
IIUM Engineering Journal, Vol. 24, No. 2, 2023 Mohd Tombel et al. 
https://doi.org/10.31436/iiumej.v24i2.2832 

FEATURE EXTRACTION AND SUPERVISED LEARNING 

FOR VOLATILE ORGANIC COMPOUNDS GAS 

RECOGNITION 

NOR SYAHIRA MOHD TOMBEL1, HASAN FIRDAUS MOHD ZAKI2,3* 

AND HANNA FARIHIN BINTI MOHD FADGLULLAH3 

1Dept. of Science (Computational and Theoretical), Kulliyyah of Science, 

International Islamic University of Malaysia, Kuantan, Pahang 
2Centre for Unmanned Technologies (CUTe), Kulliyyah of Engineering, 

International Islamic University of Malaysia, Gombak, Kuala Lumpur 
3Dept. of Mechatronic, Kulliyyah of Engineering, 

International Islamic University of Malaysia, Gombak, Kuala Lumpur 

*Corresponding author: hasanzaki@iium.edu.my

(Received: 11 April 2023; Accepted: 13 June 2023; Published on-line: 4 July 2023) 

ABSTRACT:  The emergence of advanced technologies, particularly in the field of artificial 

intelligence (AI), has sparked significant interest in exploring their potential benefits for 

various industries, including healthcare. In the medical sector, the utilization of sensing 

systems has proven valuable for diagnosing pulmonary diseases by detecting volatile organic 

compounds (VOCs) in exhaled breath. However, the identification of the most informative 

and discriminating features from VOC sensor arrays remains an unresolved challenge, 

essential for achieving robust VOC class recognition. This research project aims to investigate 

effective feature extraction techniques that can be employed as discriminative features for 

machine learning algorithms. A preliminary dataset was used to predict VOC classification 

through the application of five supervised machine learning algorithms: k-Nearest Neighbors 

(kNN), Random Forest (RF), Support Vector Machines (SVM), Logistic Regression (LR), 

and Artificial Neural Networks (ANN). Ten feature extraction methods were proposed based 

on changes in sensor response as inputs to classify three types of gases in the dataset. The 

performance of each model was evaluated and compared using k-Fold cross-validation (k=10) 

and metrics derived from the confusion matrix. The results demonstrate that the RF model 

achieved the highest mean accuracy and standard deviation, with values of 0.813 ± 0.035, 

followed closely by kNN with 0.803 ± 0.033. Conversely, LR, SVM (kernel=Polynomial), 

and ANN exhibited poor performances when applied to the VOC dataset, with accuracies of 

0.447 ± 0.035, 0.403 ± 0.041, and 0.419 ± 0.035, respectively. Therefore, this paper provides 

evidence that classifying VOC gases based on sensor responses is feasible and emphasizes 

the need for further research to explore sensor array analysis to enhance feature extraction 

techniques. 

ABSTRAK: Perkembangan teknologi canggih, khususnya dalam bidang kecerdasan buatan 

(AI), telah mencetuskan minat yang ketara dalam menerokai manfaatnya untuk pelbagai 

industri, termasuk bidang kesihatan. Dalam sektor perubatan, penggunaan sistem penderiaan 

telah terbukti bernilai untuk mendiagnosis penyakit paru-paru dengan mengesan sebatian 

organik meruap (VOC) dalam nafas yang dihembus manusia. Walau bagaimanapun, 

pengenalpastian ciri yang paling bermaklumat dan mendiskriminasi daripada penderia  VOC 

kekal sebagai cabaran yang tidak dapat diselesaikan, penting untuk mencapai pengiktirafan 

kelas VOC yang kukuh. Projek penyelidikan ini bertujuan untuk menyiasat teknik 

pengekstrakan ciri yang berkesan yang boleh digunakan sebagai ciri diskriminatif untuk 
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algoritma pembelajaran mesin. Set data awal digunakan untuk meramalkan klasifikasi VOC 

melalui aplikasi lima algoritma pembelajaran mesin yang diselia: k-Nearest Neighbors 

(kNN), Random Forest (RF), Support Vector Machines (SVM), Logistic Regression (LR), 

dan Artificial Neural Networks (ANN). Sepuluh kaedah pengekstrakan ciri telah dicadangkan 

berdasarkan perubahan dalam tindak balas penderia sebagai input untuk mengklasifikasikan 

tiga jenis gas dalam set data. Prestasi setiap model telah dinilai dan dibandingkan 

menggunakan pengesahan silang k-Fold (k=10) dan metrik yang diperoleh daripada confusion 

matriks . Keputusan menunjukkan bahawa model RF mencapai ketepatan minima tertinggi 

dan sisihan piawai, dengan nilai 0.813 ± 0.035, diikuti oleh kNN dengan 0.803 ± 0.033. 

