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ABSTRACT: Energy-efficient engines were introduced due to limited amount of global 

energy and the need for engine power to carry vehicle loads. It was discovered that the 

power factor of these engines was essential in developing automotive technology with 

subsequent significant effect on driving comfort. Moreover, it was possible to control the 

power and energy savings of vehicle engines by adjusting the Air to Fuel Ratio (AFR). 

Therefore, this study focused on achieving AFR values in the stoichiometric range of 14.7 

in order to produce good emissions. The technology applied was observed to have some 

drawbacks, specifically in fulfilling engine power when the vehicle operates with a large 

load. This led to the development of a new method by designing an AFR control system 

with due consideration for driving behavior using an Artificial Neural Network (ANN). 

The aim was to overcome the problem of meeting engine power and ensuring better 

efficiency. The driving behavior was classified into through categories including the 

sporty, standard, and eco schemes. The eco scheme was the smooth behavior of a driver 

during the movement of the vehicle in a busy urban area, the sporty scheme was the 

responsive driving behavior when the vehicle operates on the highway at speeds above 80 

km/h, and the standard scheme was the behavior between the eco and sporty schemes. 

Furthermore, the driving behavior in a sporty scheme required the addition of fuel to 

increase engine power while eco-scheme focused on reducing fuel to increase fuel 

economy. The findings showed that control system designed was able to improve driving 

comfort in terms of fuel economy during the eco scheme with an average AFR value of 

15.68. The system further reduced the value to 13.66 during the sporty scheme. 

Furthermore, the AFR under stoichiometry was discovered to have produced the 

maximum engine power. The system was expected to be incorporated into electric, gas-

fired and fuel cell vehicles in the future. 

ABSTRAK: Faktor kuasa enjin dan enjin cekap tenaga adalah penting dalam 

membangunkan teknologi automotif. Mesin penjimat tenaga diperlukan kerana jumlah 

tenaga global yang terhad. Manakala kuasa enjin digunakan bagi membawa muatan 

kenderaan. Kedua-dua faktor ini sangat mempengaruhi keselesaan pemanduan. 

Penjimatan kuasa dan tenaga dalam enjin kenderaan boleh dipenuhi dengan mengawal 

Nisbah Angin kepada Minyak (AFR). Tumpuan kajian semasa adalah berorientasikan ke 

arah mencapai nilai AFR dalam julat stoikiometri (14.7) atas sebab ingin mencapai 

pelepasan terbaik. Namun begitu, teknologi ini mempunyai kelemahan terutama dalam 
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memenuhi kuasa enjin apabila kenderaan beroperasi dengan muatan besar. Oleh itu, kajian 

ini adalah berkaitan kaedah baharu bagi mengatasi masalah memenuhi kuasa enjin dan 

mencapai enjin cekap tenaga dengan mereka bentuk sistem kawalan AFR yang 

mempertimbangkan tingkah laku pemanduan menggunakan Rangkaian Neural Buatan 

(ANN). Tingkah laku pemanduan direka bentuk kepada tiga skim: sporty, standard dan 

eko. Skim eko adalah kelancaran tingkah laku pemandu apabila kenderaan bergerak di 

kawasan bandar yang sibuk. Skim sporty ialah tingkah laku pemanduan responsif apabila 

kenderaan beroperasi di lebuh raya pada kelajuan melebihi 80 km/j, dan skema standard 

ialah tingkah laku antara skim eko dan sporty. Tingkah laku pemanduan dalam skema 

sporty memerlukan penambahan bahan api bagi meningkatkan kuasa enjin. Sementara itu, 

tingkah laku pemanduan dalam skim eko memerlukan pengurangan bahan api bagi 

meningkatkan penjimatan bahan api. Hasil kajian menyatakan sistem kawalan yang direka 

mampu meningkatkan keselesaan pemanduan dari segi penjimatan bahan api apabila 

tingkah laku pemandu memasuki skim eko. AFR dicapai pada nilai purata 15.68. Apabila 

tingkah laku pemandu memasuki skim pemanduan sporty, sistem kawalan boleh 

mengurangkan AFR dengan nilai purata 13.66. AFR di bawah stoikiometri menghasilkan 

kuasa enjin maksimum. Pada masa hadapan, sistem ini berpotensi untuk dibangunkan pada 

kenderaan elektrik, menggunakan gas dan sel bahan api. 

KEYWORDS: driving behavior; AFR; ANN; engine power; fuel saving 

1. INTRODUCTION  

Vehicle comfort is a very important topic in the development of automotive technology 

and it can be increased through suspension control [1], steering system power transfer, engine 

power, and fuel economy. It is also significantly related to the aspects of engine power and fuel 

economy, and these two concepts have become international issues presently focused on by 

world researchers [2] due to the limited energy problem [3,4] and the very significant increase 

in global energy consumption.  

