Containers, an emerging virtualization technology, are gaining popularity over virtual ma-

chines (VMs) due to their superior performance, lightweight design, and enhanced scalability

[12]. These containers act as comprehensive packages, bundling applications with their de-

pendencies, facilitating easy and consistent deployment across diverse environments. Depend-

encies, including binaries, libraries, and configuration files, are essential for the application's

functionality [13]. Containers encapsulate self-contained, deployable components of applica-

tions, and may include middleware and business logic in the form of binaries and libraries [10].

Container engines, such as Docker, leverage containers as portable entities for packaging ap-

plications. This shift emphasizes the critical need to manage container dependencies [14]. The

application consists of individual, self-contained services that operate in their own processes

and communicate through a lightweight mechanism [14].

To mitigate the risk of a single instance becoming a bottleneck or a potential point of

failure [16], a load-balanced microservice scheduling system distributes requests for a specific

service across multiple instances of that service. Typically, a load balancer, positioned in front

of the service instances, achieves this distribution by directing incoming traffic to the least busy

instance [17]. The primary objective of load balancing is to optimize resource utilization, ena-

bling the system to handle increased traffic levels with minimal downtime or performance

slowdowns [18]. In microservices, load balancing plays a crucial role in maintaining uninter-

rupted services even if one or more components fail, utilizing failover [17]. This involves add-

ing and removing instances of applications in a balanced manner, preventing failures [19]. Nu-

merous research studies have aimed to improve Quality of Service (QoS) in Container Micro-

services through load balancing [20]. However, many of these studies have found existing

methods ineffective in enhancing user QoS as the methods often rely on queuing systems, lead-

ing to issues like increased network traffic, longer processing times, server overloads, and high

deployment costs [6,17,18,19,21]. This results in sudden load spikes, disrupting system balance

and degrading performance. While load balancing traditionally considers factors like traffic

and performance constraints, adjusting computational resources dynamically to optimize costs

based on load changes is also crucial [17]. Hence, applying load balancing strategies becomes

crucial for optimizing performance in such scenarios.

To address the challenges associated with load-balanced microservice scheduling systems,

we introduced a pioneering framework called CMLB. This framework is designed to optimize

server overloads, manage traffic spikes, and enhance the cost efficiency of microservices. We

developed a load balancing algorithm to determine the service deployment cost, improve reli-

ability, and ensure the availability of microservice applications. In our proposed system, the

allocation and management of resources for applications are decentralized and orchestrated by

the Master Load Balancer (MLB), operating through Local Load Balancers (LLB) on Micro-

service Controllers (MSCs). The MSCs play a vital role in decision-making related to resource

allocation, requesting resources for Execution Containers (ECs), monitoring task progress on

ECs, and overseeing the life cycle of ECs. Simultaneously, the ECs are responsible for execut-

ing assigned tasks, providing progress updates to the MSCs, and comparing their performance

against expected outcomes. The primary contributions of this paper are outlined as follows:

• Proposed a novel Container Microservice Load Balanced (CMLB) framework, designed

for deploying microservice-based applications with Docker, incorporating autonomous re-

source allocation on each controller in a distributed manner.

• Presented an OEPTA algorithm to optimize the cost, execution time, and scalability aspects

of microservice applications.

65

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

• Implemented and evaluated the OEPTA algorithm's effectiveness, showcasing its capacity

to deliver positive outcomes regarding traffic spike management and server overload min-

imization.

The remaining sections of this paper are organized as follows: Section 2 presents a litera-

ture review on related works. Section 3 offers an overview of the methodology. Section 4 pre-

sents results and discussions. Section 5 provides a summary of the conclusion and outlines

future work. Table 1 highlights key processes, components, and challenges within the system.

Figure 1 summarizes the deployment of microservice applications with Docker Container,

while Figure 2 describes the elements of the cluster and introduces the concept of a Global

ResourceSpace. Figure 3 illustrates the workflow for application deployment and introduces

the Optimize EC Placement and Task Assignment Algorithm (OEPTA) for resource allocation

decisions. The presented frameworks aim to address the challenge of deploying and managing

microservice applications efficiently within clusters. The key problems include optimal re-

source allocation, load balancing, and timely task execution. The primary objectives are to

ensure minimal delays, maximize resource utilization, and maintain overall system perfor-

mance. The introduced OEPTA algorithm balances application demands, available resources,

and cluster configurations to make informed decisions for microservice deployment and exe-

cution. Table 1 lists the notations used in this section to aid understanding of the algorithm.

Table 1. Summary of the Notations used and their descriptions.

Notations Descriptions

𝐴𝑑𝑟 Application Deployment Request

𝑀𝑆 Microservice

𝑀𝑆𝐶𝑠 Microservice Controllers

𝐸𝐶𝑠 Execution Containers

𝑃𝑀 Physical Machine

𝑁𝑝 Set of physical nodes

𝛬 Set of applications needed to be deployed

𝐺𝑎 Set of all clusters in which the application is deployed.

𝑀𝑎 Set of microservice 𝑀𝑎 for application 𝐺𝑎

𝑅𝑎(𝑢) Total resources available on PM 'i' for microservice 'u' in application 'a'.

𝐶𝑅𝑎(𝑢) Resource requirement of microservice 'u' in application 'a'.

𝐶𝑁𝑛𝑜𝑑𝑒(𝑖, 𝑎) Cost associated with deploying application 'a' on physical machine (PM) 'i' in the cluster.

