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ABSTRACT:  The progression of prosthetic technology, enabling precise thumb control and 
movement, has reached a stage where noninvasive techniques for capturing bioelectrical 
signals from muscle activity are preferred over alternative methods. While 
electromyography's applications extend beyond just interfacing with prostheses, this initial 
investigation delves into evaluating various classifiers' accuracy in identifying rest and 
contraction states of the thumb muscles using extrinsic forearm readings. Employing a High-
Density Surface Electromyogram (HD-sEMG) device, bioelectrical signals generated by 
muscle activity, detectable from the skin's surface, were transformed into contours. A training 
system for the thumb induced muscle activity in four postures: 0°, 30°, 60°, and 90°. The 
collection of HD-sEMG signals originating from both the anterior and posterior forearms of 
seventeen participants has been proficiently classified using a neural network with 100% 
accuracy and a mean square error (MSE) of 1.4923 x 10-5 based on the testing dataset. This 
accomplishment in classification was realized by employing the Bayesian regularization 
backpropagation (trainbr) training technique, integrating seven concealed layers, and 
adopting a training-validation-testing proportion of 70-15-15. In the realm of future research, 
an avenue worth exploring involves the potential integration of real-time feedback 
mechanisms predicated on the recognition of thumb muscle contraction states. This 
integration could offer an enhanced interaction experience between users and prosthetic 
devices. 

ABSTRAK: Perkembangan teknologi prostetik mengguna pakai kaedah selamat iaitu isyarat 
bioelektrikal yang diperoleh dari pergerakan otot lebih digemari digunakan berbanding 
kaedah alternatif. Ini membolehkan kawalan dan pergerakan ibu jari dengan tepat. Sementara 
aplikasi elektromiografi telah melangkah jauh melebihi antara muka prostesis. Kajian awal 
ini mengkaji pelbagai ketepatan klasifikasi dalam mengenal pasti keadaan rehat dan kontraksi 
otot ibu jari menggunakan bacaan lengan bawah ekstrinsik. Dengan menggunakan peranti 
Elektromiogram Permukaan Kepadatan-Tinggi (HD-sEMG), isyarat bioelektrikal yang 
terhasil dari pergerakan otot, boleh ditanggalkan dari permukaan kulit, di ubah kepada kontur. 
Sistem latihan pada ibu jari menghasilkan pergerakan otot dalam empat postur iaitu: 0°, 30°, 
60°, dan 90°. Isyarat terkumpul dari HD-sEMG berasal dari kedua-dua lengan tangan anterior 
dan posterior dari 17 peserta telah diklasifikasi dengan cekap menggunakan rangkaian neural 
dengan ketepatan 100% dan min kuasa dua ralat (MSE) sebanyak 1.4923 x 10-5 berdasarkan 
setdata yang diuji. Klasifikasi sempurna ini dicapai dengan menggunakan teknik latihan 
aturan  rambatan-belakang Bayesian (trainbr), mengguna pakai tujuh lapisan tersembunyi 
dengan gabungan latihan-validasi-ujian mengikut kadar 70-15-15. Pada masa hadapan, 
pengkaji boleh menerokai potensi integrasi mekanisme tindak balas nyata dalam meramal dan 
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mengenali kontraksi otot ibu jari. Integrasi ini mungkin membolehkan pengalaman interaksi 
antara peranti prostetik dan pengguna.  

KEYWORDS:  Thumb Posture, High-Density Surface Electromyogram (HD-sEMG), 
Forearm Muscle, Classification. 

1. INTRODUCTION  
The human hand serves as the principal organ for tactile perception thanks to its high 

sensory receptor density. The hand performs a number of vital actions that are essential to 
human interaction and expression in everyday life, such as gripping for pick-up and holding 
mechanisms in addition to gesturing for nonverbal communication [1]. Executing complex 
motions that need coordination and precision like writing, relies on the intricate movements of 
hands, orchestrated by the muscles. For instance, gripping activities are created by the muscles 
in the hand, which include intrinsic muscles placed inside the hand and extrinsic muscles 
emerging from the forearm [2]. 