The current high increase in the number of vehicles using gasoline engines has made fuel-

saving technology necessary. Meanwhile, there is also the need to have the appropriate engine 

power to move the vehicle, especially when it is carrying a heavy load. It is important to note 

that vehicle comfort can be achieved from the engine power and fuel economy aspects by 

controlling the Air to Fuel Ratio (AFR) which is categorized into three including lean mixture 

with AFR values above 14.7, ideal or stoichiometry ratio which is 14.7, and rich mixture with 

values below 14.7. The lean category usually produces low engine power with high fuel 

economy, the rich mixture is the opposite, and the stoichiometry category normally has optimal 

engine power and fuel economy. 

Several studies have been conducted on AFR using different variables such as the 

application of fuzzy logic which is Artificial Intelligence (AI) to set AFR in a simulation [5]. 

It was discovered that the system was able to control the AFR with inaccurate signals or data 

but it has not been applied to real conduction. Another different study tried to add a variable 

turbo charge to increase the volumetric efficiency of the engine and changes were observed in 

the AFR because the turbo charge added forced air into the engine based on the power 

generated by the exhaust gas pressure  [6]. However, the research has not yet integrated an 

intelligent control system to modify the AFR. Some studies have also started focusing on AFR 

stoichiometry control which was denoted by the achievement of lambda (λ) = 1 [7]. It is 

important to note that Lambda (λ) is a comparative value between the actual AFR and the 

stoichiometry of the theoretical AFR. This method also has some problems which are making 

the vehicle users complain, especially due to the low engine power when the vehicle is 

operating on a steep or inclined surface or carrying a large load.  
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Driving behavior has been empirically discovered to have a great influence on the fuel 

system (AFR) dynamics but it was discovered that no study has focused on controlling AFR 

through driving behavior. Previous studies have only focused on using several variables such 

as the development of a car using systems in autonomous vehicles, application of a simulation 

scale Connected Vehicle Driving Strategy with Intelligent Model (CVDS-IDM), design of 

safety systems on vehicles, analysis of driving behavior, vision technology or graphical display, 

and the vehicle emissions dynamics when at a traffic light. 

Driving behavior in car-following has also been studied with several variations such as 

autonomous vehicle dynamics, the use of CVDS-IDM, and a safe car-following behavior 

system. Those related to the dynamics of the autonomous vehicle showed that the driver 

following a driverless autonomous vehicle was significantly affected psychologically [8]. 

Moreover, CVDS-IDM was defined as a simulator tool to predict driving behavior in real time 

by providing a driver a stimulus with various variables, especially when driving behind another 

vehicle [9]. It was discovered that the CVDS-IDM was able to model the car-following 

mechanism through the method applied by the driver. Another study also focused on safe 

driving behavior in order to develop a safety system based on the behavior of car-following 

drivers [10]. However, it was discovered that none of these three studies discuss the 

relationship between driving behavior and fuel consumption. 

Further studies focused on driving behavior in relation to the safety systems design on 

vehicles such as the usage of cameras, vehicle theft prevention, and adaptive Forward Vehicle 

Collision Warning (FCW) systems [11] as well as the analysis of the driving behavior when 

the driver was sleepy [12]. The cameras were installed on the vehicle to record ongoing 

activities, hence it provides feedback for a sleepy driver in order to control the vehicle 

immediately and properly with the intention of reducing the occurrence of accidents.  Martinelli 

[13] also prevented vehicle theft by comparing driving behavior against a database. The 

research was initiated by learning and storing the driver's behavior in a control system and was 

later compared with the pattern through which an individual drive. The engine of the vehicle 

was programmed to stop when the driving behavior stored and observed are not similar to 

protect the vehicle from theft. Another study  by Yuan [14] used an adaptive Forward Vehicle 

Collision Warning (FCW) to avoid collisions when the driver is driving abnormally. This was 

achieved by detecting the distance between the vehicle and the monocular. It is important to 

note that all these studies did not also consider the relationship between fuel usage systems and 

driving behavior. 

Scholars also researched the improvement of driving safety through several variables 

which include analyzing the attitude and performance of drivers during sudden braking or 

steering operations and determining their safety rating [15]. Another study also observed and 

assessed driver control and safe practices during the process of driving a vehicle using risky 

driving behavior as the research variable [16]. Moreover, Mafeni [17] and Takashi Bando [18] 

evaluated driving behavior errors with a focus on abnormal braking and vehicle speed 

operation when traveling at very high speeds. It was also observed that even though the studies 

have different objectives, none focused on energy consumption in evaluating driving behavior. 