Sebaliknya, LR, SVM (kernel=Polinomial), dan ANN mempamerkan prestasi yang lemah 

apabila digunakan pada dataset VOC, dengan ketepatan masing-masing 0.447 ± 0.035, 0.403 

± 0.041 dan 0.419 ± 0.035. Oleh itu, kertas kerja ini memberikan bukti bahawa 

mengklasifikasikan gas VOC berdasarkan tindak balas penderia adalah boleh dilaksanakan 

dan menekankan keperluan untuk penyelidikan lanjut untuk meneroka analisis tatasusunan 

penderia untuk meningkatkan teknik pengekstrakan ciri. 

KEYWORDS:  Supervised machine learning; Volatile Organic Compound; VOC Sensor; 

Gas classification; feature extraction 

1. INTRODUCTION  

Volatile organic compounds (VOC) have been used as preclinical biomarkers in breath 

analysis to monitor health and diagnose various pulmonary diseases such as asthma and lung 

cancer [1] [2] [3][4]. An array of sensors, or electronic nose (e-nose) is known as the alternative 

for a non-invasive method of detecting volatile organic compounds (VOC). E-nose is a device 

inspired by the olfactory system of humans or mammals (sense of smell), composed of a 

collection of an array of gas sensors with a pattern recognition system designed to detect and 

differentiate a wide variety of gas compounds [5].  

The advancement of nanosensor arrays with pattern recognition involving pre-processing, 

feature extraction and machine learning algorithms makes it a powerful tool for the detection 

and recognition of gas samples with concentration estimation. Feature extraction is an essential 

technique used to extract significant information from the sensor response signal [6] [7] to 

optimize the performance of pattern recognition algorithms for gas classification [6] [8].  

However, the detection of VOC using nanosensor technologies still has some constraints 

in its detection system. The VOC sensor as a sensing unit faced a few limitations such as lack 

of sensitivity and selectivity [9] [10]. Besides, it is still not clear which type of features from 

VOC sensor arrays are the most descriptive and discriminative leading to a robust recognition 

of the VOC classes. Data collection from a gas sensor array can also be cumbersome and time-

consuming which poses a nuisance in employing data-hungry machine learning algorithms.  

Therefore, this paper proposes employing supervised machine learning algorithms to 

classify the preliminary data of the individual sensors for VOC recognition. The VOC detection 

was performed on a chemiresistive sensor from various functionalised reduced Graphene Oxide 

(rGO) as a sensing layer. The targeted VOC gases used are acetone, toluene and isoprene which 

have been suggested as pulmonary disease-related biomarkers [11] with concentration levels 

ranging from 1 to 6 ppm.  

Concretely, we explore 10 feature sets that were extracted from the sensor’s original 

response curve. Then, we analyse the effect of these features towards VOC classification with 

five benchmark machine learning algorithms including K-Nearest Neighbours (kNN), Random 
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Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM) and Artificial Neural 

Network (ANN). The recognition models were then put into comparison to determine the one 

which provides the best evaluation and high accuracy in performing the classification of the 

targeted VOC gases using k-Fold Cross Validation (k=10) and Confusion Matrix. 

2. GAS SENSING MECHANISM 

Sensing mechanism of the sensor is first studied, to understand the VOC detection on the 

sensor. The thin film is comprised of rGO which is one of the most promising materials for 

detecting low VOC concentrations at room temperature [12]. Graphene is a two-dimensional 

building block made up of a one-atom-thick sheet of a carbon atom. 

Graphene can work well at room temperature because it has enormously high mobility 

[13]. Researchers are interested in modifying graphene into reduced Graphene Oxide as a 

sensing element because of its excellent electrical, high thermal conductivity, and mechanical 

properties [14] [15]. The functionalisation of rGO with nanoparticles and plasma treatment can 

improve sensor functionality and selectivity in distinguishing different vapours [11]. Different 

functionalisation of sensing elements is a good technique to improve the gas sensor's sensitivity 

and characteristics. 

