
IIUM Engineering Journal, Vol. 26, No. 1, 2025 Basir et al. 
https://doi.org/10.31436/iiumej.v26i1.2818 

 AUTOENCODER ARTIFICIAL NEURAL NETWORK 

MODEL FOR AIR POLLUTION INDEX PREDICTION 

NOR IRWIN BASIR1, KATHLYN KAIYUN TAN1, DANNY HARTANTO DJARUM1, 

ZAINAL AHMAD1*, DAI-VIET N. VO1, JIE ZHANG2 

1School of Chemical Engineering, Universiti Sains Malaysia, 

Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia 

2School of Engineering, Merz Court, Newcastle University, 

Newcastle upon Tyne NE1 7RU, United Kingdom 

*Corresponding author: chzahmad@usm.my

(Received: 3 April 2024; Accepted: 4 September 2024; Published online: 10 January 2025) 

ABSTRACT: Air pollution, a significant global challenge driven by industrialization, 

urbanization, and population growth, is caused by the emission of harmful gases, particulates, 

and biological molecules into the atmosphere, posing serious risks to health and the 

environment. Key sources include power plants, industrial activities, vehicles, and residential 

heating. Thus, effective air quality monitoring and forecasting are crucial to mitigating the 

adverse impacts of pollution. This paper presents shallow and deep sparse autoencoder 

artificial neural network models to improve the prediction of the Air Pollution Index (API) in 

Perak Darul Ridzuan, Malaysia, as a case study. The results show that the deep sparse 

autoencoder achieves better prediction accuracy with 𝑴𝑺𝑬 and 𝑹𝟐 values of 0.1474 and

0.8331, respectively, compared to 0.1515 and 0.8300 for the shallow sparse autoencoder. The 

performance of these autoencoder models is also compared with other models, such as 

feedforward artificial neural networks (FANN) and principal component analysis (PCA). The 

findings confirm that both autoencoder models enhance API prediction accuracy, with the 

deep sparse autoencoder emerging as the optimal model, highlighting the potential of deep 

learning in improving air quality prediction. 

ABSTRAK: Pencemaran udara, merupakan satu cabaran global yang didorong oleh 

perindustrian, urbanisasi pesat, dan pertumbuhan populasi, adalah disebabkan oleh pelepasan 

gas, partikel, dan molekul biologi merbahaya ke atmosfera, menimbulkan risiko serius kepada 

kesihatan dan alam sekitar. Sumber utama termasuk loji janakuasa, aktiviti industri, 

kenderaan, dan pemanasan kediaman. Oleh itu pemantauan dan ramalan kualiti udara penting 

bagi mengurangkan kesan buruk pencemaran. Kajian ini membentangkan model rangkaian 

neural tiruan pengauto kod jarang ‘cetek’ dan pengauto kod jarang ‘dalam’ memperbaiki 

ramalan Indeks Pencemaran Udara (API) di negeri Perak Darul Ridzuan, Malaysia sebagai 

kes kajian. Dapatan kajian menunjukkan bahawa pengautokod jarang ‘dalam’ mencapai 

ketepatan ramalan lebih baik, dengan nilai MSE dan R2 masing-masing sebanyak 0.1474 dan 

0.8331, berbanding 0.1515 dan 0.8300 bagi pengautokod jarang ‘cetek’. Prestasi model 

pengautokod ini juga dibandingkan dengan model lain, seperti rangkaian neural tiruan suapan 

hadapan (FANN) dan analisis komponen utama (PCA). Hasil kajian mengesahkan bahawa 

kedua-dua model pengautokod meningkatkan ketepatan ramalan API, dengan pengautokod 

jarang ‘dalam’ muncul sebagai model paling optimum, menonjolkan potensi pembelajaran 

mendalam ‘dalam’ meningkatkan ramalan kualiti udara. 

KEYWORDS:  Air pollution index, Shallow sparse autoencoder, Deep sparse autoencoder, 

Prediction. 
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1. INTRODUCTION 

Research on environmental quality assessment and prediction-related fields can be 

generally categorized into two main groups: deterministic methods and statistical methods [1]. 

Deterministic methods incorporate statistical methods and meteorological theoretical 

principles in representing the processes of diffusion, dispersion, elimination, emanation, and 

transformation of air pollutants fundamentally based on atmospheric physical and chemical 

reactions. This method is considered model-based since its architecture is predefined with 

theoretical assumptions; the output/target data can be calculated with precise knowledge of the 

model parameters prior. On the other hand, statistical methods utilize statistic-based 

techniques, such as autoregressive moving average (ARMA) [2], multiple linear regression 

(MLR) [3], support vector regression (SVR) [4] and artificial neural network (ANN), in 

predicting or forecasting air quality instead of employing complex theoretical techniques. 

Artificial neural network (ANN) is a topic of great interest in the research world in its 

development to be used in air quality model prediction due to its ability and capability to handle 

a high dimensionality of real data and its self-adaptivity in performing dimensionality 

reduction, features representation, and relationship learning between the input data and the 

output/target data. In a typical ANN, the raw input data is remodeled into new interpretable 

data with smaller dimensions; thus, this process is called ‘dimensionality reduction.’ This 

process is essential to preserve significant information of the input data (features extraction) 

for further analysis of the data, whereby in this paper, it is for Air Pollution Index (API) 

prediction purposes. Air pollution is detrimental to health. It is caused by industrialization, 

rapid urbanization, and population growth. It is a common problem faced on a worldwide scale. 

In particular, power plant energy production, industrial processes, fuel-burning vehicles, 

residential heating, and natural catastrophes are the usual causes of the problem. The effects of 

air pollution can be generally categorized into two groups: short-term consequences and long-

term consequences. Among the short-term consequences, human health-related effects are the 

utmost significant concerns, specifically at the metropolises; on the other hand, the long-term 

consequences encompass global climate-related effects such as the greenhouse effect and 

global warming. In conjunction with the escalation of air pollution issues, enhanced public 

awareness concerning air quality has resulted in both developed and developing countries.  