Subsequent research also focuses on driving behavior in autonomous and electric vehicles 

(EVs). This was observed from the design of a lateral system control based on autonomous 

vehicles by Hongbo [19] to trace the vehicle's turning angle accurately and provide a better 

steering control effect compared to conventional steering lateral control. Moreover, Ashkrof 

[20] developed EVs control strategies to select travel routes and determine battery charging 

locations based on driving behavior. These studies do not also discuss variables related to 

energy use. 
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An automatic control system was introduced to recognize driving behavior by Silver [21] 

and Yansong [22] to alert drivers when they exceed safety limits. Julian [23] also used vision 

sensors for the same purpose with the recognition results stored in a database and exclusively 

patented. These studies have interesting concepts but this could have been more exciting if the 

driving behavior recognition factor was used to control energy. Unfortunately, it was not 

included.  

The other aspects studied in relation to driving behavior are traffic lights and graphical 

displays. This was observed in the analysis of emissions produced by vehicles at traffic lights, 

especially at road junctions, by Stagios [24] through the observations made about the changes 

in vehicle emissions on the highway due to driving behavior. It was discovered that it is 

possible to reduce emissions by up to 26% when the driver behaves in certain conditions. 

However, this study only focused on changes in emissions without considering the energy 

consumption factor in behavioral changes. 

Kohl [25] also showed that graphic displays, especially images/messages that frequently 

appear, have a significant influence on safe driving behavior. It was discovered that the 

frequent graphic display reduces the focus of drivers while driving and this is very dangerous 

for safety. This is considered very interesting but this study did not include the energy control 

influenced by driving behavior. This was followed by studies conducted on the relationship 

between energy consumption and driving behavior. Xing [26] predicted future energy 

consumption by observing the behavior of the driver but the study does not lead to energy 

control.  

This simply implies several variables have been considered in studying driving behavior 

such as car-following systems, CVDS-IDM simulations, vehicle safety systems design, driving 

behavior analysis, vision technology or graphical display, and the vehicle emissions dynamics 

at traffic lights. It has also been discovered from previous studies that fuel energy control can 

be denoted by AFR used to generate stoichiometry values, machine learning or artificial 

intelligence applications, and the use of turbochargers. However, research has not been 

conducted on using driving behavior to control fuel even though driving behavior has been 

empirically proven to have a significant influence on fuel consumption. Therefore, this research 

was used to discuss the application of a driving behavior system to control fuel using an 

Artificial Neural Network as a continuation of the previous study [26]. 

 

Fig. 1: The concept of the designed control system. 

The control system developed based on the driving behavior using Artificial Neural 

Network (ANN) was successfully applied to real vehicles and presented in the following Figure 

1. It was designed to work on three inputs which include the steering speed sensor (a), braking 

speed sensor (b), and throttle valve opening speed sensor (c) as well as supporting components 

to assist its performance which include an engine to generate power to drive the vehicle (d) and 

engine control unit – ECU (e) designed with ANN to recognize driving behavior in real time. 

The results obtained from the ANN were used to control fuel consumption through the fuel 

pump (f) placed in the fuel tank (g) in order to deliver fuel to the injectors. It is important to 

340



IIUM Engineering Journal, Vol. 24, No. 2, 2023 Triwiyatno et al. 
https://doi.org/10.31436/iiumej.v24i2.2781 

 

 

note that the speed of the fuel pump was controlled by the ECU with the ANN applied to 

recognize driving behavior.  

2. METHOD  

2.1  Control System by Driving Behavior 

The behaviors of drivers are usually different when driving based on their needs, mood, 

and inclinations, and this greatly influences vehicle operation and fuel consumption. This led 

to the design of three schemes to control the vehicle which include eco-driving, standard or 

stoichiometry, and sporty behaviors. The eco-driving is the behavior associated with vehicles 

operating smoothly on busy urban roads [27] and allows the driver to operate the throttle valve 

opening, braking, and steering smoothly at a speed of approximately 40-60 km/hour. The 

sporty scheme is a responsive driving behavior that involves the vehicle operating on a toll 

road [28] and the driver is expected to generally drive responsively at a vehicle speed of more 

or less than 80 km/hour. Meanwhile, the standard scheme is a driving behavior between the 

eco and sporty schemes. 

Figure 2 shows the design of the control system developed in this study to regulate fuel 

using ANN with due consideration for the driving behavior. The ANN designed to be 

embedded in the control system is used to recognize driving behavior in real-time. Moreover, 

the algorithm method applied in the ANN was Levenberg Marquardt type learning (trainlm) 

while the learning performance was based on the Mean Squared Error (MSE) value using 300 

nodes, one output layer, one hidden layer, and three inputs.  