In this research, the sensing layer was deposited on Ti/Pt Interdigitated Electrode (IDE). 

The electrode was used to supply current flow from the power source to the device, which 

improved the sensing material's catalytic properties towards a specific gas [16]. Furthermore, 

the VOC sensor employed is a resistive type, which produces a signal based on a change in 

resistance in response to gas exposure. In general, VOC gas detection on a sensor is caused by 

the adsorption and desorption processes that occur between analytes and the sensor surface 

[17]. 

Oxygen ion species were absorbed on the sensor surface in the presence of air (humidity) 

and lowered the electron from the conduction band [18]. The electron density is falling off and 

forming an electron depletion layer and barrier potential on the surface. Electron removal 

causes an increase in the depletion layer. The related equation for chemisorbed oxygen at 

temperatures less than 100°C [19] is as follows:  

O2 (gas)→O2 (adsorption)                                                                                           (1) 

O2 (gas)+ e- (surface)↔ O2
- (adsorption) (<100℃)                                                     (2) 

When VOC gas was introduced into the chamber, the gas molecules started to react with 

the absorbed oxygen ions and released electrons back into the conduction band. The 

predominant carrier in the sensors was modified by the reaction of the VOC gas (oxidizing or 

reducing agent) with the molecules in the sensing layer, resulting in an increasing or decreasing 

in the resistance measurement as the output [19]. 

Reduced Graphene Oxide has been reported to exhibit p-type behaviour [20]. However, 

the functionalised sensor was shown to be an n-type semiconductor in this VOC test, and the 

VOC analytes acted as reducing gases [18]. The sensor experienced an electron carrier 

majority, causing a decrease in depletion width and potential barrier. As a result, the sensor 

resistance decreased in the presence of VOC gas [21]. 
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3. RELATED WORKS 

3.1. Feature Extraction 

Feature extraction is a technique that is used to extract significant information from the 

sensor response graph [6] to ensure better performance of machine learning algorithms in 

pattern recognition [8].  The information is deemed relevant when the derived value extracted 

from the measured data is non-redundant, not correlated with other features and projects the 

decisive features [22]. Other than that, feature selection is also related to the dimensionality 

reduction process of transforming high dimensional data into a low dimensional feature [8]. 

Detection of VOCs using gas sensors commonly used real-time analysis and 

discrimination of “breath prints” to perform the gas classification process [2]. In 2012, Vergara 

and his team applied 8 feature extraction from the time-series sensor, which are the change of 

the maximal resistance change (ΔR), the normalized resistance change (||ΔR||), minimum and 

maximum exponential moving average(ema) with a value of 𝛼 = 0.001,0.01,0.1 each [10]. 

 On the other hand, many features can be extracted from raw signals and applied in 

electronic nose applications. Commonly extracted features from gas original response curves 

such as maximum response, the response of special time, time of special response, area, 

integral, derivative, difference and second derivative [6]. Table 1 shows a few lists of feature 

extraction from electronic nose sensor data for wound detection [23]. 

Table 1: List of Feature Extraction for Wound Detection based Electronic Nose [23]  

Feature Description 

Normalization 

Preprocessing the sensor data for features from the steady-state 

response, eliminate the effect of a concentration difference on 

recognition. 

Integral and derivative 

methods 

Integrals may represent the accumulative total of the reaction degree 

change and derivatives may represent the rate at which the sensor 

reacts to the odour. 

The Root Mean Square Error 

(RMSE) of curve fitting 

Depends on the type of model and the number of parameters in the 

model. 

Fourier transform and 

wavelet transform 

Fourier transform decomposes the original response curve into a 

superposition of the DC component and different harmonic 

components. 

 

3.2. Supervised Machine Learning 

There were few studies which implemented the detection of different gases by Supervised 

learning models such as k-Nearest Neighbour (kNN), Support Vector Machine (SVM), 

Artificial Neural Network (ANN), Random Forest (RF) and Logistic Regression. The findings 

were summarised in Table 2.   

There are two gaseous flows in the system: for carrier gas and VOC gas. Clean Dry Air 

(CDA) was used as carrier gas, while isoprene, toluene, and acetone as the targeted VOC gas. 