The air quality monitoring and forecasting tools are indeed essential so that precautionary 

measures can be taken by minimizing the potential negative effects of predicted pollution peaks 

on the surrounding ecosystem and habitat. In general, the monitoring of the air quality is 

conducted in a manual manner continuously to detect the ambient air quality variations that 

may pose adverse effects to human health and the environment. The Department of 

Environment (DOE), Malaysia, carries out ambient air quality monitoring through a network 

that consists of 51 monitoring stations. All the aforementioned stations are situated strategically 

in residential, industrial, and heavy-traffic areas for air pollution control purposes. The Air 

Pollution Index (API) is used to describe and report the ambient air quality in Malaysia instead 

of utilizing the actual air pollutant concentration due to the simplicity in terms of presentation 

of the former. API not only reflects the intensity of the air pollution effects on human health, 

which ranges from hazardous to good, but also can be categorized in terms of the action criteria 

in accordance with the National Haze Action Plan. In this paper, sparse autoencoder ANN with 

both shallow and deep architecture models are proposed to improve API prediction 

performance. In this study, both proposed types of architecture are modeled using the same 

training data. 

An autoencoder has various applications in various disciplines, as validated and proven by 

other researchers. An autoencoder (formerly known as an auto-associator) functions as a robust 
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device with self-supervised learning [5]. It aims to transform input data to output data with a 

minimum degree of distortion. It is trained autoassociatively using its three main components 

(see Figure 1), i.e., encoder, bottleneck, and decoder [6, 7]. It learns to encode and compress 

the input into a latent space representation, which preserves significant information of the input 

to be stored in the bottleneck layer with smaller dimensions as features. It then learns to decode 

and reconstruct the input information at the output layer. Backpropagation is employed in the 

learning algorithm of an autoencoder [8, 9]. The autoencoder learning algorithm is able to 

generate a significant range of behaviors that are psychologically related, such as distortion, 

generalization, inferencing, recalling, and recognition [10]. A shallow autoencoder that 

employs a linear activation function is equivalent to a principal component analysis (PCA) 

model [11]. One of the significant differences between the two models is that an autoencoder 

is capable of learning both linear and nonlinear feature representation, while a traditional PCA 

model is capable of learning linear feature representation only. Thus, an autoencoder has 

become one of the highly considered artificial neural network models in constructing a 

statistical model based on a set of training data. 

 

Figure 1. A typical autoencoder ANN architecture 

Due to the high dimensionality of real data, a deep architecture approach is often employed 

in developing an autoencoder from a shallow autoencoder into a deep autoencoder. An 

autoencoder with one hidden layer of bottleneck is known as a shallow autoencoder. A deep 

autoencoder is technically an extension of a shallow autoencoder with more than a single 

hidden layer. Figure 1 illustrates a deep autoencoder with three hidden layers: one bottleneck 

hidden layer and one hidden layer each in its encoder and decoder. The additional hidden layers 

in the architecture of a deep autoencoder allow the ANN to learn the underlying features of the 

input data with higher complexity. The first hidden layer may learn the first-order features, 

while the second hidden layer may learn the second-order features. A deep autoencoder with a 

hierarchy of hidden layers tends to learn higher-order features and capture unknown data 

structures but takes longer training time. 

Research on the application of autoencoders for prediction via relationship learning 

between the input data and the output/target data has been proven to be valid and successful by 

other researchers in a wide range of disciplines. It has been proposed for use as a structural 

condition monitoring tool [12]. The relationship between the modal information, such as mode 

shapes and frequencies, and the structural stiffness parameters is significant for structural 

damage detection in order to assess the safety conditions of a civil infrastructure under certain 

operating conditions. Excellent structural stiffness prediction was achieved using the 

autoencoder via a nonlinear dimensionality reduction of the modal information (input data) 

features followed by a nonlinear regression against the structural stiffness parameters for 

relationship learning purposes between the input modal information (concatenated feature 
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vector) and the output structural stiffness parameters. A similar approach was taken by 

proposing an autoencoder for use in the estimation of sea state bias (SSB) according to radar 

altimeter data [13]. SSB is defined as an altimeter-ranging error due to the presence of ocean 

waves on the surface of the sea. Relationship learning has been carried out between the input 

data (automatic gain control, backscatter coefficient, sea surface height, significant wave 

height, and wind speed) and the output data (SSB) using an autoencoder. It is presented that 

the proposed autoencoder model yields both higher prediction accuracy and operational 

efficiency compared to the conventional parametric model and nonparametric model. 

Apart from that, the application of autoencoders for prediction through relationship 

learning in the climate-related discipline, which is closely related to our target model, has also 

been proven to be valid for weather forecasting [14]. Being inspired by successful applications 

of autoencoder for prediction purposes, it is, thus, believed that autoencoder ANN is able to 

solve practical nonlinear environmental modelling problems, improving API prediction 

performance with proper tuning and optimization as proposed in this paper. In recent years, 

research on air pollution modeling has been conducted with significant efforts. There are 

several types of ANN being applied in the development of air quality prediction models, such 

as feedforward artificial neural network (FANN) [15, 16], combined all multiple neural 

network (MNN), forward selection (FS) aggregated multiple neural network (MNN) and 

backward elimination (BE) aggregated multiple neural network (MNN) [16], and principal 

component analysis – feedforward artificial neural network (PCA-FANN) [17]. These ANN 

models, which have been trained, might sometimes fail to predict the target data with 

significant accuracy when being applied to test/unseen data due to the learning models 

converging to non-desirable local minima and/or overfitting of the noise present in the training 

data [18]. Thus, in this paper, an autoencoder with proper tuning and optimization is proposed 

for modeling an API predictor based on real data with the fundamental objective of enhancing 

the prediction accuracy and reliability of the air quality prediction model.  