 
Fig. 2: ANN system design embedded in the control system. 

The three ANN inputs consist of signals generated by the throttle valve opening speed 

sensor (X1), steering speed sensor (X2), and braking speed sensor (X2). These three sensors 

produce a speed signal which in the next process becomes the average acceleration value (MA) 

which is processed using Eqs. (1), (2), and (3). The ANN (Y) output is a driver behavior scheme 

to set the fuel pump. 

The types of layers used include logsig, tansig, and purelin models while the number of 

neural network learning used was 20,000 epochs with a learning success rate of 99.93%. 

Furthermore, the neural network learning was conducted in the MATLAB Simulink software 

and later embedded in the control system (microcontroller mega 2560). This study uses 3285 

data for ANN training. The training data used in this research is in the form of signal data 

generated by the throttle valve opening, steering, and braking sensors presented in Fig. 3. This 

training data is obtained from measurements of real driving behavior characteristics. Data from 

sensors is taken through data acquisition that has been processed beforehand using Eqs. (1), 

(2), and (3). 
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Fig. 3: Data used for ANN training. 

Mapping driving behavior recognition with ANN has 27 levels. The driving behavior 

scheme was designed using the three schemes presented in Table 1. Driving behavior 

recognition mapping consists of three schemes, including eco-driving (A), 

stoichiometry/normal driving (B), and sporty driving (C) schemes. Determination of the 

driving behavior scheme serves to assess the characteristics of each driver. The detailed 

determination of the driving behavior scheme is presented in Table 4. Table 4 and it was 

discovered that it was designed on the operation of opening the throttle valve (X2), steering 

(X2), and braking (X3). The throttle valve opening operation has three low, medium, and high 

clusters for steering and braking operations. The findings of each cluster for throttle valve 

opening, steering and braking operations are presented in Table 3. 

2.2   Equations Used in Control Systems 

The throttle valve opening, steering, and braking sensors generated speed data which were 

later converted into an acceleration function embedded in the control system (Microcontroller 

Ni MyRio). Moreover, the average acceleration value (Moving Average - MA) was applied to 

analyze the driver's behavior from opening the throttle valve, steering, and braking. This 

method was preferred due to its ability to reduce the value of erratic variations [29,30], thereby 

increasing its suitability to recognize the variations in the driving behavior. 

2.2.1 Acceleration Function Equation 

The speed data generated by the throttle valve, steering, and braking sensors were 

converted to the acceleration function presented in Eq. (1). 

 

𝑎𝑖 =
(𝑣𝑖−𝑣(𝑖−1))

(𝑡𝑖−𝑡(𝑖−1))
                                        (1) 

 

where: I = 1,2…180 

           𝑎𝑖 = Acceleration value at the time I (mm/seconds2). 

             T = Time of speed change in seconds. 

            𝑣𝑖= Speed value in period I (mm/seconds). 

      𝑣(𝑖−1)= Speed value in period I -1 (mm/seconds). 

The next process after the speed has been changed into an acceleration function with Eq. (1) 

was to determine the average acceleration value. 
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 Table 1: Mapping driving behavior recognition with ANN system 

No. Schematic of 

driving behavior (Y) 

Driving operation type 

Opening of the 

throttle valve (X1) 

Steering 

(X2) 

Braking  

(X3) 

1. A 1 1 1 

2. B 1 1 2 

3. B 1 2 2 

4. B 1 1 3 

5. B 1 2 2 

6. B 2 2 2 

7. B 2 1 1 

8. B 2 2 1 

9. B 2 1 2 

10. C 3 1 1 

11. C 3 2 1 

12. C 3 1 2 

13. C 3 2 2 

14. C 3 2 3 

15. C 3 3 2 

16. C 3 3 3 

17. C 3 1 3 

18. C 3 3 1 

19. B 1 2 3 

20. B 1 3 2 

21. B 1 3 3 

22. B 1 3 1 

23. B 2 2 3 

24. B 2 3 3 

25. B 2 3 2 

26. B 2 3 1 

27. B 2 1 3 

Description: 1 = low, 2= moderate, 3 = high, A= Eco driving scheme,  

B= Stoichiometry/standard driving scheme, C= Sporty driving scheme. 

2.2.2 Calculation of Change in Average Acceleration 

The acceleration value obtained from Eq. (1) was used to calculate the average value using 

the Moving Average (MA) method presented in Eq. (2). 

 

𝑀𝐴𝑖 =
𝑎𝑖+𝑎𝑖+1+𝑎𝑖+2

3
                                   (2) 

where: 

i = 1, 2,…180 

       𝑀𝐴𝑖 = Average acceleration (mm/seconds2). 