The absence of this vital biological component has a significant impact on an individual's 
freedom and general quality of life. As they adapt to their new surroundings, hand amputees 
frequently face physical, emotional, and mental challenges [3]. Significantly due to 
technological advancements, many hand amputees employ prosthetic devices to restore some 
level of hand function. Prosthetic technological advancements have resulted in the creation of 
sophisticated myoelectric prostheses that can be controlled by muscle impulses from the 
residual limb [4]. Amputees may use these prostheses to do a wide range of chores and 
activities, mimicking the capabilities of our natural hands. 

There are different types of amputees, mainly transradial and transcarpal, distinguished by 
the extent of limb loss. Transradial amputees have forearms amputated between the elbow and 
wrist, losing the hand and wrist but keeping the elbow. This type of amputation affects the 
synergy between intrinsic and extrinsic hand muscles. On the other hand, transcarpal amputees 
lose part of the palm and wrist but retain some forearm and the wrist joint [5]. This type often 
preserves certain forearm muscles crucial for hand movements, making them the focus of this 
study since transcarpal amputees show potential for effective prosthetic use due to sustained 
forearm muscles capable of signaling specific hand movements [6]. 

In the context of prosthetic control, intrinsic and extrinsic muscles can be used to provide 
signals that direct the motions of a prosthetic hand, so increasing the device's utility and variety. 
Notably, the High-Density Surface Electromyogram (HD-sEMG) approach can detect muscle 
activity signals related to thumb movements using extrinsic muscles. HD-sEMG employs a 
larger number of electrodes to encompass a broader muscle area. The current state of prosthetic 
technology lacks precision, hindering its ability to address crucial aspects affecting users' daily 
lives [7]. This limitation hampers transcarpal amputees' ability to perform intricate movements 
essential for tasks involving grasping and manipulation. Moreover, HD-sEMG mitigates issues 
such as electrode misplacement that can occur with standard sEMG [8]. As a result, the 
imprecise thumb posture classification system from standard sEMG restricts transcarpal 
amputees from adapting to a wide range of tasks and activities. In general, there is a critical 
need for advancements in thumb posture classification from HD-EMG signals to revolutionize 
prosthetic control for transcarpal amputees, ensuring greater precision, functionality, and 
overall well-being for users [9].  

A recent study has dedicated attention to optimizing the application of this technology to 
maximize the efficacy of HD-sEMG for hand gesture applications [10], while another 
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combines the data collected with machine learning technique for classification purposes [11]. 
In line with this approach, a large dataset can be successfully handled by modern machine 
learning algorithms, combining with HD-sEMG's ability to collect large amounts of data. The 
first steps include feature extraction, which is a process of obtaining relevant information from 
the raw data provided by HD-sEMG. These features are classified into three types: time-
domain (TD), frequency-domain (FD), and time-frequency domain (TFD). TFD analysis 
approaches find common ground in a variety of engineering fields, such as in gesture 
recognition purposes [12]. While frequency-based features (FD) have been employed due to 
their simple mathematical function (can be extracted using Fourier transformations) in earlier 
studies for healthcare purposes [13]. TD features have been widely used in previous research 
due to their superior performance in various fields such as in detecting sympathetic activity in 
post-acute COVID-19 patients [14], besides fault diagnosis of machines using vibration data 
[15]. This research is centered on time-domain (TD) features derived from the high-density 
surface electromyography (HD-sEMG) signals. This choice was informed by analyses 
conducted in a previous study [16], which advocated for the utilization of TD features, 
specifically emphasizing the inclusion of Root Mean Square (RMS) data, for effective 
biosignal feature extraction. 