This study is significant and beneficial as it enhances air quality forecasting by introducing 

a more precise and dependable model. It can guide individuals, communities, or relevant 

entities interested in air quality control and forecasting. The search for enhanced prediction 

accuracy can aid in more effective planning and decision-making related to air quality 

management. This research can be a noteworthy contribution to the existing knowledge in the 

field of air quality forecasting using artificial intelligence methodologies. 

This paper is organized as follows: the Materials and Methods section describes the case 

study, including the air quality data sampling location in Malaysia and the proposed shallow, 

sparse autoencoder and deep sparse autoencoder with the predictor. The Results and 

Discussions section presents the proposed autoencoder's results and discussions, and the last 

section concludes this paper. 

2. MATERIALS AND METHODS 

Please refer to Figure 2 for a detailed flowchart illustrating the various stages of the 

research process, from problem identification to conclusion. Each stage provides a 

comprehensive overview of the methodology employed in this study. As an overview, the 

research process starts with identifying the air pollution problem and understanding the need 

for accurate prediction models. Relevant air quality data is collected and prepared for modeling. 

The proposed artificial neural network models are then developed, trained, and tested to 

enhance prediction performance. The models are evaluated using specific metrics, and the 

results are analyzed to validate their effectiveness. The research concludes by summarizing the 
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findings and suggesting future work. This process ensures a thorough and significant 

contribution to air quality prediction. 

 

 

Figure 2. Overall Process Flow Diagram of the Research Processes 

 

2.1. Case Study: Perak Darul Ridzuan State Air Monitoring Station, Malaysia 

Most air quality data was acquired directly from the air quality monitoring stations or via 

the remote sensing instruments. In this study, the air quality data was collected by the 

Department of Environment (DOE), Malaysia, from 4 monitoring stations around Perak that 

are situated at CA0020, CA0041, CA0045, and CA0046, as shown in Figure 3 and described 

in Table 1. Reference [19] stated that the continuous air quality monitoring (CAQM) stations 

are strategically located in residential, industrial, and traffic areas to detect any significant 

changes in the air quality that may threaten the surrounding ecosystem and habitat. 

In this study, the air quality data comprises data recorded for 5 years (from the 1st of 

January 2006 till the 31st of December 2010) with 8 input variables and 1 output/target 

variable. For API prediction modeling, the input variables involved include meteorological 

variables (air temperature, relative humidity, and wind speed) and air pollutants (carbon 

monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter PM10 and sulfur dioxide 

SO2) concentration variables. In contrast, the output/target variable is API. 

Table 1. Locations of Perak air monitoring stations [19] 

Station ID Air Monitoring Station Alternate Name Latitude (N) Longitude (E) 

CA0020 Sekolah Kebangsaan Ayer Puteh Taiping 4°89.881 100°67.912 

CA0041 Pejabat Daerah Manjung Manjung 4°12.020 100°39.800 

CA0045 Universiti Pendidikan Sultan Idris Tanjung Malim 3°68.758 101°52.438 

CA0046 Sekolah Menengah Pegoh Ipoh 4°55.330 101°08.017 

Table 2. Input and output/target variables for API prediction modeling. 

Input Variables Output/Target Variable 

Wind Speed (km/hr) 

API 

Air Temperature (°C) 

Relative Humidity (%) 

O3 concentration (mg/L) 

CO concentration (mg/L) 

PM10 concentration (µg/m3) 

Problem 
Identification

Data Collection Data Preprocessing
Model 

Development

Model Training and 
Testing

Model Evaluation Result Analysis Conclusion
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Figure 3. Perak air monitoring stations 

As the SO2 and NO2 concentrations displayed infinitesimal change throughout the 5 years, 

the involvement of both variables in API prediction modeling would yield a negligible effect 

on the proposed model performance. Thus, to increase the efficiency and effectiveness of the 

proposed model and develop a parsimonious model (a model that depends on a few input 

variables as necessary), the number of predictor input variables is reduced without losing 

important information. In this study, only 6 input variables were selected for the API prediction 

modeling, as summarized in Table 2. In this study, a total of 1826 samples are used for 

modeling and analysis, while the missing data is denoted as Not a Number (NaN). 

2.2. Sparse Autoencoder Artificial Neural Network (ANN) with Predictor Model 

Development 

In this case study, 1826 sampling instances were obtained from the DOE, Malaysia 

database from the 1st of January 2006 to the 31st of December 2010. MATLAB® was used 

for the API prediction modeling. All data was normalized on the same scale to zero mean (µ ≈ 

0) and unit standard deviation (σ ≈ 1) to cope with the difference in magnitude across the 

variables, introducing a common ground for the equal treatment of the features extracted after 

this during the ANN learning process. The time series data was transposed from a matrix of 

1826 samples × 7 elements into a matrix form where the proposed and developed ANN model 

can process 7 elements × 1826 samples; it is noted that the first 6 elements represent the 6 input 

variables, respectively while the 7th element represents the output/target variable. Then, the 

scaled data was divided randomly into 2 sets of data: 85 % for training (1552 samples) and the 

remaining 15 % for testing (274 samples). Static time series data was applied in the API 

prediction modeling where the output/target data was a function of the input data, as shown in 

Eq. (1): 

 𝑦𝑖(𝑡) = 𝑓(𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), ⋯ , 𝑥𝑖𝑛(𝑡))  (1) 

where 𝑦𝑖(𝑡) is the output/target data 𝑦 (API) at time 𝑡 in 𝑖th sample, 𝑥𝑖(𝑡) is the input data 𝑥 at 

time 𝑡 in 𝑖th sample where the subscripts 1 and 2 denote the first and second input variables, 
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respectively, and 𝑛 represents the total number of model input variables. In this case study, the 

model input variables consist of air temperature, relative humidity, wind speed, CO 

concentration, O3 concentration, and PM10 concentration, making up a total number of 6 (𝑛 = 

6). 