     𝑎𝑖 = Acceleration value in period i (mm/seconds2). 

 𝑎𝑖+1 = Acceleration value in period i+1 (mm/seconds2) 

 𝑎𝑖+2 = Acceleration value in period i+2 (mm/seconds2). 

The MA value was successfully calculated using Eq. (2) while the average was 

calculated again using Eq. (3). It was discovered that the average MA had 178 constraints, 
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which were determined once every 15 minutes, and sent to the ECU to recognize driving 

behavior using the ANN embedded in the control system (microcontroller mega 2560). 

 

𝑀𝐴̅̅̅̅̅ =
𝑀𝐴1+𝑀𝐴2+⋯.𝑀𝐴178

178
                   (3) 

2.2.3 Control System Testing Set Up Developed 

The control system test was designed by mounting an AFR sensor (1) on the exhaust gas 

line to detect the air and fuel mixture while a data acquisition microcontroller (2) was used to 

change the signal generated by the AFR sensor and the engine speed sensor (4). Moreover, the 

speed module (3) was employed to convert the pulse signal into a signal readable by the 

computer as indicated in Fig. 2. It was also observed that the control system (8) developed has 

two components which include a Ni MyRio microcontroller (a) and a control module (b) with 

a Mega 2560 microcontroller and an electronic circuit. 

The speed data generated every 5 seconds by the throttle valve opening, braking, and 

steering speed sensors were converted into an acceleration function in the Ni MyRio 

Microcontroller (a). Moreover, the process to change the speed function into an acceleration 

function is presented in Eq. (1) after which the acceleration data obtained were averaged 

through Eq. (2) using the Moving Average – MA method. The MA average results were also 

calculated using Equation (3) every 15 minutes and sent to the ECU where an AI system with 

a neural network was used to perform clustering, analyze the different kinds of driving behavior, 

and send the cluster results to the speed controller module. The speed controller module was 

applied to control the fuel pump (2) to ensure the fuel is supplied to the engine according to the 

driving behavior. Additionally, an AI system with a neural network is embedded in the Mega 

2560 microcontroller. The control system application setup is presented in Fig. 4. 

 
Fig. 4: Driving behavior control system test setup. 

The installation of equipment to test the control system with driving behavior is presented 

in Fig. 5. The AFR sensor was used to measure the air and fuel mixture, the throttle valve speed 

sensor was mounted on one shaft with the throttle position sensor, while the braking speed 

sensor was fixed on the brake master shaft and actuated by the brake pedal. Moreover, the 

steering speed sensor was placed on the side of the steering shaft using a V belt. It is important 

to note that there was direct documentation of the behavioral recognition test while the speed 

sensor was used to measure engine speed. While the specifications of the equipment used in 

the study are presented in Table 2. 
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Fig. 5: Installation of AFR sensor (1), throttle valve speed sensor (2), braking speed sensor (3),  

steering speed sensor (4), driving operation (5), and engine speed sensor (6). 

The installation of equipment to test the control system with driving behavior is presented 

in Fig. 5. The AFR sensor was used to measure the air and fuel mixture, the throttle valve speed 

sensor was mounted on one shaft with the throttle position sensor, while the braking speed 

sensor was fixed on the brake master shaft and actuated by the brake pedal. Moreover, the 

steering speed sensor was placed on the side of the steering shaft using a V belt. It is important 

to note that there was direct documentation of the behavioral recognition test while the speed 

sensor was used to measure engine speed. While the specifications of the equipment used in 

the study are presented in Table 2. 

 
Table 2: Specifications of the equipment used 

No. Description Specification 

a. Steering speed sensor 12-volt Direct Current (DC) motor with gear ratio and 

dimensions of ∅ 30 × 60 mm. b. Braking speed sensor. 

c. Throttle valve speed sensor. 

d. Engine. Gasoline engine with injection type, which has a volume of 

1500 cc. 

e. ECU with driving behavior 

control system using ANN. 

NI MyRIO microcontroller and speed controller module 

equipped with atmega 2560 microcontroller. 

f. Fuel pump 12-volt DC rotary type 

g. Fuel tank Capacity 44 liters 

h. Test vehicle Saloon-type vehicle with a capacity of 4 passengers 

3. RESULTS AND DISCUSSION 

3.1  Throttle Valve Opening Sensor Results 

The control system designed was applied directly to assess driving behaviors in order 

to determine the characteristics of drivers in real time based on three schemes which include 

the eco, stoichiometry/standard, and sporty schemes. Each of these schemes was determined 

using the changes in acceleration generated by the throttle valve opening, steering, and 

1 2 3 

4 5 6 
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braking sensors as the input. Moreover, the throttle valve opening signal was calculated 

through four stages which include the measurement of the throttle valve opening speed, 

change of the speed to acceleration, calculation of the Moving Average (MA) value, and 

determination of the average MA. 