Based on the extracted features, the data are typically fed into machine learning for 
classification purposes. However, earlier studies have not treated the ratio of training, 
validation and testing in much detail. The research described in [17] used a 70-15-15 ratio in 
detecting healthy, myopathy, and neuropathy conditions based on the EMG signals in 
improving the evaluation of neuromuscular disorders. As per the performance assessment of 
the Convolutional Neural Network (CNN) approach, it attains a precision level of 98.57%. In 
another study as shown in [18], an 80-10-10 rule was employed to predict hand posture (pinch 
versus grip) and grasp force. The study utilized forearm sEMG and artificial neural networks 
(ANNs) during tasks that involved variations in repetition rate and duty cycle. The outcomes 
showed that overall accuracy for hand posture prediction was reported at 79%, while the overall 
accuracy for hand force prediction was recorded at 73%. In certain instances, a 60-20-20 split 
was utilized, as evidenced by a study with larger datasets consisting of 188 EMG signal data 
and 223 ECG signal data [19]. This approach was employed for muscle fatigue analysis and 
stress detection in the context of upper limb trauma rehabilitation. The outcomes revealed a 
remarkable 95% accuracy for multiclass muscle fatigue classification and a notable 97% 
accuracy during the binary classification of mental stress. 

In this study, High-Density Surface Electromyogram (HD-sEMG) signals, derived from 
extrinsic forearm muscles situated on both the anterior and posterior sides, were utilized for 
classification purposes. During the experimental phase, participants were instructed to exert 
pressure on their thumb using a specifically designed platform. The thumb's posture was 
standardized at four different degrees. Employing a neural network developed within the 
Matlab environment, this study aims to reveal the highest accuracy achieved in classifying the 
extracted data. 

Specifically, the study will assess the influence of forearm sides and thumb postures on 
HD-sEMG readings, considering three different training functions. Subsequent steps will 
involve exploring the optimal number of hidden layers for classifying the collected data, 
followed by selecting the best training-validation-testing ratios based on accuracy and mean 
square error (MSE).  
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2. EXPERIMENTAL DESIGN 

2.1 HD-sEMG Characteristics 
HD-sEMG is a non-invasive measurement method for detecting muscle activity. The main 

difference between HD-sEMG and standard EMG is that HD-sEMG uses an array of closely 
spaced electrodes, which enables the detection of more detailed spatial muscle activity due to 
the large number of electrodes arranged in a dense manner. Standard EMG, on the other hand, 
typically uses a bipolar configuration consisting of two electrodes placed on the muscle of 
interest, enabling the detection of temporal muscle activity [23]. The ability to detect spatial 
muscle activity is advantageous in the development of prostheses. However, translating the 
HD-SEMG data into precise prosthetic hand movements remains a challenge. This section 
describes an experimental procedure for data collection to investigate the relationship between 
thumb movements/force exertion and forearm muscle activity. 

2.2 Participants and Design 
Seventeen students from the IIUM Gombak campus, aged 24 to 30 (with an average age 

of 26.35 and a standard deviation of 1.64), were chosen at random to participate in a within-
subject experimental arrangement involving two conditions (relaxed vs. contracted) x four 
thumb postures (zero-degree vs. thirty-degree vs. sixty-degree vs. ninety-degree) for both 
forearm sides (anterior and posterior) across three trials based on RMS values. Prior to the start 
of the experiment, all participants were briefed on the experimental methods, after which they 
were granted their informed permission. The International Islamic University Malaysia (IIUM) 
approved the study protocol with the reference number 2020-080. There was no history of 
surgery, nerve damage, or accidents involving any of the individuals’ dominant hands. 

2.3 Task 
Throughout the experimental session, all participants were instructed to engage their 

Maximum Voluntary Contraction (MVC) of thumb force using a portable thumb training 
device that had been developed (depicted in Fig. 1) in a neutral placement (at zero-degree 
position). 

 
Figure 1. Thumb training platform (adopted from [5]) 
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The device included a potentiometer for detecting thumb posture arrangements, 
accompanied by a load cell for quantifying the force applied by participants. In addition, an 
adaptive wrist positioning system with a robust locking mechanism was designed to ensure 
accurate thumb position angles. A level hand rest was intended for participants to comfortably 
rest their arms during the experiment, effectively minimizing the potential onset of undue 
fatigue.  