𝐶0 Cost of using resources

𝑥(𝑖, 𝑎, 𝑢) Resource usage of microservice 'u' in application 'a' on PM 'i'.

𝑙𝑎(𝑘, 𝑢) Processing time of task 'k' for microservice 'u' in application 'a'

𝑙𝑝(𝑘, 𝑖) Predefined execution time requirement for task 'k' on PM 'i'.

𝑙(𝑘, 𝑖) Communication time between tasks on PM 'i'.

𝑅𝑅𝑝(𝑖) Predefined resource requirement for cluster 'i'.

𝐶𝑝. 𝑠𝑖 Processing cost of the PM 'i'.

𝐶𝑙(𝑘) Cost of accessing the PM, which may depend on the microservice 'k'.

2. LITERATURE REVIEW

In recent years, an expanding body of research has focused on deploying and managing

microservice containers [17, 19, 20, 22]. The Microservices architecture has garnered signifi-

cant attention for its adaptability, cost-effectiveness, and scalability, leading large enterprises

to deploy microservices across diverse cloud locations [17, 20, 22]. Containers, known for their

lightweight nature compared to virtual machines, enable easy downloads and swift deploy-

ments [11,23]. Adopting a microservices architecture presents several advantages, including

reduced interdependence between services, faster recovery in the face of catastrophic events,

66

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

and heightened reliability achieved by isolating the impact of failures to a small service seg-

ment [24]. However, as applications scale, challenges arise, notably in increased API calls.

This necessitates the implementation of effective load balancing solutions to manage API calls

across the architecture.

Contributing to this domain, [17] developed a microservices architecture utilizing Docker

containers to enhance scalability and elasticity in the cloud computing environment. Their ap-

proach aims to reduce deployment and operational costs while meeting service delay require-

ments. Expanding upon their work, our research enhances their framework by incorporating

additional parameters, including execution time, traffic spikes, and cost considerations. We

further augment the framework by distributing requests evenly across all PMs through a master

load balancer on the client side. This extension is designed to ensure Quality of Service (QoS)

for developers, responding to the growing demand for new software [25].

A key concern in container microservices cloud-based systems revolves around the intri-

cacies of load balancing. This process entails the equal distribution of workloads across servers

to forestall service failures, minimize response time, alleviate downtime, and safeguard against

data loss [17, 26, 27]. Effective load balancing is paramount for averting resource overload,

enhancing performance, handling unforeseen traffic spikes, curtailing response time, and opti-

mizing resource utilization [27]. In a correlated investigation, an inventive Load Balancing Ant

Colony Optimization (LBACO) algorithm was devised to distribute workloads throughout the

entire system, thereby reducing the makespan [21]. Meanwhile, [28] introduces a groundbreak-

ing approach to enhance performance and diminish latency by leveraging SmartNICs on edge

servers for middlebox processing. Their SmartLB methodology deploys a load balancer and an

auto scaler entirely on the SmartNIC, resulting in judicious decisions and decreased CPU load.

Despite numerous existing methodologies for optimizing load balancing, container placement,

application deployment costs, operational costs, service failure, and traffic issues, many treat

these challenges as knapsack problems, often neglecting essential load balancing features.

Therefore, integrating these crucial features into our system will significantly enhance its over-

all performance.

3. METHODOLOGY

This section outlines the systematic scalability and cost optimization approach in the pro-

posed Load-Balanced Microservice Scheduling System. It details the overarching strategy for

developing and implementing the microservices framework with Docker containers and eval-

uates its performance. The methodology involves creating a simulation model, implementing

a novel scheduling algorithm, and thoroughly evaluating results based on predefined criteria.

3.1. System Model

To achieve a balanced distribution of requests across microservice instances, we defined

this process in a structured manner using our equations. These equations serve as a foundation

for the OEPTA algorithm, enabling it to make well-informed choices on resource distribution,

task delegation, and load equilibrium. The algorithm aims to minimize costs, ensure scalability,

and fulfill execution time criteria for deploying applications.

Our system model analyzes a physical network comprising a collection of Physical Ma-

chines (PMs). Each PM possesses finite physical resources, with our focus being on computa-

tional resources as a representative illustration of the resource allocation challenge. We assume

uniformity in capacity and pricing among the PMs. However, the PMs may install different

libraries in advance to support different microservices for applications.

67

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

In the OEPTA algorithm, there are three equations used to guide the decision-making pro-

cess:

a. Cost

 𝐶𝑁𝑛𝑜𝑑𝑒(𝑖, 𝑎) = 𝐶𝑝. 𝑠(𝑖) + ∑ 𝐶𝑙(𝑘) + ∑ 𝐶0.
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)𝑢∈𝑀𝑎𝑘 (1)

Eq. (1) calculates the cost of deploying an application on a specific physical machine (𝑃𝑀)

in a cluster. It considers various factors such as the processing cost of the 𝑃𝑀 (𝐶𝑝. 𝑠(𝑖)), the

cost of accessing the 𝑃𝑀 (𝐶𝑙(𝑘)), and the cost of using resources on the 𝑃𝑀 (𝐶0.
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)
).