The change in the throttle valve opening speed was monitored over three periods as 

indicated in Fig. 6 with the first period found to be between 0 - 900 seconds, the second was 

901-1800 seconds, and the third was 1,801 – 2,700 seconds. The findings showed that the 

speed change for these periods was 0–2.5, 0–2.6, and 0–4.6 mm/second respectively. It was 

observed that the third period tends to have a higher speed change rate and density level. 

  
Fig. 6: Change of throttle valve opening speed. Fig. 7: Change of throttle valve opening 

acceleration. 

The speed data presented in Fig. 6 was converted into an acceleration function using 

Eq. (1) and the results are presented in Fig. 7 as a function of the change in acceleration. It 

was discovered that there was an acceleration value of 0 – 0.5 mm/seconds2 and a negative 

acceleration or deceleration value of 0-(-0.45 mm/seconds2) for 0 – 900 seconds. The 

findings also showed that the second period, 901 – 1,800 seconds, had 0 – 0.7 mm/seconds2 

and 0-(-0.7 mm/seconds2) while the third period, 1,801 – 2,700 seconds, had 0 – 0.9 

mm/seconds2 and 0-(-0.9 mm/seconds2) respectively. However, it is important to note that 

the third period had a higher density. 

The acceleration/deceleration values presented in Fig. 7 were used in the next process 

to determine the average using the MA method in Eq. (2). This was also followed by finding 

the average of the MA values using Eq. (3) and the results are presented in Fig. 8. It was 

discovered that the MA value for the 0 – 900 seconds period ranged from 0 – 0.14 

mm/seconds2 and a negative acceleration (deceleration) value of 0-( -0.14 mm/seconds2). 

The results further showed that the 901 – 1,800 seconds period had 0 – 0.12 mm/seconds2 

and 0-(-0.12 mm/seconds2) while 1,801 – 2,700 seconds period had 0 – 0.2 mm/seconds2 

and 0-(-0.22 mm/seconds2) respectively. Meanwhile, the average MA for 0 – 900 seconds 

was found to be 0.00 while 901 – 1,800 seconds had 0.002, and 1801 – 2700 seconds had 

0.003. It is pertinent to restate that the average MA value was determined every 15 minutes 

and sent to the developed control system. It was discovered that the highest MA average 

value was recorded in the last period. 

3.2 Steering Sensor Results 

The changes observed in the steering speed of each driver are presented in Fig. 9. It 

was discovered that the drivers possess quite diverse characteristics as observed with the 0 
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– 17 mm/second recorded for the 0  –  900 seconds period, 0  – 14 mm/seconds for the 901 

– 1,800 seconds period, and 0 – 43 mm/seconds for the 1,801 – 2,700 seconds period which 

is the highest compared to the others. 

 
 

Fig. 8: Average MA value of driver throttle valve 

opening behavior. 

Fig. 9: Steering speed changes behavior. 

 

The change in driver acceleration presented in Fig. 10 showed that the 0 - 900 seconds 

period had an acceleration value of 0 – 4 mm/seconds2 and a negative acceleration 

(deceleration) value of 0-(-4 mm/seconds2) while 901 – 1,800 seconds period had 0 – 4.1 

mm/seconds2 and 0-(-4.1 mm/seconds2) and 1,801 – 2,700 seconds period had 0 – 5.8 

mm/seconds2 and 0-(-3 mm/seconds2) respectively. It was observed that the driver tends to 

add more steering acceleration in the third period. 

The MA values recorded based on the changes in the driver's steering acceleration are 

presented in Fig. 11. It was discovered that the 0 – 900 seconds period had an MA range 

between 0 - 1.3 mm/seconds2 and negative acceleration (deceleration) of 0-(-1.3 mm 

/seconds2) while the 901 – 1,800 seconds period had 0 – 1.1 mm/seconds2 and 0-(-1.1 

mm/seconds2) and the 1,801 – 2,700 seconds period had 0 – 1.1 mm/seconds2 and 0-(-1.1 

mm/seconds2) respectively. Moreover, the average MA value in the 0 – 900 seconds period 

was found to be 0.0000, the 901 – 1,800 seconds period had 0.002, and the 1,801 – 2,700 

seconds had 0.03 which is the highest.  

  

Fig. 10: Changes in steering acceleration 

behavior while driving. 