The temperature of the gas and temperature chuck in the sensor chamber were controlled using 

a Cellkraft Humidifier P-10 and a Nextron Temperature controller module (Nextron 

Microprobe Station, with platier heater and 4 probe needles). Agilent SMU 34410A was used 

to drive the voltage and input current. A data acquisition (DAQ) system that is used to convert 

the output/measured signal from the sensor system into the computer is via a user interface 

software that is programmed using the LabVIEW program, provided by MIMOS.  
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Table 2: Summary of Implementation of Supervised Learning Algorithms on Different 

Types of Gas Detection.  

Model Description References 

k-Nearest 

Neighbour 

(Knn) 

kNN is widely used in the classification of mixed gas and for gas 

discrimination systems. The kNN model is advantageous because 

it is comprehensible, insensitive to noise, low cost for retaining 

and good combination with other algorithms. However, this 

model is sensitive to sample distribution, it has a slow speed for 

recognition, high spatial complexity, heavy calculation burden 

and poor interpretability. 

[24] 

Support 

Vector 

Machines 

(SVM) 

SVM of classifiers can cope well with gas sensor drift and 

perform better than the baseline competing methods on the 

extensive dataset. However, the SVM model requires a long 

learning time and poor application for larger data. Choice of 

kernel function is important as it is the key for feature space in 

SVM.  

[10],[24] 

Artificial 

Neural 

Network 

(ANN) 

ANN is the frequently used method in predicting and analysing 

complex gas (Hashoul & Haick, 2019). It has good learning 

ability, good parallel processing capability and detecting 

compatibility error. However, this model has poor 

interpretability for output, long time learning and is easy to 

overfit. Therefore, weight, activation function and the number of 

hidden layers are important to develop an ANN algorithm in 

performing the classification of targeted output. 

[24],[25] 

Random 

Forest (RF) 

RF model is used in a lot of feature datasets as it can prevent 

overfitting from a decision tree algorithm. In the Random Forest 

algorithm, the number of trees affected the accuracy of the 

model, as each tree has a classification result and the final result 

is based on the majority decision trees vote  

[26], [36] 

Logistic 

Regression 

LR is a classification algorithm that calculates linear output and 

statistical function through the regression output. Logistic 

regression can perform multiclass classification problems by 

using one-vs-rest or one-vs-one wrapper models. The algorithm 

can be applied to a non-linear classification problem with a 

proper feature selection. LR model can produce high accuracy as 

it is a good signal to noise ratio. 

[27] 

4. EXPERIMENTAL SETUP  

As illustrated in Fig 1, the gas sensing system for this study comprises a gas supply system, 

a sensor chamber, a temperature and humidity controller module, and data collection system 

[28]. 

Fig 2 showed the DAQ board of the LabVIEW that contain all the controller variables for 

the test measurement such as flow of the CDA, flow of the VOC gas, input current, input 

voltage, temperature inside the chamber, temperature of the sensor's heater, relative humidity, 

and system ramp rate. Then, the sensor was tested individually with the targeted VOC gas and 

the sensor’s responses were recorded to study performance of the individual sensor. 
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Fig. 1. Schematic Diagram of the Experimental Setup for Gas Detection System. 

 

Fig. 2. Manual control of LabVIEW Gas System. 

4.1. VOC Sensor 

The gas sensor used in this study is called a VOC sensor, which is prepared, fabricated and 

functionalised by the engineering team at MIMOS Bhd. Reduced Graphene Oxide (rGO) as a 

sensing membrane was deposited on the Platinum-titanium interdigitated electrode (Pt/Ti IDE) 

on a silicon and silicon dioxide (Si/SiO2) substrate. The rGO was functionalised with 

nanoparticles such as; gold (Au), silver (Ag) and platinum (Pt) and plasma treatment such as; 

hydrogen (H2) and Octafluorocyclobutane (C4F8). 

The sensor was fabricated using a standard semiconductor process using Chemical Vapor 

Deposition (CVD) by a standard lithography process for the functionalisation with different 

recipes. The rGO was functionalised with nanoparticles at a different duration of sputtering 

and Relative Frequency (RF) power, while functionalisation with plasma treatment at a variety 

of plasma power and temperature. Therefore, there are 21 individual VOC gas sensors used in 

this study and the details are according to Table 3. Next, the pre-processed signal proceeded 

with a feature extraction method to extract pertinent information to be input for supervised 

machine learning at classifying the gas components into targeted gas output. The features were 
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decided to extract from the original gas response involving measured resistance in the absence 

and presence of the VOC gas.  