By evaluating the cost for each 𝑃𝑀 in the cluster, the algorithm can select the 𝑃𝑀 with the

lowest cost for the given application.

b. Scalability

 ∑ ∑
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)𝑢∈𝑀𝑎𝐺𝑎∈𝛬 < 𝑅𝑅𝑝(𝑖), ∀𝑖 ∈ 𝑁𝑝 (2)

Eq. (2) is the scalability equation, which assesses the overall resource utilization across all

clusters for a specific application. It calculates the ratio of resource usage
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)
 for each

microservice) 𝑢 in the application across all clusters (𝐺𝑎) and compares it to a predefined re-

source requirement (𝑅𝑅𝑝(𝑖)). The algorithm proceeds to the next step if the total resource uti-

lization meets the scalability requirement. Otherwise, it revisits the allocation and assignment

process for better resource utilization.

c. Execution Time

 ∑
𝑙𝑎(𝑘,𝑢).𝑥(𝑖,𝑎,𝑢)

𝑅𝑎(𝑢)𝐺𝑎∈𝛬 − 𝑙(𝑘, 𝑖) ≤ 𝑙𝑝(𝑘, 𝑖), ∀𝑖 ∈ 𝑁𝑝, 𝑢 ∈ 𝑀𝑎 (3)

Eq. (3) evaluates the expected execution time for each task (𝑢) of an application on a spe-

cific 𝑃𝑀𝑖,. It considers the processing time for the task on the 𝑃𝑀 (𝑙𝑎(𝑘, 𝑢) and the communi-

cation time between tasks (𝑙(𝑘, 𝑖)). The equation sets a constraint (≤ 𝑙𝑝(𝑘, 𝑖)) on the execution

time, ensuring that the execution time for each task meets the predefined requirement. If the

execution time constraint is satisfied for all tasks, the deployment is considered successful.

Otherwise, the algorithm revisits the allocation and assignment process to optimize task exe-

cution time.

These equations help the OEPTA algorithm make informed decisions regarding resource

allocation, task assignment, and load balancing, aiming to minimize costs, ensure scalability,

and meet application deployment execution time requirements.

3.2. A Framework for Deploying Cloud-Based Microservice Container Applications with

Docker

This section introduces an adapted Container Microservice Load Balanced (CMLB)

framework that integrates the innovative OEPTA algorithm. This framework aims to improve

the performance of microservice-based applications deployed on Docker in cloud environ-

ments. The system uses microservices on ECs to process application requests within a frame-

work. Resource allocation and application management are decentralized, with Registry and

Service Discovery coordinating the process through a Load balancer on MSCs. The MSCs are

68

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

responsible for making decisions on resource allocation, requesting resources for ECs, moni-

toring task progress on ECs, and managing the life cycle of ECs. Once a task is complete, the

EC reports back to the MSC on the progress compared to what was expected.

Fig. 1 shows the deployment of microservice applications with Docker containers. The

process begins with the user sending an application deployment request (𝐴𝑑𝑟1) to the gateway.

The gateway then sends the request to the registry and Service Discovery (RSD) system, which

registers and assigns the request to the first cluster in the resource table (since the cluster place-

ment is done automatically, with a priority given to the least busy). Once the cluster receives

the registration request, the load balancer is notified and will register and update the status of

the microservices controllers and execution containers to execute the job. If more resources are

needed, the load balancer will select the best candidate for the available cluster resource status

in the global resourcespace to avoid delays or traffic. When a resource is picked from the global

resourcespace, it disappears, and the following available resource is released for use. While the

load balancer manages jobs, the other jobs in the queue will be assigned to subsequent clusters

that are available concurrently, following the same process.

Figure 1. Framework for deploying microservice applications with Docker containers

Fig. 2 illustrates the main components of PM in a Cluster. Each PM within the cluster has

a host operating system that runs Docker. This Docker engine is responsible for maintaining

the container's operating environment, embedding containers, and isolating containers operat-

ing on the same PM. The Registry and Service Discovery system that registers and directs

requests to the PM is also introduced. Each PM includes a load balancer that registers and

updates the status of the MSCs and ECs operating on that PM. Furthermore, a Global Re-

sourceSpace is introduced, allowing for the scaling up or down of the resources if needed.

The workflow of deploying the application deployment requests is illustrated in Figure 3.

When an application request is sent to the registry and service discovery system, the registry

and Service Discovery (RSD) system will register and assign the request to the load balancer

to manage the microservice controllers and execution containers in the physical machine within

the clusters. If more resources are needed, the load balancer will select the best candidate from

the available global resourcespace to avoid delays or traffic. When a resource is selected from

69

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

the global resourcespace, it disappears, and the following available resource is released from

the cluster. While the load balancer manages cluster one, the other jobs in the queue will be

assigned to subsequent clusters that are available concurrently, following the same process.

Based on the application's requirements and available resources on PMs in the clusters, the

load balancer makes resource allocation decisions using the proposed Optimize EC Placement

and Task Assignment Algorithm (OEPTA).

Figure 2. Components of physical machines (𝑃𝑀1, … , 𝑃𝑀𝑖) in the clusters embed

microservice controllers and execution containers.

Figure 3. Workflow for deploying the application deployment requests.

3.3. Develop a Simulation Model and Implement the Proposed Algorithm.

This section outlines the overall design of the cloud-based container microservices frame-

work and the specific implementation of the microservices function. The simulation model is

established following the previously mentioned methodology. To assess the efficiency of the

suggested algorithm, Netflix, Spring Boot, and Spring Cloud are employed as microservice

70

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

implementations and communication simulation tools. To address the scalable distributed-sys-

tems problems, the registry and service discovery system, load balancer, and global resource

space have all been utilized, resulting in practical solutions for scheduling requests. The design

framework is anticipated to boost the performance of the CBCM system.