2.3. Sparse Autoencoder Artificial Neural Network (ANN) 

As mentioned in Section 1, an autoencoder is a type of ANN that encodes and compresses 

the input into its latent space representation for reconstruction and decodes the input 

information as the output [20]. The most important part of the learning process is to preserve 

the important information from the input. In this study, a sparse autoencoder with 2 

architectural models is proposed to extract significant features of the input data, which contains 

the data from the 6 input variables as mentioned in Table 2. 

2.4. Shallow Sparse Autoencoder Artificial Neural Network (ANN) 

A shallow autoencoder is an autoencoder with a single input layer, a single hidden layer 

(bottleneck), and a single output layer. The proposed shallow autoencoder architecture in this 

study is shown in Figure 4. 

 

Figure 4. Shallow autoencoder architecture 

An autoencoder is an ANN that implements 2 major transformations; the encoder 

transforms 𝑑 dimensional input into 𝑟 dimensional latent representation (𝑒𝑛𝑐𝑜𝑑𝑒(𝑥): 𝑅𝑑 →
𝑅𝑟) and the decoder transforms r dimensional latent representation back into d dimensional 

reconstructed input (𝑑𝑒𝑐𝑜𝑑𝑒(ℎ): 𝑅𝑟 → 𝑅𝑑). A set of training samples is given as 
{𝑥1, 𝑥2, ⋯ , 𝑥𝑚} where, in this case, 𝑥  is the input data sample whereby each sample contains 

6 input variable data, the subscripts 1 and 2 denote the first and second training input samples, 

respectively, and m represents the total number of model training input samples, whereby in 

this case 𝑚 = 1552, such that 𝑥𝑖 ∈ 𝑅𝑑 where the subscript 𝑖 = 1, 2, ⋯ , 𝑚. Firstly, in general, 

an autoencoder encodes and compresses the input vector 𝑥 into the hidden layer as the 

representation ℎ whose computational function is expressed as Equation 2; then, the 

representation ℎ is decoded back to the 𝑥 dimension as reconstruction 𝑧 whose computational 

function is described in Equation 3 as follows; 

 ℎ = 𝑒𝑛𝑐𝑜𝑑𝑒(𝑥) = Փ(𝑊1𝑥 + 𝑏) (2) 

 𝑧 = 𝑑𝑒𝑐𝑜𝑑𝑒(ℎ) = Փ(𝑊2ℎ + 𝑐) (3) 

where 𝑊1 is the weight matrix for the optimization process, 𝑏 is the encoding bias vector, 𝑊2 

is the weight matrix for the decoding process, 𝑐 is the decoding bias vector, and Փ is the 

activation/transfer function. In this study, Փ was set to be a logistic sigmoid function, as shown 

in Eq. (4), for both encode (𝑥) and decode (ℎ) to allow the developed autoencoder to learn 

nonlinear feature representation. 
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 Փ(𝑥) =
1

1+𝑒−𝑥
 (4) 

An autoencoder is trained by minimizing the reconstruction error, which is the difference 

between the original and reconstruction outputs. The autoencoder model parameters of 𝑊1, 𝑏, 

𝑊2 and 𝑐 are optimized to minimize the average reconstruction error whose computational 

equation is shown in Eq. (5), where the loss function 𝐿(𝑥𝑖𝑗 , 𝑧𝑖𝑗) The traditional squared error 

function, shown in Eq. (6), was employed in this study. For optimization purposes, the scaled 

conjugate gradient descent algorithm was employed to train the autoencoder. 

 [𝑊1
∗, 𝑏∗, 𝑊2

∗, 𝑐∗] = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑊1,𝑏,𝑊2,𝑐  
1

𝑚
∑ ∑ 𝐿(𝑥𝑖𝑗 , 𝑧𝑖𝑗)𝑛

𝑗=1
𝑚
𝑖=1  (5) 

 𝐿(𝑥𝑖𝑗 , 𝑧𝑖𝑗) = (𝑥𝑖𝑗 − 𝑧𝑖𝑗)2 (6) 

An ideal autoencoder balances two main reconstruction criteria: sensitive enough to 

capture significant features of the input to reconstruct the encoded data as the output with high 

accuracy and minimum distortion and insensitive enough to prevent memorizing and 

overfitting of the noise present in the training data [21]. Thus, to force the autoencoder to 

preserve only the important and useful variations present in the input essential for 

reconstruction without holding onto the redundancies present in the input, the sparsity 

constraint method was applied, transforming the autoencoder model into a sparse autoencoder 

model [22]. In order to obtain sparse representation, Eq. (5) was optimized and modified by 

embedding a sparsity constraint into it, as expressed in Eq. (7). 