Table 3: List of Functionalisation and Recipe of VOC Sensors 

Sample no. Nanoparticles Power [WRF] Time [sec] Remarks 

1 Reference rGO film Bare Rgo 

2 Au 30 15 rGO/Au (30W 15s) 

3 Au 30 75 rGO/Au (30W 75s) 

4 Au 70 15 rGO/Au (70W 15s) 

5 Au 70 75 rGO/Au (70W 75s) 

6 Pt 30 15 rGO/Pt (30W 15s) 

7 Pt 30 75 rGO/Pt (30W 75s) 

8 Pt 70 15 rGO/Pt (70W 15s) 

9 Pt 70 75 rGO/Pt (70W 75s) 

10 Ag 30 15 rGO/Ag (30W 15s) 

11 Ag 30 75 rGO/Ag (30W 75s) 

12 Ag 70 15 rGO/Ag (70W 15s) 

13 Ag 70 75 rGO/Ag (70W 75s) 

Sample no. Plasma 

Treatment 

Power (WRF) Temperature (℃) Remarks 

14 H2 - RT rGO/H2  RT ℃ 

15 H2 - 200 rGO/H2 200 ℃ 

16 H2 - 400 rGO/H2 400 ℃ 

17 H2 - 700 rGO/H2 700 ℃ 

18 C4F8 150 - rGO/C4F8 150 ℃ 

19 C4F8 200 - rGO/C4F8  200 ℃ 

20 C4F8 250 - rGO/C4F8 250 ℃ 

21 C4F8 300 - rGO/C4F8 300 ℃ 

4.2. Data Collection  

The sensors were tested individually with each of the selected VOC gas. The sensor was 

placed in a chamber with 30℃ of temperature and presence of 40% relative humidity (RH). 

The voltage and current input were set at 1V and 1.2A respectively. CDA was maintained at 1 

L/min for 5 minutes to stabilize the baseline reading. Then, the VOC gas was purged into the 

chamber with a gradual increase of concentrations, from 1 to 6 ppm in 12 minutes (2 minutes 

for each concentration). The sensor responses were analysed from the resistance changes of 

individual sensors that undergo the VOC test.  

5. DATA PRE-PROCESSING AND FEATURE EXTRACTION  

In this phase, the analytes of the VOC gas were reacting with the sensing element, thus 

leading to a change in resistance. The sensor response was determined by analysing the 

measured resistance as a signal output from each sensor. However, the parameter setup was 

not in optimal condition and the output signal contained unexpected noise from the SMU 

system. A typical sensor response could not be seen clearly from the graph of resistance versus 

time. 

As a result, the signal was pre-processed by applying filter and smoothing methods to 

denoising the signal and reduce the influence of random variation caused by instrumental 

conditions and atmospheric effects [29]. The data was filtered using a moving average (MA 
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length = 3) and smoothed with Minitab software using a single exponential method with a 

constant = 0.02 value. The sensor response was determined by using the formula [30][31]:  

∆𝑅 = 𝑅𝑔 −  𝑅𝑎 (3) 

𝑆 =  
∆𝑅

𝑅𝑎
=  

𝑅𝑔− 𝑅𝑎

𝑅𝑎
 × 100(%) (4) 

Where, 

𝑅𝑎 = resistance in clean dry air, without VOC gas 

𝑅𝑔 = resistance with the exposure of VOC gas 

Next, the pre-processed signal proceeded with a feature extraction method to extract 

pertinent information as input for supervised machine learning at classifying the gas 

components into targeted gas output. The features were decided to extract from the original gas 

response involving measured resistance in the absence and presence of the VOC gas. The 10 

selected features as listed in Table 4. 