3.3.1. Algorithm Implementation

A comparison of the algorithms under consideration reveals some of their strengths and

weaknesses. All of the algorithms are effective at resolving microservice scheduling issues [24,

26, 27]Although they are time-consuming and have a slow convergence speed for solving com-

plex scheduling problems, the algorithms have been modified to address more specific issues

such as cost, server overload, traffic spikes, and performance issues.

The OEPTA (Optimized Executive Containers Placement Task Assignment) algorithm

optimizes the placement and assignment of executive containers in a distributed computing

environment. It initializes variables and data structures, sets up clusters and physical machines,

and receives application deployment requests. The algorithm registers and assigns requests,

calculates costs for each physical machine, and selects the best candidate based on cost and

other factors. Tasks are assigned to the selected machine, and load balancing is performed. A

scalability check ensures resource utilization meets requirements, and execution time is calcu-

lated for each task. The system is updated by releasing resources, marking them as unavailable,

and updating load balancing. The process is repeated for the remaining deployment requests.

Overall, OEPTA aims to achieve efficient task execution through optimized placement and

assignment of executive containers.

Algorithm: (Optimized Executive Containers Placement Task Assignment)

Input: User Application deployment requests [𝐴𝑑𝑟|1, 𝐴𝑑𝑟2,………………𝐴𝑑𝑟𝑛,]

Output: 𝑚𝑖𝑛{𝑁𝑇, 𝐶𝑜𝑠𝑡, 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑖𝑛𝑔}

1: Initialization:

2: Initialize necessary variables, data structures, and parameters.

3: Set up the clusters and their associated physical machines 𝑃𝑀𝑠.

4: Set up the global resourcespace.

5: For each application deployment request 𝐴𝑑𝑟𝑖, in [𝐴𝑑𝑟|1, 𝐴𝑑𝑟2,………………𝐴𝑑𝑟𝑛,]:

6: Application Deployment Request:

7: Receive 𝐴𝑑𝑟𝑖, and its associated parameters.

8: Register and Assign Request:

9: Send 𝐴𝑑𝑟𝑖,to the registry and service discovery system (RSD).

10: RSD registers and assigns 𝐴𝑑𝑟𝑖, to the load balancer (LB).

11: Resource Allocation and Task Assignment:

12: Calculate the cost for each PM in the cluster for 𝐴𝑑𝑟𝑖, using Eq. 1:

13: 𝐶𝑁𝑛𝑜𝑑𝑒(𝑖, 𝑎) = 𝐶𝑝. 𝑠(𝑖) + ∑ 𝐶𝑙(𝑘) + ∑ 𝐶0.
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)𝑢∈𝑀𝑎𝑘

71

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

14: Select the best candidate from the available resources in the global resourcespace,

 considering cost and other factors.

15: Assign 𝐴𝑑𝑟𝑖,'s tasks to the selected 𝑃𝑀, updating the resource allocation.

16: Release the next available resource from the cluster's resource pool.

17: Cluster Management and Load Balancing:

18: Manage the microservice controllers and execution containers on the assigned 𝑃𝑀.

19: If there are other jobs in the queue, assign them to subsequent clusters that are

 available concurrently, following the same process.

20: Scalability Check:

21: Calculate the total resource utilization across all clusters for Adr(i) using Eq. 2:

22: ∑ ∑
𝑥(𝑖,𝑎,𝑢).𝐶𝑅𝑎(𝑢)

𝑅𝑎(𝑢)𝑢∈𝑀𝑎𝐺𝑎∈𝛬 < 𝑅𝑅𝑝(𝑖), ∀𝑖 ∈ 𝑁𝑝

23: If the condition in Eq. 2 is satisfied, proceed to the next step. Otherwise, revisit the

 allocation and assignment process.

24: Execution Time Calculation:

25: Calculate the execution time for each task on the assigned PM using Eq. 3:

26: ∑
𝑙𝑎(𝑘,𝑢).𝑥(𝑖,𝑎,𝑢)

𝑅𝑎(𝑢)𝐺𝑎∈𝛬 − 𝑙(𝑘, 𝑖) ≤ 𝑙𝑝(𝑘, 𝑖), ∀𝑖 ∈ 𝑁𝑝, 𝑢 ∈ 𝑀𝑎

27: If the condition in Eq. 3 is satisfied for all tasks, the deployment is successful.

 Otherwise, revisit the allocation and assignment process.

28: Update the System:

29: Release the assigned resources from the cluster and update the global resourcespace

 accordingly.

30: Mark the assigned resources as unavailable in the cluster.

31: Update the load balancer and cluster management for the released resources.

32: Repeat the process for the remaining application deployment requests in the queue.