 [𝑊1
∗, 𝑏∗, 𝑊2

∗, 𝑐∗] = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑊1,𝑏,𝑊2,𝑐 [
1

𝑚
∑ ∑ (𝑥𝑖𝑗 − 𝑧𝑖𝑗)2𝑛

𝑗=1
𝑚
𝑖=1 + (𝛼 × 𝛺𝑤𝑒𝑖𝑔ℎ𝑡𝑠) +

(𝛽 × 𝛺𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦)]   (7) 

 𝛺𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =
1

2
∑ ∑ ∑ (𝑊𝑖𝑗

(𝑘)
)

2
𝑛
𝑗=1

𝑚
𝑖=1

𝑝
𝑘=1  (8) 

 𝛺𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = ∑ 𝐾𝐿(𝜌 || 𝜌𝑙̂)
𝑟
𝑙=1  (9) 

 𝐾𝐿(𝜌 || 𝜌𝑙̂) = 𝜌 log (
𝜌

𝜌𝑙̂
) + (1 − 𝜌) log (

1−𝜌

1−𝜌𝑙̂
) (10) 

 𝜌𝑙̂ =
1

𝑚
∑ (ℎ𝑙 × 𝑥𝑖)𝑚

𝑖=1  (11) 

where 𝛼 is the coefficient for the 𝐿2 regularization term 𝛺𝑤𝑒𝑖𝑔ℎ𝑡𝑠 whose mathematical equation 

is expressed in Equation 8, 𝛽 is the coefficient for the sparsity regularization term 𝛺𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 

whose mathematical equation is expressed in Eq. (9), 𝑝 is the number of hidden layers, 𝑊 is 

the weight matrix, 𝑟 is the number of hidden units, 𝐾𝐿 is the Kullback-Leibler divergence 

between two Bernoulli random variables with the means equal to 𝜌 and 𝜌𝑙̂, respectively as 

defined in Eq. (10), 𝜌  is the desired sparsity parameter whose value defines the desired 

proportion of training samples a hidden unit reacts to, and 𝜌𝑙̂ is the average output activation 

value of the hidden unit l over the training data set, as expressed in Eq. (11). 

The sparsity enforce constraint, as expressed mathematically in Eq. (12), was applied. 

Typically, 𝜌 is a small value close to 0. In this case, with shallow architecture, 𝜌 was set to 

0.05 for the logistic sigmoid activation/transfer function. The setting enforces 𝜌𝑙̂ to be as close 

to 0.05 as possible, leading to the activation value of the hidden unit mostly nearing 0. 

Kullback-Leibler divergence was employed as it fastens the sparsity constraint during the 

coding process, penalizing 𝜌𝑙̂ from diverging away from 𝜌 significantly  𝐾𝐿(𝜌 || 𝜌𝑙̂) ≈ 0  if  

𝜌𝑙̂ ≈ 𝜌. 

 𝜌𝑙̂ ≈ 𝜌 (12) 
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The list of significant shallow, sparse autoencoder ANN training parameters for the API 

prediction model is shown in Table 3. The features captured in the bottleneck hidden layer of 

the proposed and developed shallow sparse autoencoder, which contains significant 

representative information of the input data, were then utilized for successive API prediction 

via the relationship learning process. 

Table 3. Shallow sparse autoencoder ANN training parameters for API prediction 

model 

Training Parameter Description/Value (MATLAB® Code) 

Number of hidden nodes (bottleneck hidden layer) 3 

Activation/Transfer function for encoder Logistic sigmoid (logsig) 

Activation/Transfer function for decoder Logistic sigmoid (logsig) 

Maximum number of training epochs/iterations 2000 

L2 weight regularizer coefficient, 𝜶 0.001 

Desired sparsity parameter, 𝝆 0.05 

Sparsity regularizer coefficient, 𝜷 1 

Training algorithm Scaled conjugate gradient descent (trainscg) 

2.5. Deep Sparse Autoencoder Artificial Neural Network (ANN) 

A deep autoencoder is technically the extension of a shallow autoencoder with a single 

input layer, more than one hidden layer, and a single output layer. The proposed deep 

autoencoder architecture in this study is shown in Figure 5. It is noted that Figure 5 depicts the 

encoding architecture of the proposed deep autoencoder but not the generic structure of the 

whole deep autoencoder architecture, which includes the decoding part. 

 

Figure 5. Deep autoencoder encoding architecture 

 

Figure 6. First shallow autoencoder architecture (encoding hidden layer of deep 

autoencoder) 

During the construction of the proposed deep autoencoder for this study, 2 shallow sparse 

autoencoder models were first developed, each using similar computational approaches and 

functions as described in Section 2.4. In order to train a deep autoencoder effectively, 

pretraining of one of the hidden layers at a time sequentially (layer-wise training) was 
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performed. The first shallow sparse autoencoder model architecture with the input data x as the 

model input is shown in Figure 6, and the second shallow sparse autoencoder model 

architecture with the features extracted from the first shallow sparse autoencoder h as the model 

input is shown in Figure 7. Then, these developed shallow sparse autoencoder models were 

stacked together to create a deep architecture, as illustrated in Figure 5, forming a deep sparse 

autoencoder.  

 

Figure 7. Second shallow autoencoder architecture (bottleneck hidden layer of deep 

autoencoder) 

Table 4. First and second shallow sparse autoencoder ANN training parameters for 

deep architectural model 

First shallow autoencoder (encoding hidden layer of deep autoencoder) 

Training Parameter Description/Value (MATLAB® Code) 

Number of hidden nodes (bottleneck hidden layer) 3 

Activation/Transfer function for encoder Logistic sigmoid (logsig) 

Activation/Transfer function for decoder Logistic sigmoid (logsig) 

Maximum number of training epochs/iterations 2000 

L2 weight regularizer coefficient, 𝜶 0.001 

Desired sparsity parameter, 𝝆 0.05 

Sparsity regularizer coefficient, 𝜷 1 

Training algorithm Scaled conjugate gradient descent (trainscg) 

Second shallow autoencoder (bottleneck hidden layer of deep autoencoder) 

Training Parameter Description/Value (MATLAB® Code) 

Number of hidden nodes (bottleneck hidden layer) 2 

Activation/Transfer function for encoder Logistic sigmoid (logsig) 

Activation/Transfer function for decoder Logistic sigmoid (logsig) 

Maximum number of training epochs/iterations 1000 

L2 weight regularizer coefficient, 𝜶 0.00001 

Desired sparsity parameter, 𝝆 0.025 

Sparsity regularizer coefficient, 𝜷 0.9 

Training algorithm Scaled conjugate gradient descent (trainscg) 

 

In the proposed and developed deep sparse autoencoder architecture, as illustrated in 

Figure 5, the first hidden layer is the bottleneck hidden layer indicated by the middle arrow in 

Figure 6 (first shallow sparse autoencoder), while the second hidden layer is the bottleneck 

hidden layer indicated by the middle arrow in Figure 7 (second shallow sparse autoencoder). 