Fig. 11: Average MA value of driver steering 

behavior. 
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3.3 Braking Sensor Results 

The changes in the driver's braking speed presented in Fig. 12 showed that the value at 

the 0 – 900 seconds period was 0–2.9 mm/second, the 901 – 1,800 seconds period had 0-2.6 

mm/second, and the 1,801 – 2,700 seconds had 0 – 4.5 mm/second. This implies the 0 – 900 

seconds period has the greatest braking speed and lower density frequency compared to the 

others.  

The speed data presented in Fig. 10 were converted into an acceleration function 

through Eq. (1) to determine the changes in driver acceleration and the results are presented 

in Fig. 13. It was discovered that the pattern acceleration for the drivers at the 0 – 900 

seconds period was in the range of 0 – 0.4 mm/seconds2 and a negative acceleration 

(deceleration) value of 0-(-0.3 mm/seconds2) while the 901 – 1,800 seconds period had 0 – 

0.7 mm/seconds2 and 0-(-0.6 mm/seconds2 and 1,801 – 2,700 seconds period had 0 – 0.8 

mm/seconds2 and 0-(-0.8 mm/seconds2) respectively. 

  
Fig. 12: Braking speed on observed driving 

behavior. 

Fig. 13: Changes in the acceleration of the 

driver's braking behavior. 

 

The MA values associated with the changes in the driver's braking acceleration are 

presented in Fig. 14. It was discovered that the 0 – 900 seconds period has a pattern where 

the MA values had the lowest frequency with values ranging between 0 – 0.15 mm/seconds2 

and negative acceleration (deceleration) values 0-(- 0.13 mm/seconds2). The findings further 

showed that the 901 – 1,800 seconds period had 0 – 0.12 mm/seconds2 and 0-(-0.12 

mm/seconds2) while the 1,801 – 2,700 seconds period had 0 – 2.1 mm/seconds2 and 0-(-

0.18 mm/seconds2). These MA values were later used to determine the average MA and the 

results showed that the value for the second driver was 0.0003 for the 0 – 900 seconds period, 

0.0016 for the 901 – 1,800 seconds period, and 0.0021 for the 1,801 – 2,700 seconds period. 

This implies the 0 – 900 seconds period has the lowest average MA. 

3.4 Driving Behavior Recognition Range 

The driving behavior control system was designed using several variables that cause a 

slight difference between the simulated conditions and the real control system. It was 

discovered from the control system that the real driving behavior has a negative value 

because of the deceleration process and this cannot be read by the microcontroller. 

Therefore, a normalization system was needed through the inclusion of several different 

variables in the simulation scale and real control systems but the concept remains the same. 

Normalization is a process of adding constants to signal conditioning so that the 

microcontroller can work according to its designation. The methods used to recognize the 
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driving behavior are listed in Table 3 while the real decision-making process using the 

control system designed was based on the cluster system developed with the average MA 

value as indicated in Table 4. 

 

Fig. 14: Average MA value of the driver's braking behavior. 

Table 3: Cluster average (MA̅̅̅̅̅) for the throttle valve, steering, and braking 

 

The average MA value generated by the sensor was analyzed to identify and recognize 

the driving behavior clusters using the ANN that has been trained and embedded in the 

controller system as presented in Table 3. It was discovered that the first period was in the 

eco scheme, the second period was in the stoichiometric scheme, and the third period was 

in the sporty scheme. 

 
Table 4: Recognition of the driver's steering behavior in the control system 

Description Low 

(mm/seconds2) 

Middle 

(mm/seconds2) 

High 

(mm/seconds2) 

MA throttle valve 

acceleration 

(-0.001)-0.001 0.002 0.003 

MA from steering (-0.02) - 0.02 (-0.05) – (-0.03) & 0.03 - 

0.05 

(-0.08) – (-0.06) & 0.06 

- 0.08 

MA of braking 

acceleration 

(-0.0003)-0.0003 (-0.0009)–(-0.0006) 

& 0.0006 - 0.0009 

(-0.005) – (-0.001) & 

0.001 - 0.005 

Description First period 

(0-900s) 

Second period 

(901-1,800s) 

Third period 

(1801-2,700s) 

MA throttle valve 

acceleration 

Low (0.000) Middle (0.002) High (0.003) 

MA acceleration 

steering 

Low (0.0088) Low (0.0101) Low (0.0021) 

MA braking 

acceleration 

Low (0.0003) High (0.0016) High (0.0021) 

Driving behavior 

scheme 

Eco Stoichiometry Sporty 
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3.5   AFR Dynamics Results 

The AFR values were measured using the data previously acquired and validated 

through an AFR meter and were subsequently applied to determine the influence of driving 

behavior on their variations based on the information in Table 3. The first period is in the 

eco scheme, the second is in the stoichiometric scheme, and the third is in the sporty scheme. 