3.3.2. Algorithm Description

As shown in the algorithm, Steps 1 to 5 involve initializing necessary variables, data struc-

tures, and parameters required for the algorithm. Includes setting up the clusters and their as-

sociated physical machines (𝑃𝑀) and establishing the global resource space. Step 6 is the Ap-

plication Deployment Request. The algorithm receives an application deployment request and

associated parameters in these steps. The request contains information about the application

that needs to be deployed. Steps 8-10 are the Register and Assign Request. The algorithm sends

the deployment request to the registry and service discovery system (RSD) for registration and

assignment in these steps. The RSD registers the request and assigns it to the load balancer,

which handles the distribution of tasks. Steps 11-16, Resource Allocation and Task Assign-

ment; These steps involve calculating the cost for each 𝑃𝑀 in the cluster for the given applica-

tion using the cost equation (Eq. 1). The algorithm selects the best candidate 𝑃𝑀 from the

72

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

available resources in the global resource space based on factors like cost and other consider-

ations. And the application's tasks are then assigned to the selected 𝑃𝑀, and the resource allo-

cation is updated. The following available resource is also released from the cluster's resource

pool. Steps 17-19, Cluster Management and Load Balancing; In these steps, the algorithm man-

ages the microservice controllers and execution containers on the assigned 𝑃𝑀. If there are

other jobs in the queue, the algorithm assigns them to subsequent clusters that are available

concurrently, following the same process. Steps 20-23, Scalability Check; The algorithm cal-

culates the total resource utilization across all clusters for the assigned application using the

scalability equation (Eq. 2). It checks if the resource utilization meets the predefined scalability

requirement 𝑅𝑅𝑝(𝑖) for all clusters. If the condition is satisfied, the algorithm proceeds to the

next step. Otherwise, it revisits the allocation and assignment process to optimize resource

utilization. Steps 24-27, Execution Time Calculation; These steps involve calculating the exe-

cution time for each task on the assigned 𝑃𝑀 using the execution time equation (Eq. 3). The

algorithm considers the processing time for the task and the communication time between

tasks. It checks if the execution time constraint is satisfied for all functions. If yes, the deploy-

ment is considered successful. Otherwise, the algorithm revisits the allocation and assignment

process to optimize task execution time. Steps 28-31, Update the System; Once the deployment

is successful, this step involves releasing the assigned resources from the cluster and updating

the global resource space accordingly. The assigned resources are marked as unavailable in the

cluster, and the load balancer and cluster management are updated for the released resources.

Step 32, Repeat for Remaining Deployment Requests: The algorithm repeats the process for

the remaining application deployment requests in the queue. It continues deploying applica-

tions and optimizing resource allocation until all requests have been processed.

Overall, the OEPTA algorithm performs a systematic and optimized placement and as-

signment of application tasks on available physical machines in clusters, considering cost,

scalability, and execution time requirements. It aims to efficiently utilize resources and ensure

the successful and optimized deployment of applications.

3.4. Evaluation

Through trace-driven simulation studies, we evaluate the performance of our OEPTA al-

gorithm in various contexts. All evaluations are based on actual Google Cluster Traces. In var-

ious aspects, we compare the OEPTA algorithm to four strategies implemented in our paper,

including EPTA, Spread, Binpack, and Random. The allocation and management of resources

for applications are decentralized and performed by the load balancer on MSCs via the registry

and service discovery system. An MSC decides on resource allocation, requests resources for

ECs, monitors task status on ECs, and manages the life cycle of ECs. ECs complete the as-

signed tasks and report to the MSC on the status of their task execution in comparison to the

expected progress. We evaluate and compare the performance of our microservice by creating

job requests at random using non-load balancing and load balancing methods to display the

execution time that results from the system's random distribution.

3.4.1. Load Balanced Vs Non-Load Balanced

Load-balanced microservice scheduling systems improve scalability, availability, and re-

silience, but add complexity and infrastructure. Non-load-balanced systems are less compli-

cated, but they can introduce a single point of failure and do not provide the same level of

scalability and resilience [30]. The choice between the two approaches will be determined by

the system's specific needs and the acceptable trade-offs between complexity and availability.

73

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

We first evaluate our algorithms randomly using non-load-balancing methods, then with a load-

balancing system, to examine the algorithm's behavior in both cases.

Figure 4. Microservice Non-load Balanced execution time with varied number of jobs.

Figure 5. Microservice Load-balanced execution time with a varied number of jobs.

Fig. 4 shows the non-load-balanced algorithm used to test the number of microservices

jobs against the execution time to see how the system behaved and changed compared to the

load-balanced algorithm in Fig. 5.

Fig. 6 depicts the difference between non-load-balanced and load-balanced microservice

job execution. We compared the number of microservices against the execution time of each

microservice to see how the CBCM system behaved when load-balanced or not. Based on the

figures above, load and non-load balancing are two distinct approaches to scheduling micro-

services in a distributed system. It also shows that we require a load balancing system to reduce

application deployment costs and execution time.

74

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

Figure 6. Microservice Load Balanced Vs Non-Load Balanced execution time with

varied microservice

3.4.2. On the Number of Scaled Microservices

We assumed we had 200 microservices and used only 150 microservices (Active). The

inactive will be pushed to cache load balancing as shown in Fig. 3. In case the computing

resource requests overload the active microservices and have high traffic, then the system will

up-scale from the cache memory (inactive) automatically. The higher the number of micro-

services available, the higher the active nodes. Our OEPTA algorithm's number of scaled mi-

croservices is being compared to four strategies. We looked at the active rate in the network

and the total number of active microservices, while the number of available microservices

ranges from 60 to 140. Fig. 7 demonstrates that OEPTA outperforms other algorithms regard-

ing microservice scalability, whereas Spread is the most expensive. The expenses associated

with deploying applications using the three Docker swarm strategies are somewhere between

those of OEPTA and EPTA. When the number of scaled microservices increases from 60 to

140, the total number of active microservices used by OEPTA decreases slightly. With more

microservices available, finding a better PM to handle requests becomes more difficult. How-

ever, as illustrated in the figure, the number of scaled microservices used by other strategies

and algorithms increases since they occupy more microservices.