Table 4: List of Features and Formula for the 10 Selected Features 

No. Feature Formula 

1 Rgas Resistance at steady-state phase 

2 R0 Baseline resistance 

3 Sensor Response, S ∆𝑅 =  𝑅𝑔𝑎𝑠 − 𝑅𝑎𝑖𝑟

𝑅𝑎𝑖𝑟

 

4 Difference, ∆𝑅 ∆𝑅 =  𝑅𝑔𝑎𝑠 − 𝑅𝑎𝑖𝑟  

5 Relative difference 𝑅𝑔𝑎𝑠

𝑅𝑎𝑖𝑟

 

6 Log relative resistance value 𝑙𝑜𝑔(
𝑅𝑔𝑎𝑠

𝑅𝑎𝑖𝑟
) 

 

7 Normalisation 
|
𝑅𝑔𝑎𝑠 − 𝑅𝑎𝑖𝑟

𝑅𝑎𝑖𝑟

| 

8 G Rgas 1

𝑅𝑔𝑎𝑠

 

9 G R0 1

𝑅𝑎𝑖𝑟

 

10 Conductance difference 𝐺𝑔𝑎𝑠 - 𝐺𝑎𝑖𝑟  

The VOC dataset comprises ten feature extraction values and is organised into three 

categories. In summary, there are 918 total samples, with 252, 324, and 342 each for acetone, 

toluene, and isoprene gas, respectively. 

6. SUPERVISED LEARNING FOR VOC GAS CLASSIFICATION  

Five supervised learning models including k-Nearest Neighbour (kNN), Random Forest 

(RF), Logistic Regression (LR), Support Vector Machines (SVM) and Artificial Neural 

Networks (ANN) were benchmarked for the VOC gas classification. The model was 

implemented using the Python and Scikit-learn library. Each model's parameter settings are 

described in Table 5.  

To avoid bias in the analysis, the dataset was first standardised in the range 0 to 1 to 

uniform the values with different scales by using the min-max normalisation technique [32]. 
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Following that, the dataset was divided into 70% for the training set and 30% for the testing 

set. The performances of each model are then evaluated from confusion matrix-based measures 

in terms of accuracy, precision and using k-fold cross-validation technique, where k =10. K-

fold Cross Validation is a cross validation technique used to evaluate the performance of a 

machine learning model by the resampling procedure. The training of the models proceeds 

using the k-1 parts and validation or testing errors from the remaining part [33]. 

Table 5: Parameter Setting of the Approached Supervised Machine Learning 

Model Parameter 

K-nearest Neighbour The K-value is decided as one, (k=1) and distance between two points is 

calculated by applying the distance metric formula (2), (mentioned in chapter 

2), with p = 2, to manipulate the generalised distance to Euclidean Distance. 

Random Forest Grid search for the setting parameter, with n-estimator:100. 

Artificial Neural 

Network 

 

A shallow Neural Network was implemented, with a standard three-layer 

feed-forward network. For the hidden layer, the size was set up to 50 and 

used the ReLU activation function. While Softmax activation function for 

output layer with learning rate 0.001 and 50 epochs.  

Support Vector Machine 

(RBF kernel) 

 

Radial basis function  (RBF) was selected as a kernel function for this SVM 

model, as defined in equation (6) (in Chapter 2)  

The kernel function, σ and regularisation, C used GridSearchCV from sci-

kit- learn library to perform grid search for parameter setting.  

Logistic Regression The model used ‘l2’ for regularisation (penalty) and solver ‘lbfgs’.  

7. RESULT 

Figures 3 a) to e) showed the results of the confusion matrices for each proposed 

supervised learning method. Meanwhile, Table 6 below showed the accuracies from the 10-

fold cross validation from each model. 

The diagonal values in the confusion matrix denoted the accuracy values of the gas 

classification to the targeted output [34]. Figure 3 shows that the kNN and RF models 

performed well in classifying each of the targeted VOCs. The kNN model correctly predicted 

all three gases with greater than 80% accuracy, while the Random Forest model predicted them 

with greater than 70% accuracy. On the other hand, Logistic Regression, Support Vector 

Machine (kernel = RBF) and Artificial Neural Network performed poor classification on the 3 

VOCs gases. The SVM and ANN models misclassified the gas more to isoprene gas while LR 

model misclassified the toluene and isoprene gas. 

It is noticeable in Table 6, the RF model showed the highest mean accuracy with 0.813 

±0.035, followed by the kNN model with 0.803 ±0.033. RF model are known to have 

advantages in the process of random sampling which can ensure randomness and avoid 

overfitting. Besides, this model is also robust to noise [5] and it is good at handling missing 

data and imbalance classes [4]. 