The thumb training platform was previously employed in a preceding study [16], albeit 
with slight adjustments made to establish a fixed angle configuration. For this experiment, 
angles of the thumb were set at zero-degree, thirty-degree, sixty-degree, and ninety-degree as 
shown in Fig. 2. Before the experiment, the experimenter set the dedicated angle by measuring 
the angle between the black base of the device and the tip of the load cell. 

 
Figure 2. Thumb postures (adopted from [5]) 

Based on the integration of the Matlab program within the thumb training system, an 
automated process was employed to ascertain 30% of the MVC values for each thumb posture 
and subject, subsequently generating a corresponding graphical trajectory shown in Fig. 3. 

 
Figure 3. The trajectory of rest (force = 0 N) and contract (force= 30% MVC) 

conditions (adopted from [5]) 
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Utilizing the graphical user interface, participants engaged in repetitive cycles of resting and 
contracting positions for each trial. The blue line represents the targeted force, indicating the 
force that participants are required to exert, while the red line represents the actual force exerted 
by participants, measured by the load cell. This protocol encompassed three trials for every 
thumb posture, resulting in a total of nine contractile force measurements for each distinct 
thumb posture. 

2.4 HD-sEMG Setting 
HD-sEMG signals were captured using a portable biomedical signal amplifier (referred to 

as "Sessantaquattro") developed by OT-Bioelettronica . The electrode pad, organized in a grid 
pattern, consisted of 64 electrodes arranged in 5 columns and 13 rows, spaced 8mm apart. 
Following the methodology outlined in [20], the electrode pads were positioned on the anterior 
and posterior forearm, specifically at 25% of the previously measured full forearm length, 
counted from the ulnar head to the elbow crease. The positioning of the electrode in this study 
was also in line with a previous research [21], which found that the activation of the thumb is 
concentrated in the mid-forearm, adjacent to the radius bone.  

Prior to affixing the patch onto participants' dominant forearm, a conductive gel was applied 
as a medium to ensure a secure connection between the skin and electrodes. This facilitated the 
direct transmission of electric impulses to the underlying tissues. 

2.5 Procedure 
Before beginning any experimental procedures, participants were given a consent form 

and instructed to read and complete it. After measuring each participant's forearm for patch 
placement purposes, the experimenter attached the electrodes to the forearm. Participants were 
then advised to sit up straight in a comfortable position before the data-collecting process 
began, as shown in Fig. 4.  

 
Figure 4. Experimental setup (adopted from [5]) 

Following that, instructions were given to the participants on how to place their arms on 
the portable thumb training device in a neutral posture (i.e., at a zero-degree angle). Participants 
were then directed to initiate their Maximum Voluntary Contraction (MVC) in order for 
MATLAB to calculate 30% of the MVC and generate the corresponding trajectory. This 
trajectory represented the force that participants had to apply over a certain period of time.  
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Each trial required participants to match the anticipated trajectory by applying thumb force 
for five seconds, followed by an eight-second rest interval meant to reduce muscle strain. The 
experiment took around an hour to complete for all four thumb postures, following which the 
participants were debriefed by the experimenter. In recognition of their involvement, 
participants were provided with a monetary incentive at the end of the experiment. 

2.6 Data processing 
The collected data was subsequently extracted. A time-domain feature, which is RMS, was 

derived using software developed by OT-Bioelettronica. This feature computed through 
equation (1), encapsulating important aspects of the data. 

𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝑥𝑥𝑘𝑘)2𝑁𝑁
𝑘𝑘=1  (1) 

where 𝑁𝑁 is the number of samples per window, and 𝑥𝑥𝑘𝑘 is the amplitude of the signal of the 
amplifier input measured in mV. Note that, the samples per window were predefined at 1000 
samples. 

As each dataset was acquired from individual subjects exhibiting distinct characteristics, the 
process of normalization became imperative to address inter-subject variability. Normalization 
also helped in preventing bias due to domination of certain variables because of their greater 
magnitudes than others. The HD-sEMG signal data was subjected to normalization as per the 
formula depicted in equation (2). 