Fig. 7. Number of scaled microservices with a varied number of active microservices

75

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

3.4.3. On the Number Application Deployment Cost

Fig. 8 shows the costs of deploying applications using five strategies and algorithms. The

data reveals that OEPTA has the lowest cost, while ETPA has a considerably higher cost.

Binpack has the lowest deployment cost among the three Docker Swarm strategies, while

spread has the highest. This is because Binpack places microservices from the same application

on the same physical machine, whereas Spread and Random distribute microservices across

the network for load balancing. As a result, Binpack reduces the communication costs between

microservices. The data in the figure indicates that OEPTA outperforms other algorithms in

terms of total deployment cost, whereas Optimal-VM has the highest deployment cost. The

application deployment costs of the three Docker Swarm strategies fall between those of

OEPTA and EPTA. As the number of microservices increases from 60 to 140, the total deploy-

ment costs of OEPTA slightly decrease. This is because a larger pool of microservices increases

the likelihood of finding a better microservice to place. Conversely, the total deployment costs

of other strategies and algorithms increase because they utilize more microservices.

Figure 8. Average application deployment cost with a varied number of microservices.

3.4.4. On the number of Execution time

As depicted in Fig. 9, utilizing the linear programming (LP) solver causes a rise in the

execution time of EPTA and Optimal-VM as the number of microservices within an application

grows. To improve performance, we have devised a specialized solver customized to their

problem and replacing the typical LP solver used in the EPTA algorithm. This new solver is

controlled by a load balancer, resulting in optimized execution time. Fig. 9 compares the exe-

cution times of the five strategies and algorithms. The figure indicates that as the number of

microservices grows, Optimal-VM and EPTA algorithms exhibit slightly better performance

than OEPTA. Among the four, Spread has the shortest execution time. Interestingly, as the

execution time increases from 0.2 to 2.0, the total number of microservices in OEPTA de-

creases compared to the other algorithms. This is because Optimal-VM and EPTA employ

linear problems and the LP solver. However, OEPTA incrementally expands the search area

instead of taking the entire physical network as input, resulting in a time complexity that does

not exponentially increase as the network scales.

76

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

Figure 9. Average execution time with a varied number of microservices.

The paper employs a benchmarking approach to evaluate the proposed methodology

against four Docker Swarm strategies and a Hypervisor-based VM embedding algorithm. It

emphasizes state-of-the-art results in container microservice cloud-based systems, covering

deployment costs, scaled microservices, and execution time (Wan et al. 2018). Detailed com-

parisons with a VM placement algorithm and three Docker Swarm strategies, utilizing real data

traces, validate the proposed schemes. The paper explores strategies and algorithms, assessing

deployment costs and overall performance. The OEPTA algorithm outperforms EPTA and

other strategies in deployment cost, scaled microservices, and execution time, as shown in Ta-

ble 2.

Table 2. Algorithm Comparison Results

Algorithms Microservice Scalability Deployment Cost Execution Time

OEPTA

Outperforming EPTA

slightly decreased as the to-

tal number of active micro-

services increased (see Fig-

ure 7).

It demonstrates the lowest

cost compared to all strate-

gies. Deployment costs de-

crease slightly with more

microservices (refer to Fig-

ure 8).

Demonstrates competitive ex-

ecution time performance,

showcasing optimized execu-

tion time and successful de-

ployment with efficient task

execution (refer to Figure 9).

EPTA

Demonstrates higher micro-

service scalability costs than

OEPTA (refer to Figure 7).

It is considered to have a

higher deployment cost than

OEPTA (refer to Figure 9).

It demonstrates higher execu-

tion time, which is attributed

to the utilization of a linear

programming (LP) solver

compared to OEPTA (refer to

Figure 9).

Optimal-VM

Demonstrates the highest

microservice scalability

among the three strategies

(Binpack, EPTA, and

OEPTA), but is still lower

than spread. Consequently,

the number of active micro-

services in the OEPTA algo-

rithm surpasses all four strat-

egies (refer to Figure 7).

Proven to have the highest

total deployment cost; how-

ever, OEPTA surpasses

other strategies, including

Optimal-VM (refer to Figure

8).

Deploys linear problems and

an LP solver, causing an esca-

lation in execution time with

the growing number of micro-

services, demonstrating

slightly inferior performance

compared to OEPTA (see Fig-

ure 9).

Binpack

Compared to EPTA and

OEPTA strategies, more

scaled microservices with

Demonstrates optimization

of deployment costs by con-

solidating microservices

It exhibits the shortest execu-

tion time compared to EPTA

and Optimal-VM strategies

77

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

varying active microservices

were demonstrated. Never-

theless, it exhibits lower

scalability than the Optimal-

VM and Spread strategies

(see Figure 7).

from the same application on

the same physical machine,

leading to a lower deploy-

ment cost than Spread and

Optimal-VM but higher than

OEPTA (see Figure 8).

while displaying higher execu-

tion time than Spread and

OEPTA (see Figure 9).

Spread

It demonstrates higher mi-

croservices scalability

among all four strategies

(see Figure 7). It distributes

microservices across the net-

work for load balancing, in-

creasing deployment costs

between microservices.