Whereas, the kNN model has limitations in understanding the relationship between the 

features and the class (output) thus easily producing the wrong classification for a multiclass 

problem [4]. Therefore, the highest accuracy achieved by kNN in this study showed that the 

features were related well to the output class. 
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a)  

 

b)  

 

c) 

 

d) 

 

e) 

 

 

Fig. 3. Comparison of Normalised Confusion Matrix of a) kNN, b) RF, c) LR, d) SVM 

(kernel= RBF) and e) ANN. 

However, the ANN, LR and SVM (Polynomial kernel) models had poor performance 

compared with the RF and kNN model with accuracies of 0.447 ± 0.035, 0.403 ± 0.041 and 

0.419 ± 0.035 respectively. Meanwhile, the SVM model with Grid search parameters showed 
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high accuracy by using a Polynomial kernel at degree = 3, compared with other kernels such 

as Linear and RBF. 

Table 6: Model Performance based on 10-Fold Cross-Validation Technique. 

Model 
10-Fold Cross-Validation (Mean 

Accuracy ± Standard Deviation) 

Random Forest 0.813 ± 0.035 

K-Nearest Neighbors 0.803 ± 0.033 

Logistic Regression 0.403 ± 0.041 

Support Vector Machine 

(Kernel = Polynomial) 
0.419 ± 0.035 

Support Vector Machine 

(Kernel = Linear) 
0.401 ± 0.039 

Support Vector Machine 

(Kernel = RBF) 
0. 408 ± 0.055 

Artificial Neural 

Network 
0.447 ± 0.035 

The poor performance from the ANN, LR and SVM (Polynomial kernel) models might be 

due to their weakness, in which they are very prone to overfitting training data [33] and they 

required testing with various kernels and model parameters [4]. The ANN model also is a 

learning-based algorithm and is more complex in architecture. Thus, it has more 

hyperparameters required to be tuned [33] and it needs enough samples for training. 

Other than that, the ROC curve and AUC value are another way of visualising the output 

performances from the computed confusion matrix. Evaluation of the Receiver Operating 

Characteristics (ROC) and Area Under Curve (AUC) was done to analyse the performance of 

the classifiers. The highest value of the AUC showed good value prediction of the model to 

assign a larger probability to a random positive example than a random negative example [35]. 

The AUC value should be between 0.5 and 1.0. The ROC curves for each classifier are 

illustrated in Figure 4. As the minimum is 0.541, it can be said that the SVM classifier does not 

predict our dataset very well and could not differentiate the classes, while the highest value of 

AUC goes to the KNN classifier which is equal to 0.886 and 0.885 for the RF model. As a 

result, in this research, the kNN and RF are two models that can deal with the selected features 

in the VOC dataset as they obtained the highest accuracy for the gas classification.  

 

Fig. 4. ROC Curve of the 5 Supervised Learning Model 
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8. CONCLUSION  

The gas sensor data was collected at a preliminary stage and has been used for the machine 

learning part, which involved pre-processing, feature extraction and classification algorithm. 

Each sensor was performing well at low operating temperatures and in the presence of 

humidity. The sensors response on different targeted VOC gas from 1 to 6 ppm were collected. 

Then, feature extracted were performed on the resistance-based data. 

Then, feature extracted were performed on the resistance-based data. Ten featured were 

proposed as inputs to five supervised learning algorithms to accurately recognise and classify 

the selected VOC gas based on the labelled output. The confusion matrix and 10-Fold Cross 

Validation were used to evaluate each model's performance. As a result, the RF and kNN 

models have higher accuracy with 0.813 ± 0.035and 0.803 ± 0.033, compared with LR, SVM 

and ANN with the accuracy of 0.447 ± 0.035, 0.403 ± 0.041 and 0.419 ± 0.035 respectively. 

The two highest accuracies achieved by RF and kNN models demonstrated that they 

distinguished the gas well from the VOC dataset. 

Despite the gas sensor's shortcomings, such as low sensitivity, selectivity, and noise in the 

sensor signal output, the findings of this study can be utilised as a guide for selecting the 

optimum algorithm for dealing with a gas sensor array. The performance of the kNN and RF 

models is the Proof of Concept that the algorithm can perform gas classification tasks from the 

simplest feature selected from the steady-state phase. The feature extraction approach, on the 

other hand, can be discovered more from the raw signal to build a dataset with more significant 

features and relevant information to improve the algorithm's performance.  
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