It is important to note that vehicles experience acceleration and deceleration when operating 

on the highway. Acceleration is a condition associated with an increase in the speed of the 

vehicle by opening the throttle valve while deceleration involves reducing the vehicle's 

speed by closing the throttle valve. An increase in the vehicle speed by opening the throttle 

valve usually leads to a decrease in the AFR value and vice versa. The dynamics of the AFR 

value including the increase or decrease are presented in Figure 15 for the models with and 

without the driving behavior control system. 

In the application of the driving behavior control system, the first period of driving 

behavior is known to have an AFR value between 14.8 – 17.7 with an average of 15.87, 

while the second period is between 14 – 16.6 with an average of 14.84, and the third period 

had the value is between 11.5 – 16 and the average is 13.66. This shows that the driving 

behavior in the first period allowed maximum fuel economy compared to the second and 

third periods. Meanwhile, the driving behavior in the third period led to the production of 

maximum power by the engine as indicated by the average AFR value recorded. Meanwhile, 

the dynamics of AFR without applying a driving behavior control system have quite a high 

difference in average values. The average AFR value without the developed control system 

is 14.78 for 2700 seconds. In the first period, the driver rarely decelerates, so the AFR value 

has a lower fluctuation range value when compared to the second and third periods. 

The achievement of the highest fuel economy through the AFR value above the 

stoichiometry of 14.7. This is in line with a previous study that predicted the potential 

development of technology to achieve a lean AFR scale above the stoichiometry for 

commercialization purpose in order to have energy-efficient machines [31]. The research 

did not discuss the exact conditions to implement lean AFR but this current study considered 

its application based on driving behavior. It was discovered that the AFR above 

stoichiometry achieved in the first period, 0 – 900 seconds, led to smoother acceleration and 

this implies there is no need for large engine power. 

 

Fig. 15: AFR dynamics on observed driving behavior. 
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The AFR values in the second period, 901 – 1,800 seconds, are classified to be in the 

stoichiometric range (14.7) and this is in line with the findings of a previous study that AFR 

stoichiometry  ensures the achievement of the most optimal value for power and fuel saving 

[7,32]. The research did not discuss the time and requirements to achieve maximum power 

saving but these are developed in this current study based on driving behavior.  

The driving behavior in the third period, 1,801 – 2,700 seconds, was observed to have 

led to the fulfillment of maximum power as indicated by the average AFR stoichiometry 

value of 13.66. This agrees with the findings of a previous study that an AFR under a 

stoichiometry value of 12–14 usually produces the greatest engine power [33]. The control 

system showed that the driving behavior required high engine power and this led to the 

addition of more fuel at an average AFR value of 13.66.  

This shows that the control system was successfully developed with due consideration 

for the driving behavior. This was able to improve driving comfort in terms of fuel economy 

as indicated by the AFR values above stoichiometry and fulfillment of the engine power 

requirements with values below stoichiometry. It was discovered that the fuel economy was 

satisfied in the first period when driving behavior is categorized as eco-scheme while the 

demand for the engine power was fulfilled in the third period when driving behavior is 

included in the sporty scheme. 

4.   CONCLUSION 

The design of AFR management with driving behavior control using ANN has been 

successfully applied to actual vehicles. The designed control system can recognize driver 

behavior in real-time to control fuel and increase vehicle comfort. Driving comfort is achieved 

by meeting the need for fuel economy when the driving behavior is included in the eco-driving 

scheme and aspects of fulfilling engine power when the driving behavior is included in the 

sporty scheme. When the driver enters the eco-driving scheme, the control system can control 

AFR with an average value of 15.68 (entering the lean range). AFR above stoichiometry can 

improve fuel economy. The eco scheme is achieved in the first period (0–900 seconds), where 

this decision is based on the MA value of throttle valve acceleration in the low category (0.0000 

mm/second2), MA steering acceleration in the low category (0.0088 mm/second2) and braking 

acceleration MA in the category low (0.0003 mm/s2). When the driving behavior enters the 

sporty driving scheme, the control system can control AFR with an average value of 13.66 

(below stoichiometry). AFR under stoichiometry produces maximum engine power. The 

sporty scheme is achieved in the third period (0–900 seconds), where this decision is based on 

the MA value of throttle valve acceleration in the high category (0.003 mm/second2), MA 

steering acceleration in the low category (0.0021 mm/second2) and braking acceleration MA 

in the high category (0.0021 mm/second2). This research is applied to vehicles with gasoline 

engines and has not considered the road angle.  For this reason, future research can be applied 

to electric, gas-fueled, and fuel-cell vehicles, considering the road angle. 
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