Compared to Binpack,

higher deployment costs are

the highest among the three

Docker Swarm strategies

(see Figure 8).

Demonstrates the shortest exe-

cution time compared to

Binpack, EPTA, and Optimal-

VM, whereas OEPTA

emerges as the shortest among

these compared to Spread (see

Figure 9).

Table 2 presents a comparison with Wan et al. (2018), illustrating that our newly developed

optimized algorithm (OEPTA) surpasses the adapted (EPTA) algorithm in terms of micro-

service scalability, deployment cost, and execution time. This highlights the efficacy of the

OEPTA algorithm, emphasizing its superior scalability, optimized execution time, and suc-

cessful deployment for efficient executional tasks, surpassing other strategies and algorithms

in this domain.

4. CONCLUSION AND FUTURE WORK

We developed the OEPTA algorithm and a cutting-edge framework that minimizes the

cost of deploying microservice applications while addressing the issue of load-balanced micro-

service scheduling systems. We use load balancing tools and libraries to describe our frame-

work thoroughly, and we described our improvement in terms of pertinent metrics like execu-

tion time, application deployment cost, and scalability. We created a load balancing algorithm

for container microservice scheduling optimization to ascertain the service deployment cost,

reliability, and availability of the microservice application. The distribution and control of re-

sources for applications occur in a decentralized manner. By conducting a comparative analy-

sis, we confirmed the effectiveness of the proposed strategies. We found that the OEPTA al-

gorithm delivered good results in terms of optimizing costs, traffic spikes, and server overload.

These measures can effectively balance user requests for deploying applications and enhance

the performance of the cloud-based container microservice system. In future work, we will

incorporate load balancing and auto-scaling features by leveraging a multi-objective algorithm.

This approach will consider additional optimization objectives, including latency and CPU uti-

lization. By doing so, we aim to address more refined challenges and enhance the overall per-

formance of container-based microservice cloud systems, ultimately improving users' quality

of service (QoS).

ACKNOWLEDGMENT

The authors would like to acknowledge and thank the Research University Grant

(1011/PKOMP/8014076) from Universiti Sains Malaysia (USM) and the Talent and Publica-

tions Enhancement Research Grant (TAPERG/2023/UMT/2223) titled “Empirical Analysis of

Software Maintainability Metrics in DevOps Environments” from Universiti Malaysia Tereng-

ganu (UMT) for supporting this publication.

78

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

REFERENCES

[1] O. Al-Debagy and P. Martinek, “A Comparative Review of Microservices and Monolithic

Architectures,” 18th IEEE Int. Symp. Comput. Intell. Informatics, CINTI 2018 - Proc., pp. 149–

154, 2018, doi: 10.1109/CINTI.2018.8928192.

[2] L. De Lauretis, “From monolithic architecture to microservices architecture,” Proc. - 2019 IEEE

30th Int. Symp. Softw. Reliab. Eng. Work. ISSREW 2019, pp. 93–96, 2019, doi:

10.1109/ISSREW.2019.00050.

[3] F. Ponce, G. Marquez, and H. Astudillo, “Migrating from monolithic architecture to

microservices: A Rapid Review,” Proc. - Int. Conf. Chil. Comput. Sci. Soc. SCCC, vol. 2019-

Novem, 2019, doi: 10.1109/SCCC49216.2019.8966423.

[4] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, and S. Gil, “Evaluating the

Monolithic and the Microservice Architecture Pattern to Deploy Web Applications in the Cloud

Evaluando el Patrón de Arquitectura Monolítica y de Micro Servicios Para Desplegar

Aplicaciones en la Nube,” 10th Comput. Colomb. Conf., pp. 583–590, 2015.

[5] T. Erl, J. Fontenla, M. Caeiro, and M. Llamas, “Web Services and Contemporary SOA,” Serv.

A rch itectu re Connceptsts , Technol. , Des., pp. 25–81, 2005.

[6] D. Bhamare, M. Samaka, A. Erbad, R. Jain, and L. Gupta, “Exploring microservices for

enhancing internet QoS,” Trans. Emerg. Telecommun. Technol., vol. 29, no. 11, 2018, doi:

10.1002/ett.3445.

[7] A. Sundberg, “A study on load balancing within microservices architecture,” 2019, [Online].

Available: https://www.mendeley.com/catalogue/a4814e2d-827e-3e18-93b5-

3f91efa6d98b/?utm_source=desktop&utm_medium=1.19.4&utm_campaign=open_catalog&us

erDocumentId=%7B0ed39c18-97ea-4c9c-994a-2dd841333607%7D

[8] J. A. Valdivia, X. Limon, and K. Cortes-Verdin, “Quality attributes in patterns related to

microservice architecture: a Systematic Literature Review,” pp. 181–190, 2020, doi:

10.1109/conisoft.2019.00034.

[9] Z. Ding, S. Wang, and M. Pan, “QoS-Constrained Service Selection for Networked

Microservices,” IEEE Access, vol. 8, pp. 39285–39299, 2020, doi:

10.1109/ACCESS.2020.2974188.

[10] M. Villamizar et al., “Cost comparison of running web applications in the cloud using

monolithic, microservice, and AWS Lambda architectures,” Serv. Oriented Comput. Appl., vol.

11, no. 2, pp. 233–247, 2017, doi: 10.1007/s11761-017-0208-y.