𝑛𝑛
�̅�𝑥

× 100% (2) 

where �̅�𝑥 is the average of all normalized values, and 𝑛𝑛 is 𝑛𝑛𝑡𝑡ℎ electrode’s data out of the 64 
electrodes. 

3. RESULTS AND DISCUSSION 
A total of 1632 data points were gathered for this study, comprising 2 conditions (contract 

vs. rest) x 4 angles (zero-degree vs. thirty-degree vs. sixty-degree vs. ninety-degree) x 3 trials 
for each condition x 4 readings (for each trial) x 17 participants. However, certain data from 
specific participants were excluded from the analysis due to grounding issues. Consequently, 
the dataset used for results encompassed 960 entries with 128 readings from the electrodes (64 
electrodes each for posterior and anterior). 

The data underwent classification using Matlab's neural network training. The selection of 
the training function was limited to Levenberg-Marquardt backpropagation (trainlm), Bayesian 
regularization backpropagation (trainbr), and Scaled conjugate gradient backpropagation 
(trainscg), depending on factors like classification speed and data size. Additionally, the neural 
network's hidden layer count was adjustable for better accuracy. Notably, the training, 
validation, and testing ratio was manually configured as suggested by earlier studies [22-24]. 
Lastly, customization of the classified data's performance was done, in which the neural 
network's performance was evaluated using the mean squared error value (MSE) [25].  

To facilitate analysis, the data was divided into random segments (dividerand). 128 input 
nodes (64 electrodes x two forearm sides) were designed to classify the data into eight different 
classes (four thumb postures x two conditions), as detailed in Table 1. 
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Table 1. Classes for neural network 
 
 
 

 
In the first step, the number of hidden layers was temporarily set to one due to the small data 

size and the most popular 70-15-15 ratio was used for training-validation-testing. The outcomes 
indicated fluctuations in the Mean Squared Error (MSE) value for this setup. The configuration 
employing trainbr achieved the lowest error, which is at 0.0011, followed by trainlm at 0.0016, 
while trainscg exhibited the highest error at 0.1736. 

For trainbr, the best training performance was 2.512×10-11 recorded at epoch 112. Further 
investigation was done to observe the receiver operating characteristic (ROC) of the classified 
data. The ROC can be interpreted as the closer each curve aligns with the left and upper 
boundaries of the plot, the more accurate the classification. While a true positive corresponds 
to a situation where the model accurately predicts the positive class, the false positive denotes 
an instance where the model mistakenly predicts the positive class. The findings depicted in 
Fig. 5 indicate elevated false positive rates in the testing ROC for two specific classes: Class 5 
and Class 6. Conversely, the remaining classes exhibited no errors in this regard. 

 

 
Figure 5. ROC for trainbr with 70-15-15 ratio 

Derived from the confusion matrix of the testing subset, approximately 96.5% of the data 
was accurately classified. Amongst these, those two specific classes exhibited comparatively 
lower accuracy: 91.3% for Class 5 and 88.0% for Class 6. Taking into account the 
comprehensive confusion matrix, the collective rate of accurately classified data reached 
99.5%. 

Class Condition Thumb posture 
1 

Contract 

Zero-degree 
2 Thirty-degree 
3 Sixty-degree 
4 Ninety-degree 
5 

Relax 

Zero-degree 
6 Thirty-degree 
7 Sixty-degree 
8 Ninety-degree 
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The second step of neural network analysis proceeded by varying the hidden layer size value, 
using trainbr function and still, a 70-15-15 ratio. Previous research presents divergent 
viewpoints regarding the optimal count of hidden layers. In [26], the recommendation leaned 
towards employing just one or two hidden layers to minimize neural network errors. 
Conversely, [27] proposed that utilizing five hidden layers adequately facilitated the 
classification of handwritten numerals. Consistent with the suggestions in [28] that advocated 
for trial-and-error approaches in determining hidden layer counts, [27] accentuated that 
augmenting the number of hidden layers led to a corresponding enhancement in the 
performance of the neural network under development. 