In the deep sparse autoencoder architecture, as shown in Figure 5, the first hidden layer 

(encoding hidden layer) performs a feature fusion process on the 6 input variables of air 

temperature, relative humidity, wind speed, CO concentration, O3 concentration, and PM10 

concentration via nonlinear dimensionality reduction, while the second hidden layer 

(bottleneck hidden layer) performs further feature extraction on the low dimensional features 

representation learned in the first hidden layer. Stated generically, for a deep autoencoder with 
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𝑝 hidden layers and 𝑘 = (1, 2, ⋯ , 𝑝)𝑡ℎ hidden layer, training of the first (𝑘 = 1𝑠𝑡) hidden layer 

is conducted with the training data set as its input; then, training of the successive (𝑘 +
1)𝑡ℎ hidden layer is carried out with the output of the 𝑘𝑡ℎhidden layer as its input. Sequential 

autoencoder models are stacked hierarchically depending on the depth (number of hidden 

layers) of the desired deep autoencoder. 

The list of significant first and second shallow sparse autoencoder ANN training 

parameters for deep sparse autoencoder model development is shown in Table 4. It is noted 

that the value for each training parameter of the second shallow autoencoder is relatively 

smaller than the one listed under the first shallow autoencoder; this is because the 

dimensionality of the model input whose features representation is to be learned by the second 

shallow autoencoder is relatively lower compared to the first shallow autoencoder. The 

bottleneck hidden layer of the proposed and developed deep sparse autoencoder contains more 

feature abstraction than the encoding hidden layer. The features captured in the bottleneck 

hidden layer that contain significant representative information of the input data were then 

utilized for successive API prediction via the relationship learning process. 

2.6. Relationship Learning 

The primary objective of this process is to learn the relationship between the feature 

extracted h by the sparse autoencoder ANN models that have been developed and the 

output/target API values. This study embedded a 2 layered shallow feedforward neural network 

model into the developed sparse autoencoder for API prediction purposes via supervised 

relationship learning. A shallow feedforward neural network was used as the predictor due to 

its robustness in relationship learning to fit practical functions and its simplicity in utilization 

and architectural development. The proposed model consists of 3 layers: an input layer 

(features extracted h by sparse autoencoder ANN), a hidden layer, and an output layer 

(predicted API), as illustrated in Figure 8. 

 𝑎 =
2

1+𝑒−2ℎ − 1  (13) 

 𝑦̂ = 𝑎  (14) 

The feedforward neural network predictor was pretrained with a hyperbolic tangent 

sigmoid activation/transfer function, as mathematically expressed in Equation 13, to learn the 

nonlinear relationship and linear activation/transfer function as mathematically expressed in 

Equation 14 in the output layer where a is the output of hidden layer and 𝑦 ̂ is the network's 

predicted data (predicted API). The network was trained using a scaled conjugate gradient 

backpropagation training function. 

The list of significant feedforward neural network training parameters for API prediction 

is shown in Table 5. It is noted that the sparsity constraint was enforced in the dimensionality 

reduction (features extraction) component (autoencoder) only and not in the relationship 

learning component (feedforward neural network) due to its proven effectiveness in 

dimensionality reduction and its inability and poor performance in learning efficient mapping 

[23]. The feedforward neural network was adapted with weight and bias learning rules. 
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Figure 8. Shallow feedforward neural network architecture (relationship learning) 

Table 5. Shallow feedforward neural network training parameters for API prediction 

model 

Training Parameter Description/Value (MATLAB® Code) 

Number of hidden nodes (hidden layer) 11 

Activation/Transfer function (hidden layer) Hyperbolic tangent sigmoid (tansig) 

Activation/Transfer function (output layer) Linear (purelin) 

Maximum number of training epochs/iterations 2000 

Training function Scaled conjugate gradient backpropagation (trainscg) 

 

2.7. Fine Tuning of Sparse Autoencoder Artificial Neural Network (ANN) with Predictor 

Model 

In this study, the dimensionality reduction (features extraction) component (sparse 

autoencoder) and the relationship learning component (feedforward neural network) were 

combined as a deep ANN, as shown in Figure 9, for API prediction. All of the constructed 

layers were pretrained in a layer-wise manner with a scaled conjugate gradient descent 

backpropagation algorithm being employed throughout the API prediction ANN model for 

optimization of each layer purpose. However, it is studied that the application of the 

aforementioned approach in training deep ANN may yield relatively poor performance [24-

26]. This is because a deep ANN with small initial weights tends to generate tiny gradients at 

the bottom layers, reducing the applicability of the training ANN with numerous hidden layers; 

on the other hand, a deep ANN with large initial weights tends to generate relatively poor local 

minima [27]. Due to the complexity of the algorithm underlying the deep ANN architecture in 

nature, it is often challenging to preserve the relevancy between the parameters across the 

layers. To tackle this issue, a fine-tuning procedure was employed on the developed full sparse 

autoencoder ANN-based API prediction model for final joint optimization to further train the 

deep ANN more effectively with the fundamental goal of minimizing the prediction error [28, 

29]. 
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Figure 9. API prediction model architecture with: (a) shallow sparse autoencoder, (b) 

deep sparse autoencoder 

The principal idea of this technique consists of 2 stages; the first stage is to conduct 

pretraining of the full deep ANN layer-wise in a bottom-up manner, and the subsequent stage 

is to carry out fine-tuning (updating) of the entire deep ANN parameters in a top-down fashion 

via a backpropagation algorithm whereby, in this study, it is the scaled conjugate gradient 

descent backpropagation algorithm. During the second stage, the developed deep ANN was 

fine-tuned by retraining the entire architecture on the training data in a supervised manner, 

adjusting the weights of the trained model from the final layer to optimize all the constructed 

layers. 