[11] N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, and J. Nieh, “Synapse: A microservices

architecture for heterogeneous-database web applications,” Proc. 10th Eur. Conf. Comput. Syst.

EuroSys 2015, 2015, doi: 10.1145/2741948.2741975.

[12] V. Singh and S. K. Peddoju, “Container-based microservice architecture for cloud applications,”

Proceeding - IEEE Int. Conf. Comput. Commun. Autom. ICCCA 2017, vol. 2017-Janua, pp. 847–

852, 2017, doi: 10.1109/CCAA.2017.8229914.

[13] J. Mathenge, “Containers vs Microservices: What’s The Difference?,”

Https://Www.Bmc.Com/Blogs/Containers-Vs-Microservices/, 2021.

[14] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container technologies: A state-of-the-art

review,” IEEE Trans. Cloud Comput., vol. 7, no. 3, pp. 677–692, 2019, doi:

10.1109/TCC.2017.2702586.

[15] E. Casalicchio and V. Perciballi, “Auto-Scaling of Containers: The Impact of Relative and

Absolute Metrics,” Proc. - 2017 IEEE 2nd Int. Work. Found. Appl. Self* Syst. FAS*W 2017, pp.

207–214, 2017, doi: 10.1109/FAS-W.2017.149.

[16] M. D. Cojocaru, A. Oprescu, and A. Uta, “Attributes assessing the quality of microservices

automatically decomposed from monolithic applications,” Proc. - 2019 18th Int. Symp. Parallel

Distrib. Comput. ISPDC 2019, no. June, pp. 84–93, 2019, doi: 10.1109/ISPDC.2019.00021.

[17] S. N. Srirama, M. Adhikari, and S. Paul, “Application deployment using containers with auto-

scaling for microservices in cloud environment,” J. Netw. Comput. Appl., vol. 160, no. August

2019, 2020, doi: 10.1016/j.jnca.2020.102629.

[18] S. Jain and A. K. Saxena, “A survey of load balancing challenges in cloud environment,” Proc.

79

IIUM Engineering Journal, Vol. 26, No. 2, 2025 Rabiu et al.
https://doi.org/10.31436/iiumej.v26i2.3089

5th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2016, pp. 291–293, 2017, doi:

10.1109/SYSMART.2016.7894537.

[19] X. Wan, X. Guan, T. Wang, G. Bai, and B. Choi, “Journal of Network and Computer

Applications Application deployment using Microservice and Docker containers : Framework

and optimization,” vol. 119, no. December 2017, pp. 97–109, 2018.

[20] M. Lin, J. Xi, W. Bai, and J. Wu, “Ant Colony Algorithm for Multi-Objective Optimization of

Container-Based Microservice Scheduling in Cloud,” IEEE Access, vol. 7, pp. 83088–83100,

2019, doi: 10.1109/ACCESS.2019.2924414.

[21] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling based on load balancing

ant colony optimization,” Proc. - 2011 6th Annu. ChinaGrid Conf. ChinaGrid 2011, pp. 3–9,

2011, doi: 10.1109/ChinaGrid.2011.17.

[22] X. Guan, X. Wan, B. Choi, S. Song, and J. Zhu, “Application Oriented Dynamic Resource

Allocation for Data Centers Using Docker Containers,” vol. 1, no. c, pp. 1–4, 2016, doi:

10.1109/LCOMM.2016.2644658.

[23] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to Cloud-Native architectures using

microservices: An experience report,” Commun. Comput. Inf. Sci., vol. 567, pp. 201–215, 2016,

doi: 10.1007/978-3-319-33313-7_15.

[24] M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi, and G. Zavattaro, Optimal and automated

deployment for microservices, vol. 11424 LNCS. Springer International Publishing, 2019. doi:

10.1007/978-3-030-16722-6_21.

[25] P. Stefanic, M. Cigale, A. Jones, and V. Stankovski, “Quality of Service Models for

Microservices and Their Integration into the SWITCH IDE,” Proc. - 2017 IEEE 2nd Int. Work.

Found. Appl. Self* Syst. FAS*W 2017, no. September, pp. 215–218, 2017, doi: 10.1109/FAS-

W.2017.150.

[26] B. Stevant, J. L. Pazat, and A. Blanc, “Optimizing the Performance of a Microservice-Based

Application Deployed on User-Provided Devices,” Proc. - 17th Int. Symp. Parallel Distrib.

Comput. ISPDC 2018, pp. 133–140, 2018, doi: 10.1109/ISPDC2018.2018.00027.

[27] T. Tupid, “Basic Guide: Load Balancing and Auto-Scaling in Cloud Computing,” 2019.

https://medium.com/@tudip/basic-guide-load-balancing-and-auto-scaling-in-cloud-computing-

219a5f0768a

[28] Z. Ni, C. Wei, T. Wood, and N. Choi, “A SmartNIC-based Load Balancing and Auto Scaling

Framework for Middlebox Edge Server,” pp. 21–27, 2022, doi: 10.1109/nfv-

sdn53031.2021.9665167.

[29] I. Lera and C. Juiz, “Genetic Algorithm for Multi-Objective Optimization of Container

Allocation in Cloud Architecture,” 2017.

[30] D. A. Shafiq, N. Z. Jhanjhi, and A. Abdullah, “Load balancing techniques in cloud computing

environment: A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 7, pp. 3910–3933,

2022, doi: 10.1016/j.jksuci.2021.02.007.

80