Drawing from existing literature, alterations to the number of hidden layers were 
implemented in accordance with the details presented in Table 2. Furthermore, in alignment 
with the trial and error methodologies advocated in [28], the hidden layer configurations were 
diversified across multiple numbers to align with the classification's performance.  

Table 2. MSE and % accuracy of the data based on the number of hidden layers 
 
 

 
 
 
 
 

  
The escalation of hidden layers was capped at eight due to a decline in the neural network's 

performance. Specifically, when the hidden layer count was set at eight, both the MSE 
demonstrated an increase and the percentage of correctly classified data exhibited a decrease. 
Drawing insights from the outcomes presented in Table 2, a discernment can be drawn that the 
optimal hidden layer count for the given dataset amounted to seven. Additionally, it's notable 
that the computational time expanded with each increase in the hidden layer count. For 
instance, when the hidden layer count was set at five, the neural network required a mere 17 
seconds to classify the data, whereas this time extended to a minute and 51 seconds when the 
hidden layer count was raised to eight.  

Consequently, in the third phase of analysis, the training function was configured as 'trainbr', 
with the hidden layer count fixed at seven. Concurrently, variations were applied to the 
distribution of the training-validation-testing dataset ratios, encompassing both 80-10-10 and 
60-20-20 settings. The findings indicated that with the 80-10-10 ratio, the neural network 
achieved a testing dataset classification accuracy of 97.9%, accompanied by an MSE of 
5.2433x10-4. On the other hand, the 60-20-20 configuration yielded a classification accuracy 
of 99.0% and an MSE of 5.7381×10-4. 

As the 70-15-15 training-validation-testing ratio demonstrated superior classification 
accuracy in comparison to other ratios, additional analysis was conducted to delve into the finer 
aspects of this classification performance. The best training performance recorded was 

Hidden 
layer MSE 

% Correctly 
classified data 
(testing subset) 

1 0.0011 96.5 
2 0.0021 93.8 
3 1.1943x10-4 99.3 
4 1.3852x10-4 99.3 
5 1.0235x10-4 99.3 
6 3.0434 x10-5 100 
7 1.4923 x10-5 100 
8 5.2345 x10-4 98.6 

346



IIUM Engineering Journal, Vol. 25, No. 2, 2024 Suhaimi et al. 
https://doi.org/10.31436/iiumej.v25i2.3029 

 
 

1.3231x10-10 at epoch 105. Details of the performance for neural network training state can be 
seen in Fig. 6.  

 
Figure 6. Training state performance for trainbr with seven hidden layers  

and 70-15-15 ratio 

Furthermore, the comprehensive confusion matrix revealed a remarkable outcome, 
indicating that all data points, irrespective of their classes, were impeccably classified with a 
flawless accuracy of 100%. This exceptional classification achievement is corroborated by the 
ROC outputs depicted in Fig. 7. 

 

 
Figure 7. ROC for the configuration of trainbr with seven hidden layers  

and 70-15-15 ratio 
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4. CONCLUSION  
 The dataset comprising HD-sEMG signals obtained from the anterior and posterior 

forearm can indeed be effectively classified utilizing a neural network. This successful 
classification was achieved through the implementation of the Bayesian regularization 
backpropagation (trainbr) training function, incorporating seven hidden layers, and employing 
a training-validation-testing ratio of 70-15-15 with 100% accuracy classified data and 1.4923 
x10-5 MSE. Subsequent investigations could delve into assessing the adaptability and resilience 
of the established neural network classification model when confronted with variances in 
electrode positioning and user-specific variables. Such inquiries would further augment its 
pragmatic applicability. Moreover, broadening the scope of analysis to encompass more 
intricate hand movements and a wider array of muscle groups could provide valuable insights 
regarding the extended applicability of the HD-sEMG-based methodology. 
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