2.8. Model Performance Evaluation 

The performance of the proposed and developed sparse autoencoder ANN-based API 

prediction model was evaluated in terms of mean squared error 𝑀𝑆𝐸 and coefficient of 

determination 𝑅2 between observed true API 𝑦 and predicted API 𝑦̂. 𝑀𝑆𝐸 and 𝑅2 are 

mathematically expressed as Equation 15 and Equation 16, respectively. 

 𝑀𝑆𝐸 =
1

𝑚
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑚

𝑖=1    (15) 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑚

𝑖=1

∑ 𝑦̂𝑖
2−

∑ 𝑦̂𝑖
2𝑚

𝑖=1
𝑚

𝑚
𝑖=1

  (16) 

where 𝑚 is the total number of evaluation samples, 𝑦𝑖 is the observed true target variable data 

(API) of the 𝑖𝑡ℎ sample, and 𝑦̂𝑖 is the predicted target variable data (API) of the 𝑖𝑡ℎ sample by 

the model. The smaller the 𝑀𝑆𝐸 and the closer the 𝑅2 to the value of 1 (𝑅2 ≤ 1)  obtained 

from the model, the higher the model's performance in terms of prediction accuracy. A critical 

comparative analysis was performed in terms of 𝑀𝑆𝐸 and 𝑅2 among FANN by [15] and PCA-

FANN by [16], as proposed in previous research. 

3. RESULTS AND DISCUSSION 

The full architecture of the developed sparse autoencoder ANN-based API prediction 

model with shallow, sparse autoencoder and deep sparse autoencoder is shown in Figure 9(a) 

and Figure 9(b), respectively. The input for the API prediction model consists of the data from 

6 variables: air temperature, relative humidity, wind speed, CO concentration, O3 
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concentration, and PM10 concentration. The shallow sparse autoencoder was constructed with 

one bottleneck hidden layer, while the deep sparse autoencoder was developed with one 

encoding hidden layer and one bottleneck hidden layer. They played a role in dimensionality 

reduction (features extraction) on the input and were both connected with a shallow 

feedforward neural network, each for relationship learning purposes between the features 

captured in the bottleneck hidden layer of the respective autoencoder and the output/target 

variable data (API). The encoder part of the sparse autoencoder was trained with a scaled 

conjugate gradient descent algorithm and logistic sigmoid activation/transfer function. The 

hidden layer and the output layer of the feedforward neural network were both trained with 

scaled conjugate gradient backpropagation function and were trained with hyperbolic tangent 

sigmoid activation/transfer function and linear activation/transfer function, respectively.  

 

(a) 

 

(b) 

Figure 10. Actual and predicted API of (a) training sample and (b) test/unseen sample 

with shallow sparse autoencoder 

The shallow sparse autoencoder was developed with 3 hidden nodes in its bottleneck 

hidden layer, while the deep sparse autoencoder was developed with 3 hidden nodes in its 

encoding hidden layer and 2 hidden nodes in its bottleneck hidden layer. The shallow 

feedforward neural network was constructed with 11 hidden nodes in its hidden layer and 1 

node in its output layer. The output for the API prediction model is the predicted target variable 

data (API). The model was first trained with the training data set to determine the optimum 

model parameter values and algorithms by applying theoretical knowledge and employing trial 
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and error methods. The trained model was then tested with the test/unseen data set. The API 

prediction model performance was evaluated in terms of 𝑀𝑆𝐸 and 𝑅2 Two critical comparative 

analyses are being conducted: a comparative analysis between the observed true API and 

predicted API for both training and test/unseen data sets and a comparative analysis between 

the developed sparse autoencoder ANN-based API prediction model and the other prediction 

models proposed in previous research. Figure 10 shows the API prediction performance of the 

developed shallow, sparse autoencoder ANN-based model on both training and test/unseen 

data sets in graphical form. The x-axis is the sample number, and the y-axis is the scaled actual 

and predicted API. 

 

(a) 

 

(b) 

Figure 11. Actual and predicted API of (a) training sample and (b) test/unseen sample 

with deep sparse autoencoder 

Figure 11 shows the API prediction performance of the developed deep sparse autoencoder 

ANN-based model on both training and test/unseen data sets in a graphical form where the x-
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axis is the sample number, and the y-axis is the scaled actual and predicted API. Based on 

Figure 10 and Figure 11, it is clearly observed that the API prediction of the proposed 

shallow/deep sparse autoencoder ANN-based model emulates the actual API behavioral pattern 

relatively well for both training and test/unseen data. 

To further evaluate the API prediction performance from a statistical point of view, the 

𝑀𝑆𝐸 and 𝑅2 are computed between the actual API and the predicted API on both training and 

test/unseen data sets to the architecture (shallow/deep) of the sparse autoencoder, which serves 

as the base of the proposed API prediction model as tabulated in Table 6 and illustrated in 

Figure 12. Based on Table 6 and Figure 12, it is observed that the predicted API values are 

relatively close to the actual API values of both training and test/unseen samples regardless of 

shallow sparse autoencoder or deep sparse autoencoder as the base of the API prediction model 

with low 𝑀𝑆𝐸(𝑀𝑆𝐸 < 0.1800) and 𝑅2 which is close to 1 (0.8000 < 𝑅2 < 1). In other words, 

the degree of discrepancy between the actual and predicted data by both architectures is very 

small. Thus, the proposed and developed sparse autoencoder ANN-based model in API 

prediction is proven to be valid due to the ability of the model to generalize and model the 

problem effectively with significantly high relevancy in target variable data prediction. 

 

 

(a) MSE 

 

(b) 𝑅2 

Figure 12. Statistical analysis of the API prediction model performance 
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Table 6. Statistical analysis of the API prediction model performance 

Architecture of 

Sparse Autoencoder 

Training Data Test/Unseen Data 

𝑴𝑺𝑬 𝑹𝟐 𝑴𝑺𝑬 𝑹𝟐 

Shallow 0.1703 0.8225 0.1515 0.8300 

Deep 0.1682 0.8247 0.1474 0.8331 

 

Besides, it is observed that the API prediction model with deep sparse autoencoder 

achieves higher prediction performance with higher prediction accuracy due to lower MSE and 

closer 𝑅2 to the value of 1 obtained compared to the API prediction model with shallow sparse 

autoencoder. The results and findings obtained in this study are in accordance with the 

theoretical studies where numerous hidden layers in the deep sparse autoencoder architecture 

allow the ANN to learn higher-order features of the input and capture unknown data structure, 

further increasing the model generalization performance and effectiveness. Thus, the proposed 

and developed sparse autoencoder ANN-based API prediction model is further validated. 

 

Figure 13. Linear regression plot of actual API relative to predicted API, where AE 

stands for ‘autoencoder’ 

 A linear regression of actual API relative to predicted API is plotted as shown in Figure 

13 on both training and test/unseen data sets, each with respect to the architecture 

(shallow/deep) of the sparse autoencoder, which serves to be the base of the proposed API 

prediction model. A comparative analysis between the developed shallow/deep sparse 
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autoencoder ANN-based API prediction model and other proposed API prediction models in 

previous research, which are feedforward artificial neural network (FANN) and principal 

component analysis – feedforward artificial neural network (PCA-FANN), is conducted further 

to validate the proposed API prediction model in this study. Table 7 presents the overall 

statistical analysis of the performance of all the API prediction models in terms of 𝑀𝑆𝐸 and 

𝑅2 on unseen data. 

Table 7. Overall statistical analysis of the API prediction model performance on unseen 

data 

API Prediction-Based Model 𝑴𝑺𝑬 𝑹𝟐 

Shallow sparse autoencoder 0.1515 0.8300 

Deep sparse autoencoder 0.1474 0.8331 

FANN from [16] 0.1856 0.7950 

PCA from [17] 7.5620 (𝑅𝑀𝑆𝐸) 0.7360 

 

Based on Table 7, it is observed that the proposed sparse autoencoder ANN-based API 

prediction model, regardless of shallow or deep sparse autoencoder, has the highest 

performance on the unseen data among the other proposed models in previous research, with 

𝑀𝑆𝐸 value of 0.1515 and 𝑅2 value of 0.8300 for shallow sparse autoencoder, and 𝑀𝑆𝐸 value 

of 0.1474 and 𝑅2value of 0.8331 for deep sparse autoencoder. It is evidently clear that the 

proposed API prediction model in this study further improves the accuracy of API prediction. 

Hence, the proposed model in this study is further validated once again. the smallest 𝑀𝑆𝐸 and 

the largest 𝑅2(closest to 1) are both achieved by the developed deep sparse autoencoder ANN-

based API prediction model; thus, the model is determined to be the best model in API 

prediction and selected as the final model structure in this study.  

The research paper demonstrated the flexible application of shallow and deep sparse 

autoencoder artificial neural network models, presenting a novel alternative method in the field 

of API prediction. The deep sparse autoencoder model, in particular, demonstrates improved 

prediction performance, making it a promising tool for API prediction. However, there are 

several limitations to this research that need to be addressed for this model to be considered the 

best for API prediction. Firstly, the model's training and testing are based on data from specific 

monitoring stations in Perak, which may limit its applicability to other regions. Secondly, the 

study only considers six input variables, potentially overlooking other relevant factors that 

could influence API prediction. Thirdly, the model uses data from 2006 to 2010, which may 

not reflect more recent trends or changes in air pollution patterns. Lastly, the deep sparse 

autoencoder, while effective, is a complex model that requires longer training times compared 

to simpler models. Addressing these limitations in future research could enhance the model's 

performance and its utility in API prediction. 

4. CONCLUSION 

This study proposed data-driven modeling for API prediction using autoencoder ANN 

with the fundamental objective of improving the API prediction performance. Two API 

prediction models were developed. One used a shallow sparse autoencoder, while the other 

used a deep sparse autoencoder. The model with shallow sparse autoencoder could predict the 

API with promising accuracy, with an 𝑀𝑆𝐸 value of 0.1515 and 𝑅2 value of 0.8300 on the 

test/unseen data. However, the shallow sparse autoencoder may lack robustness due to the 

presence of only one single hidden layer in the representation of learning features. When 
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applied to test/unseen data, it may face difficulties and challenges. To further improve the 

model generalization and prediction accuracy, an API prediction model with a deep sparse 

autoencoder was proposed. Based on the results and findings, it is concluded that the model 

with the deep sparse autoencoder does improve the prediction performance compared to the 

model with the shallow sparse autoencoder, with 𝑀𝑆𝐸 value of 0.1474 and 𝑅2 value of 0.8331 

on the test/unseen data. Nevertheless, both proposed architectures are concluded to be valid as 

they both show significant improvement in API prediction performance with relatively small 

values of 𝑀𝑆𝐸 and 𝑅2 values that are relatively close to 1 as compared to other API prediction 

models proposed in previous research. Since the proposed and developed deep sparse 

autoencoder ANN-based API prediction model achieved the smallest 𝑀𝑆𝐸 value with a 𝑅2 

value significantly close to 1, the model is, thus, determined to be the best model in API 

prediction and selected as the final model structure in this study. 
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